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€3 Lattice-based cryptography



A strong candidate for post-quantum crypto

A Cryptographic threat posed by quantum computers
= Shor’s algorithm solves the discrete log and factorisation
problems in quantum polynomial time.

= The advent of reasonnable quantum computers would break i 22y !
current cryptosystems (ECC, RSA).

D 0 [ + [
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¥ The NIST competition (2016 — 2022)
Three out of four of the first standardized algorithms rely on lattices.

& Encryption - Signature

« Crystals-Kyber | « Crystals-Dilithium
« Falcon

» SPHINCS+

Many lattice-based (and code-based) proposals within the extra-round for signatures.
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First principles of lattice-based crypto

% Euclidean lattices
A lattice Ais a discrete additive subgroup of R".
It can always be written A(B) = ), biZ.

Aob, + b,

*bs

L]
b’

The bases are not unique, eg. A(B) = A(B).
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% Euclidean lattices
A lattice Ais a discrete additive subgroup of R".
It can always be written A(B) = ), biZ.
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The bases are not unique, eg. A(B) = A(B).
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P¥- Hard lattice problems
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Computational hardness
«a € w(y/n) = runtime € 29,
ca €29 = runtime € poly(n).
Cryptographic assumption
«a € poly(n) = runtime € 294,
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Lattice-based crypto, legacy approach

01181 + -+ 4+ aiaSh = b
. Wofe, . _
Omis1 + -+ + AmaSn = bm
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Lattice-based crypto, legacy approach

Learning With Errors (LWE)

II HmOdq %I
01181 + -+ 4+ aiaSh = b

Inhomogeneous Short Integer Solution (ISIS) g + .+ c =

Omis1 + -+ + dmaSn = bm
A m)sma”H -I B oo

m)|
’

n
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Lattice-based crypto, legacy approach

Learning With Errors (LWE) * Hardness of !‘WE and ISIS
Those problems enjoy worst-case

average-case reductions from hard lattice
mod ¢ gy I problems, namely SVP and BDD.
« LWE = Bounded Distance Decoding over

AN={xeZ"|3se€Z,x=A~As mod g}
Inhomogeneous Short Integer Solution (ISIS) + ISIS = Shortest Vector Problem over

AN={s€Z"|A's=u mod q}.
A M) smaIIH -H Imodq

m)|
9
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Lattice-based crypto, legacy approach

Learning With Errors (LWE)

II H - M)I

Inhomogeneous Short Integer Solution (ISIS)

A ﬁ“—d>smanH -H B oo
__

m)|
9

@ Lattice-based cryptography

+* Hardness of LWE and ISIS

Those problems enjoy worst-case
average-case reductions from hard lattice
problems, namely SVP and BDD.

« LWE = Bounded Distance Decoding over
AN={xeZ"|3se€Z,x=A~As mod g}
+ ISIS = Shortest Vector Problem over
AN={s€Z"|A's=u mod q}.

& Large variety of constructions

Ranging from simple encryption or digital
signature scheme to anonymous credentials
and fully homomorphic encryption.

3/9




Breaking lattice-based crypto

Pad Attacking fundamental lattice problems

oA SVP Find the shortest non-zero vector, of length
l/ SVP \\‘ . //"\ ° )\1(/\): min/\\{o} ||X||2.
Y ! BDD(t)! xt \, BEDD Findv, givenatargett =v +e,withv € A
\ o - and le]| < A1(A)/2.

The concrete hardness of those problems is driven by the gap gap(/\) between the
actual shortest length and the upper bound given by Gaussian heuristics.
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Pad Attacking fundamental lattice problems

oA SVP Find the shortest non-zero vector, of length
l/ SVP \\‘ . // = © )\1(/\): min/\\{o} ||X||2.
o e %" BDD Findv, givenatargett = v+ e, withv € A
\ o - and le]| < A1(A)/2.

The concrete hardness of those problems is driven by the gap gap(/\) between the
actual shortest length and the upper bound given by Gaussian heuristics.

@ Deceptive aspect of lattice-based crypto

LWE-lattice: gap(A) > Q(+/n). Prime-lattice: gap(A) = O(log(n)).
Hypotheses on random lattices and subsequent constructions barely connect with
the luxuriant litterature on remarkable lattices.
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o8& Public-key encryption from LIP




The lattice isomorphism problem (LIP)

12>
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The lattice isomorphism problem (LIP)

£ Flavours of lattice isomorphisms

e (Unpractical) Given A and /\/, find (if any) 0 € O(R")
suchthatA =0- /.
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The lattice isomorphism problem (LIP)
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The lattice isomorphism problem (LIP)

. : £ Flavours of lattice isomorphisms
e (Unpractical) Given A and /\/, find (if any) 0 € O(R")
c suchthatA =0- /.

° c e (Search var.) Given B and B/, find (if any) 0 € O(R"),
0 U e GL(Z")suchthatB=0-B"-U.

e (Decision var., dLIP) Given B and B’, decide whether
A(B) = A(B’) or not.

i = (Distinguish var., ALIP) Given B, B, and B;, decide
‘ whether A(B) = A(By) or A(B) = A(By).

: © LIP hardness

: . LIP benefits from worst-case average-case
self-reduction within an instantiation class, and its

‘ o connection with the graph isomorphism problem

accounts for its assumed hardness.
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LIP-based crypto

© LIPflavours

= The public key consists in any lattice A and a basisBof O - A.
The secret key is the rotation O.

° L ]

° PR RSN °
B. b
l.bl iz

. :V 2 °
I‘ 0 q
. o

S
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LIP-based crypto

© LIPflavours

= The public key consists in quadratic forms (Q, Q') such that Q' = UTQU for U € GL,(Z).
The secret key is U.

s
' 0 ’ b2

’

|- Az x — T Gram(B) - x

where Gram(B) = BB.
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LIP-based crypto

© LIPflavours

= The public key consists in quadratic forms (Q, Q') such that Q' = UTQU for U € GL,(Z).
The secret key is U.

= LIP-based schemes can be instantiated with geometry of remarkable lattices (root
systems, Barnes-Wall, Z", ...): smaller gaps, better algorithms.
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wu Existing constructions S Dk
= Authentication scheme :p,
W, <

\—» I'm really interacting with Bob
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LIP-based crypto

© LIPflavours

= The public key consists in quadratic forms (Q, Q') such that Q" = UTQU for U € GL,(Z).
The secret key is U.

= LIP-based schemes can be instantiated with geometry of remarkable lattices (root
systems, Barnes-Wall, Z", ...): smaller gaps, better algorithms.

wu Existing constructions S Dk
= Authentication scheme J b Ny
«* Key-encapsulation mecanism - 1 N
= Signature (including Hawk JE JE
submission) \/ \\/‘

Q A missing primitive
We propose the first direct construction of a PKE relying on LIP.
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LIP-based public-key encryption scheme
@ High-levelidea

Follows Dual-Regev cryptosystem flavour:

= C=(0,1)",Enc(0) ~ (Dp mod C),
Enc(1) ~ U(C).
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® Correctness
With overwhelming probability, Enc(1) is far
enough from (0, 1)" vertices.

© security

Under ALIPgye hypothesis, the scheme is
IND-CPA secure.
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Cryptanalysis of the ALIP,, hypothesis

/> Areasonable hypothesis

The ALIP,e hypothesis seems as strong as ALIP: the class restriction does not
improve existing attacks, and does not create new ones neither.

[ Areasonable conjecture for falsifiability
For n > 85, there exists at least one unimodular lattice A of rank n that verifies

A (A)? > V/72n.

&8 Public-key encryption from LIP
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@ Discussion



What could we expect from LIP?

Legacy approach LIP approach
a a e C
b ‘o —
Large gap(A) on random lattices Small gap(A) on remarkable lattices
Hard time with Gaussian sampling Easy implementation (eg. Hawk)
Plenty of constructions Only a few constructions
Approximate variants of hypotheses Fragile hypotheses

® Discussion 9/9
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