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The Sbox 7 [GOST standards Streebog/Kuznyechik]

- 7: 8 — F§ bijection specified as a look-up table
- Reversed-engineered [BirPerUdo16,PerUdo16,Per19]

- Happens to be extremely aligned !
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In this talk

la) The Shox 7
1b) Bijections mapping vIF5. onto G(7) + F3. (and their linearity)

2a) The Kim mapping
2b) Functions mapping 7F5. onto F(v)F;. (and their APN-ness)
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Partitions of I and IL*

Finite fields
- [F c L finite fields of characteristic 2.

- I additive subgroup of L = L= || x+F
xe0
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- [F c L finite fields of characteristic 2.

- I additive subgroup of L = L= || x+F
xe0

- * multiplicative subgroup of L* — L* = || ~F*
vyer

/
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Decomposition of 7

B F8~L="Fyxs F=TF; AeL,yel,peF
16 additive cosets x + [, x € @, 17 multiplicative cosets 7[F*,~ € [
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Decomposition of 7

F§ ~ L =Fse, F=Fis

16 additive cosets x + [, x € @, 17 multiplicative cosets 7[F*,~ € [

Multiplicative cosets to additive cosets
- For any 7F* £F*, w(7F*) = x, + F*.
- ([ ={x}=0

- ¥~ x4 F* always the same.

Decomposition of 7
With well-chosen IF§ ~ 1, ', O, = can be expressed as:
W’]L\F L \ F — L
e = G(Y)+ F(y)

where G: T\ F = O, F:F 5 F with £(0) =0 and 7(F) = O.

AeLyel,pcF

[Perrin19]
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New results on

B m(vp) = G(7) + F(y) when v € '\ I, p € F*,

A few novelties
- The choice of O is understood.
- G is understood.

- 7| and G behaves in the “same way".

b

Try e(7(b'17)), where L* = (b)
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New results on

B m(vp) = G(7) + F(y) when v € '\ I, p € F*,

A few novelties

- The choice of O is understood.

G is understood.

7| and G behaves in the “same way”.

b

Try e(7(b'17)), where L* = (b)

Can we say more about this structure ?
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Generalizing 7

Tlr: e = G(v)+ Fly) I, O, sys. of reps. Ael,vyel,peF
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Generalizing 7

Tlr: e = G(v)+ Fly) I, O, sys. of reps. Ael,vyel,peF

Generalizing ™

[L:F]=2 IL¥| =22t — 1= (2t — 1)(2t + 1) N =2t+1, |O]=]F =2
Ole: e = G(Y) + F(p)

where G: [\ F = O, F:F =T, with £(0) =0 and MN(FF) = O.

Walsh coefficients of I

ﬁﬁ(a) = A%(—l)ﬂL/Fz(aA+Bn(A)) H:F—=T, x— TrL/F(",ﬂI—I(X))
c

Mg(a) =  Hop(Trpm(e)) — Hog(0) + D (—1)TelBCO) Fry o) (Trp m(an))
~er\F
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Functions with low linearity

Nr: e = G(v)+ F(p) I, 0, sys. of reps. AelL,yel,peF
ﬁﬁ(a) - Z (_1)Tr]L/]F2(a>\+ﬂﬂ(>\))
A€eL
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Functions with low linearity
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A€eL

A specific choice for [
[L:F]=2 = [ can be the subgroup © of order 2* + 1.
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Functions with low linearity

Nr: e = G(v)+ F(p) I, 0, sys. of reps. AelL,yel,peF
ﬁg(a) = 3 (—1)Truym, (eA+EN(N)
A€eL

A specific choice for [
[L:F]=2 = [ can be the subgroup © of order 2* + 1.

Functions with low linearity
=G, F=1d.  ForVa,VB8#0, [Mg(a) <2tt2,

Best known bijections achieve < 2t+1
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In this talk

la) The Shox 7 v
1b) Bijections mapping vIF5. onto G(7) + F3. (and their linearity) v

2a) The Kim mapping
2b) Functions mapping 7F5. onto F(v)F;. (and their APN-ness)
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The enigmatic Kim function

Kim mapping [BDMW10]
K: ]F54 = F64
X x3 + x10 + ux24;

where u is a specific root of x% + x* + x3 + x + 1.
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The enigmatic Kim function

Kim mapping [BDMW10]
K. F54 — F64
X x3 + x10 + ux24;
where u is a specific root of x% + x* + x3 + x + 1.

The reason of the fame

- Optimal resistance against differential cryptanalysis (APN)

- Even number of variables and CCZ-equivalent to a bijection
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The enigmatic Kim function

Kim mapping [BDMW10]
K: F54 = F64
4

X X?’—i—xlo—i—ux2 ;
where u is a specific root of x% + x* + x3 + x + 1.

The reason of the fame

- Optimal resistance against differential cryptanalysis (APN)

- Even number of variables and CCZ-equivalent to a bijection

F ~ G <= 3 A affine, bijective, A({(x, F(x)),x € L}) = {(x,G(x)),x € L}
Big APN problem

Up to CCZ-equivalence, does there exist any other APN permutation in even dimension 7
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The subspace property

A “special” property [BDMW10]
“r maps the subspace \I's to the subspace r(\)Fg for all A € Fg,”
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The subspace property

A “special” property [BDMW10]
“r maps the subspace \I's to the subspace r(\)Fg for all A € Fg,”

Subspace property
I c IL two finite fields. F: I — IL satisfies the subspace property if:

VAEL, F(A\F)=F(\F.

Mapping cosets onto cosets
I C IL two finite fields. F: L — IL satisfies the subspace property iff:

VA€L, 3Gy: F— F bijective s.t: Vo € F,  F(Ap) = F(A\)Ga(¢).

If F(A\) # 0, Gy unique
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Properties of the Kim mapping (1/2)

r(x) = x3 4+ x10 4 ux?*
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Properties of the Kim mapping (1/2)

r(x) = x3 4+ x10 4 ux?*

Observation [BDMW10]
YoeF, ek, r(p))=@k(N)

Proof: As || =7, we get 03 = 010 = 24,

Cyclotomic mapping [Wang07]
G C L* a subgroup. F: L — L is a cyclotomic mapping of order d over G if:

VIeLVoeG, F(e))=¢9FQ\) <= F=x9P(xI)

Here: G =F*
- Also known as Wan Lidl polynomials [WanLidl91]
- Studies about graphs or permutations, [AkbWan07, BorPanWan23, Laigle-Chapuy07]
- only a few about cryptographic properties [ChenCoulter23, Gologlu23, BeiBriLea21]
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Subspace property and Cyclotomy

Subspace prop: V )\, F()\F) = F(\)F
Cyclotomic: 3 d,V \,Y ©, F(p\) = @d/:()\)
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Cyclotomic: 3 d,V \,Y ©, F(p\) = @d/:()\)

Trivial relations

- Cyclotomic = V A\, F(A\F) C F(N\)E.

- Cyclotomic mapping satisfies the subspace property <= x > x9 bijective over F
Generalized cyclotomic mapping [BorsWang?22]
(G C IL* a subgroup. F: L — L is a generalized cyclotomic mapping over G if:

VAEL,3d\,,Yo€EG, F(pA)=o™F())
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Subspace property and Cyclotomy

Subspace prop: ¥V )\, F()\F) = F(\)F
Cyclotomic: 3 d,V \,Y ©, F(p\) = 9Qd/:()\)

Trivial relations
- Cyclotomic = V A\, F(A\F) C F(N\)E.

- Cyclotomic mapping satisfies the subspace property <= x > x9 bijective over F

Generalized cyclotomic mapping [BorsWang?22]
(G C IL* a subgroup. F: L — L is a generalized cyclotomic mapping over G if:

Yiel,dd\,VpeG, F(W/\):Lpd’\F(/\)

More trivial relations
- Gen. cyclotomic = V A\, F(\F) C F(A)F.

- Gen. cyclotomic mapping satisfies the subspace property <= V A, ged(d,, |F*]) =1
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Spectral point of view (1/2)
Subspace prop: ¥ )\, F(\F) = F()\)F. F(\p) = F(M\)Gx(p), with G\: F = F

'EB(O‘) o= )\Z]L(—l)“lL/Fz(aA-i-ﬁF(/\)) L = Fyp, F = Fo
€
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Spectral point of view (1/2)

Subspace prop: ¥ )\, F(\F) = F()\)F. F(\p) = F(M\)Gx(p), with G\: F = F
'Eﬁ(a) = Z (_1)TI‘L/F2 (a)\+5F(/\)) L = IFQZt, F - F2t
AEL

Decomposition of Walsh coefficients
[" system of representatives, o, 5 € .. F: L — IL satisfying the subspace property. Then:

Fp(e) = =2+ Gamyy e(sr()(TrLsr ().
vyer
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Spectral point of view (1/2)

Subspace prop: ¥V \, F(\F) = F()\)E. F(Ap) = F(A)Ga(p), with G\: F S F
'Eﬁ(a) = Z (_1)TI‘L/F2 ((l)\'f‘ﬁ’:(/\)) L= IFQZt, F = F2t
A€l

Decomposition of Walsh coefficients
[" system of representatives, o, 5 € .. F: L — IL satisfying the subspace property. Then:

Fp(e) = =2+ Gamyy e(sr()(TrLsr ().
yel

Symmetries of Walsh coefficients
Let G: IF — F. F satisfies the subspace property with G, = G V A if and only if:

Vo, B €L, Vo €F*, Fpgn(a) = Flap™).
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Spectral point of view (2/2)

Kim mapping r: x — x3 + x10 4+ ux?* Cube over Fgs4 x — x3
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Walsh coefficients I?j(O)

Subspace prop: ¥ )\, F(\F) = F()\)F. F(\p) = F(M\)Gx(p), with G\: F =

|[F1(F)]
I

ﬁg(a) = )\ZL(_l)TrL/FZ(aA%@F(A)) N, =
€
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Walsh coefficients I?j(O)

Subspace prop: V A, F(\F) = F()\)E. F(Ap) = F(A)Ga(p), with G\: F S F

F r a F=L(\F
Fa(a) i= 3 (~1)Mum(@+FO) gy o | mg| )

AEL

Walsh coefficients in zero
F satisfying the subspace property. [L : ] = 2. Then

VB el Fp(0)=24(Ng1—1)
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Walsh coefficients 1?3(0)

Subspace prop: V A, F(\F) = F()\)E. F(Ap) = F(A)Ga(p), with G\: F S F

|[F1(F)]
|F|

Fg(a) = )\Z]L (—1)Tu/m @ HBFO)
€

Walsh coefficients in zero
F satisfying the subspace property. [L : ] = 2. Then

VB el Fp(0)=24(Ng1—1)

Kim mapping

NN\
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Walsh coefficients ﬁ}(O)

Subspace prop: V A, F(\F) = F()\)E. F(Ap) = F(A)Ga(p), with G\: F S F

|[F1(F)]
|F|

Fg(a) = )\Z]L (—1)Tu/m @ HBFO)
€

Walsh coefficients in zero
F satisfying the subspace property. [L : ] = 2. Then

VB el Fp(0)=24(Ng1—1)

Cube
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Subspace property and APNness

Subspace prop: V \, F(\F) = F()\)E. F(Ap) = F(A)Ga(), with G\: F S F
F=1(\F ]
N ::% Nii={rel,N, =i}

Subspace prop. when [L: ] =2 = /?5(0) =2Y(Ng-1 — 1)
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Subspace property and APNness

Subspace prop: V \, F(\F) = F()\)E. F(Ap) = F(A)Ga(), with G\: F S F
F-1(\F .
N,\::% Ni={yel,N, =i}

Subspace prop. when [L: ] =2 = /?5(0) =2Y(Ng-1 — 1)
Necessary condition to be APN
F quadratic satisfying the subspace property. [L : ] = 2.
- If F is APN then Ap + A > 2201

- If £(F) = 2t+ and Np + Ns > 228 then F is APN.
Proof: [BerCanChalLai06]
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Subspace property and APNness

Subspace prop: ¥ )\, F(\F) = F()\)F. F(\p) = F(M\)Gx(p), with G\: F =
—1 "
N)\::W _/\/’I:{'\Er,N,:[}

Subspace prop. when [L: F] =2 = F3(0) = 2/(Ng-1 — 1)

Necessary condition to be APN
F quadratic satisfying the subspace property. [L : ] = 2.
- If Fis APN then A + A > 22H)
- If L(F) =257 and Ny + N > 22 then F is APN.
Proof: [BerCanChalLai06]

One already-solved case [Gologlu2023, ChalLis21]
F quadratic cyclotomic when [LL : ] = 2.

-ft#3: FAPN <= F ~ccz Gold power

-ft=3: FAPN <= F ~ccz Gold power or F ~ccz k.

17/19



Squares of zeros

Cyclotomic: 3d,¥Y \,V o, F(p)\) = 09F(\) L =Fp:, F=TFy

Fa(e) = 32 () Te/m (e Pri) Zr = {(a,8), Fpla) = 0} U {(0,0)}
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Cyclotomic: 3d,¥Y \,V o, F(p)\) = 09F(\) L =Fp:, F=TFy
Fala) = X (—1)Tu/m(eX+0F0) Zr = {(a,8), Fpla) = 0} U {(0,0)}
AeL

Walsh zeroes
F CCZ-equiv. to a bijection iff 3, U,V C Zf subspaces of dim. n, UN V = {0}.
For K, U= ulF X UQ]F, V = VlF X VQF.
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Squares of zeros

Cyclotomic: 3d,¥Y \,V o, F(p)\) = 09F(\) L = Fo, F = Fy
Fala) = X (—1)Tu/m(eX+0F0) Zr = {(a,8), Fpla) = 0} U {(0,0)}
AeL

Walsh zeroes
F CCZ-equiv. to a bijection iff 3, U,V C Zr subspaces of dim. n, UN V = {0}.
For K, U= UlF X UQ]F, V = VlF X VzF.

Characterization of alf* x SF* C Zf

For cyclotomic mappings of order d over I, [L: [[] =2
- FL)=cF = Va, aF*xcF*C Z
- Otherwise”, can only happened if ,’/-_\5(0) =0.

* Full characterization in the abstract
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Conclusion

Generalizations of 7 and linearity
Can we go below £(I1) < 242 with other [, O, F, & 7 constructions close to this one ?

Subspace property / Cyclotomic mapping APNness
- Study of non-bijective cyclotomic mapping
- Still hope : non-quadratic or [L : F] #£2 ...

- Computer search

CCZ-equivalence and bijectivity

Is the characterization of Walsh-zeros “square” sporadic or not ?

Thanks ! ©
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Subspace property and Cyclotomy

Subspace prop: V A, F(\F) = F(\)F
Cyclotomic: 3 d,V \,V ¢, F(pX) = @9F())
Gen. cyclotomic: ¥ \,3 d\,¥ p, F(p)\) = p™F(\)

Subspace prop.: F(AF) = F(A\)F F(AF) C F(\)F

Generalized cyclotomic mapping

Power mapping

Cyclotomic mapping
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