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Alignment

The Sbox π [GOST standards Streebog/Kuznyechik]

- π : F8
2
→ F8

2
bijection speci�ed as a look-up table

- Reversed-engineered [BirPerUdo16,PerUdo16,Per19]

- Happens to be extremely aligned !
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In this talk

1a) The Sbox π

1b) Bijections mapping γF∗
2t onto G (γ) + F∗

2t (and their linearity)

2a) The Kim mapping κ

2b) Functions mapping γF∗
2t onto F (γ)F∗

2t (and their APN-ness)
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Partitions of L and L∗

Finite �elds
- F ⊂ L �nite �elds of characteristic 2.

- F additive subgroup of L =⇒ L =
⊔

x∈O
x + F

- F∗ multiplicative subgroup of L∗ =⇒ L∗ =
⊔
γ∈Γ

γF∗

O

F
0

αF

α

α3F

α3

α16F

α16

1F10

Γ
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Decomposition of π

ú F8
2
≃ L = F256, F = F16 λ ∈ L, γ ∈ Γ, φ ∈ F

16 additive cosets x + F, x ∈ O, 17 multiplicative cosets γF∗, γ ∈ Γ

Multiplicative cosets to additive cosets

- For any γF∗ ̸= F∗, π(γF∗) = xγ + F∗.

- π(F) = {xγ} = O
- γF∗ ⇝ xγ + F∗ always the same.

Decomposition of π [Perrin19]

With well-chosen F8
2
≃ L, Γ, O, π can be expressed as:

π|L\F : L \ F → L
γφ 7→ G (γ) + F (φ)

where G : Γ \ F ∼−→ O, F : F ∼−→ F with F (0) = 0 and π(F) = O.
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New results on π

ú π(γφ) = G (γ) + F (φ) when γ ∈ Γ \ F, φ ∈ F∗.

TrL/F(π(b
i+17j)), where L∗ = ⟨b⟩

A few novelties

- The choice of O is understood.

- G is understood.

- π|F and G behaves in the �same way�.

Can we say more about this structure ?
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Generalizing π

ú π|L\F : γφ 7→ G (γ) + F (φ) Γ,O, sys. of reps. λ ∈ L, γ ∈ Γ, φ ∈ F

Generalizing π

[L : F] = 2 |L∗| = 22t − 1 = (2t − 1)(2t + 1) |Γ| = 2t + 1, |O| = |F| = 2t .

Π|L\F : γφ 7→ G (γ) + F (φ)

where G : Γ \ F ∼−→ O, F : F ∼−→ F, with F (0) = 0 and Π(F) = O.

Walsh coe�cients of Π

Π̂β(α) :=
∑
λ∈L

(−1)TrL/F2 (αλ+βΠ(λ)) H : F → F, x 7→ TrL/F(γβΠ(x))

Π̂β(α) = Ĥφβ
(TrL/F(α))− Ĥφβ

(0) +
∑

γ∈Γ\F

(−1)TrL/F(βG(γ)) F̂TrL/F(β)(TrL/F(αγ))
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Functions with low linearity

ú Π|L\F : γφ 7→ G (γ) + F (φ) Γ,O, sys. of reps. λ ∈ L, γ ∈ Γ, φ ∈ F

Π̂β(α) :=
∑
λ∈L

(−1)TrL/F2 (αλ+βΠ(λ))

A speci�c choice for Γ

[L : F] = 2 =⇒ Γ can be the subgroup G of order 2t + 1.

Functions with low linearity

Γ = G, F = Id. For ∀ α,∀ β ̸= 0, |Π̂β(α)| ≤ 2t+2.

Best known bijections achieve ≤ 2t+1
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In this talk

1a) The Sbox π ✓

1b) Bijections mapping γF∗
2t onto G (γ) + F∗

2t (and their linearity) ✓

2a) The Kim mapping κ

2b) Functions mapping γF∗
2t onto F (γ)F∗

2t (and their APN-ness)
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The enigmatic Kim function

Kim mapping [BDMW10]
κ : F64 → F64

x 7→ x3 + x10 + ux24;

where u is a speci�c root of x6 + x4 + x3 + x + 1.

The reason of the fame

- Optimal resistance against di�erential cryptanalysis (APN)

- Even number of variables and CCZ-equivalent to a bijection

F ∼ G ⇐⇒ ∃ A a�ne, bijective, A({(x ,F (x)) , x ∈ L}) = {(x ,G (x)) , x ∈ L}

Big APN problem

Up to CCZ-equivalence, does there exist any other APN permutation in even dimension ?
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The subspace property

A �special� property [BDMW10]

�κ maps the subspace λF8 to the subspace κ(λ)F8 for all λ ∈ F64�

Subspace property

F ⊂ L two �nite �elds. F : L → L satis�es the subspace property if:

∀ λ ∈ L, F (λF) = F (λ)F.

Mapping cosets onto cosets

F ⊂ L two �nite �elds. F : L → L satis�es the subspace property i�:

∀λ ∈ L, ∃ Gλ : F → F bijective s.t: ∀φ ∈ F, F (λφ) = F (λ)Gλ(φ).

If F (λ) ̸= 0, Gλ unique



11/19

The subspace property

A �special� property [BDMW10]

�κ maps the subspace λF8 to the subspace κ(λ)F8 for all λ ∈ F64�

Subspace property

F ⊂ L two �nite �elds. F : L → L satis�es the subspace property if:

∀ λ ∈ L, F (λF) = F (λ)F.

Mapping cosets onto cosets

F ⊂ L two �nite �elds. F : L → L satis�es the subspace property i�:

∀λ ∈ L, ∃ Gλ : F → F bijective s.t: ∀φ ∈ F, F (λφ) = F (λ)Gλ(φ).

If F (λ) ̸= 0, Gλ unique



11/19

The subspace property

A �special� property [BDMW10]

�κ maps the subspace λF8 to the subspace κ(λ)F8 for all λ ∈ F64�

Subspace property

F ⊂ L two �nite �elds. F : L → L satis�es the subspace property if:

∀ λ ∈ L, F (λF) = F (λ)F.

Mapping cosets onto cosets

F ⊂ L two �nite �elds. F : L → L satis�es the subspace property i�:

∀λ ∈ L, ∃ Gλ : F → F bijective s.t: ∀φ ∈ F, F (λφ) = F (λ)Gλ(φ).

If F (λ) ̸= 0, Gλ unique



12/19

Properties of the Kim mapping (1/2)

ú κ(x) = x3 + x10 + ux24

Observation [BDMW10]

∀ φ ∈ F, λ ∈ L, κ(φλ) = φ3κ(λ)

Proof: As |F∗| = 7, we get φ3 = φ10 = φ24.

Cyclotomic mapping [Wang07]

G ⊂ L∗ a subgroup. F : L → L is a cyclotomic mapping of order d over G if:

∀ λ ∈ L, ∀ φ ∈ G, F (φλ) = φdF (λ) ⇐⇒ F = xdP(x |G |)

Here: G = F∗

- Also known as Wan Lidl polynomials [WanLidl91]

- Studies about graphs or permutations, [AkbWan07, BorPanWan23, Laigle-Chapuy07]

- only a few about cryptographic properties [ChenCoulter23, Gologlu23, BeiBriLea21]
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Subspace property and Cyclotomy

ú Subspace prop: ∀ λ, F (λF) = F (λ)F
Cyclotomic: ∃ d ,∀ λ,∀ φ, F (φλ) = φdF (λ)

Trivial relations
- Cyclotomic =⇒ ∀ λ, F (λF) ⊂ F (λ)F.
- Cyclotomic mapping satis�es the subspace property ⇐⇒ x 7→ xd bijective over F

Generalized cyclotomic mapping [BorsWang22]

G ⊂ L∗ a subgroup. F : L → L is a generalized cyclotomic mapping over G if:

∀ λ ∈ L,∃ dλ, ∀ φ ∈ G, F (φλ) = φdλF (λ)

More trivial relations
- Gen. cyclotomic =⇒ ∀ λ, F (λF) ⊂ F (λ)F.
- Gen. cyclotomic mapping satis�es the subspace property ⇐⇒ ∀ λ, gcd(dλ, |F∗|) = 1
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Spectral point of view (1/2)

ú Subspace prop: ∀ λ, F (λF) = F (λ)F. F (λφ) = F (λ)Gλ(φ), with Gλ : F
∼−→ F

F̂ β(α) :=
∑
λ∈L

(−1)TrL/F2 (αλ+βF (λ)) L = F22t , F = F2t

Decomposition of Walsh coe�cients

Γ system of representatives, α, β ∈ L. F : L → L satisfying the subspace property. Then:

F̂ β(α) = −2t +
∑
γ∈Γ

ĜλTrL/F(βF (γ))(TrL/F (αγ)).

Symmetries of Walsh coe�cients

Let G : F → F. F satis�es the subspace property with Gλ = G ∀ λ if and only if:

∀α, β ∈ L, ∀φ ∈ F∗, F̂ βG(φ)(α) = F̂ β(αφ
−1).
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Spectral point of view (2/2)

β

α

F̂ β(α)

−22t

−2t
0

2t

22t

Kim mapping κ : x 7→ x3 + x10 + ux24 Cube over F64 x 7→ x3
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Walsh coe�cients F̂β(0)

ú Subspace prop: ∀ λ, F (λF) = F (λ)F. F (λφ) = F (λ)Gλ(φ), with Gλ : F
∼−→ F

F̂ β(α) :=
∑
λ∈L

(−1)TrL/F2 (αλ+βF (λ)) Nλ :=
|F−1(λF)|

|F|

Walsh coe�cients in zero
F satisfying the subspace property. [L : F] = 2. Then

∀ β ∈ L∗, F̂ β(0) = 2t(Nβ−1 − 1)
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Walsh coe�cients F̂β(0)

ú Subspace prop: ∀ λ, F (λF) = F (λ)F. F (λφ) = F (λ)Gλ(φ), with Gλ : F
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Subspace property and APNness

ú Subspace prop: ∀ λ, F (λF) = F (λ)F. F (λφ) = F (λ)Gλ(φ), with Gλ : F
∼−→ F

Nλ :=
|F−1(λF)|

|F| Ni := {γ ∈ Γ,Nγ = i}
Subspace prop. when [L : F] = 2 =⇒ F̂ β(0) = 2t(Nβ−1 − 1)

Necessary condition to be APN

F quadratic satisfying the subspace property. [L : F] = 2.

- If F is APN then N0 +N2 ≥ 2(2t+1)
3

- If L(F ) = 2t+1 and N0 +N2 ≥ 2(2t+1)
3

then F is APN.

Proof: [BerCanChaLai06]

One already-solved case [Gologlu2023, ChaLis21]

F quadratic cyclotomic when [L : F] = 2.

- If t ̸= 3: F APN ⇐⇒ F ∼CCZ Gold power

- If t = 3: F APN ⇐⇒ F ∼CCZ Gold power or F ∼CCZ κ.
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Squares of zeros

ú Cyclotomic: ∃ d , ∀ λ, ∀ φ, F (φλ) = φdF (λ) L = F22t , F = F2t

F̂ β(α) :=
∑
λ∈L

(−1)TrL/F2 (αλ+βF (λ)) ZF :=
{
(α, β), F̂ β(α) = 0

}
∪ {(0, 0)}

Walsh zeroes
F CCZ-equiv. to a bijection i� ∃,U,V ⊂ ZF subspaces of dim. n, U ∩ V = {0}.

For κ, U = u1F× u2F, V = v1F× v2F.

Characterization of αF∗ × βF∗ ⊂ ZF

For cyclotomic mappings of order d over F, [L : F] = 2

- F (L) = cF =⇒ ∀ α, αF∗ × cF∗ ⊂ ZF

- Otherwise∗, can only happened if F̂ β(0) = 0.

∗ Full characterization in the abstract
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Characterization of αF∗ × βF∗ ⊂ ZF

For cyclotomic mappings of order d over F, [L : F] = 2

- F (L) = cF =⇒ ∀ α, αF∗ × cF∗ ⊂ ZF

- Otherwise∗, can only happened if F̂ β(0) = 0.

∗ Full characterization in the abstract
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Conclusion

Generalizations of π and linearity

Can we go below L(Π) ≤ 2t+2 with other Γ,O,F ,G ? constructions close to this one ?

Subspace property / Cyclotomic mapping APNness

- Study of non-bijective cyclotomic mapping

- Still hope : non-quadratic or [L : F] ̸= 2 . . .

- Computer search

CCZ-equivalence and bijectivity

Is the characterization of Walsh-zeros �square� sporadic or not ?

Thanks ! ⌣
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Subspace property and Cyclotomy

ú Subspace prop: ∀ λ, F (λF) = F (λ)F
Cyclotomic: ∃ d ,∀ λ,∀ φ, F (φλ) = φdF (λ)
Gen. cyclotomic: ∀ λ,∃ dλ,∀ φ, F (φλ) = φdλF (λ)

X κ

Subspace prop.: F (λF) = F (λ)F F (λF) ⊂ F (λ)F

Generalized cyclotomic mapping

Cyclotomic mapping

Power mapping
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