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Preliminaries

▶ Throughout this talk, let G = (G , +) be a finite abelian group
▶ For each γ ∈ G , the group structure allows to define the bijective mapping

Tγ : G 7→ G , x 7→ x + γ,

called translation by γ
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Differential Uniformity of S-boxes and Differential Cryptanalysis
Differential Uniformity [Nyberg, ’93]
Let S : G → G . The differential uniformity of S is

δS := max
α∈G\{0}

β∈G

|{x ∈ G | S◦Tα(x) = Tβ◦S(x)}| = max
α∈G\{0}

β∈G

|{x ∈ G | S(x+α)−S(x) = β}|.

▶ widely-studied notion, of mathematical interest (e.g., APN functions, planar functions)
▶ measures resistance against differential cryptanalysis of ciphers (originally G = Fn

2).
▶ choose S-box S with small δS , argue resistance with wide-trail strategy [Daemen ’95]
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A Generalization of Differential Uniformity
c-Differential Uniformity (G = Fpn) [Ellingsen, Felke, Riera, Stănică, Tkachenko]
Let S : Fpn → Fpn and c ∈ F∗

pn . The c-differential uniformity of S is

cδS := max
α,β∈Fpn ,α ̸=0 if c=1

|{x ∈ Fpn | S(x + α) − cS(x) = β}|

▶ widely studied for S-boxes from a theoretic point of view

A cryptographic attack for c ̸= 1 remains to be shown
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Commutative Cryptanalysis as a Unifying Framework
Commutative Distinguisher (Informal)
Let (Ek)k∈κ a finite family of permutations over G (i.e., a block cipher). A commutative
distinguisher is a pair (A, B) with A, B : G → G s.t.

P(A Ek→ B) := Prx∈G [Ek(A(x)) = B(Ek(x))]

is high for many keys k ∈ κ.

S
...
S

L

S
...
S

L

S
...
S

L. . .
x y

k0 k1 k2 kr

A(x) B(y)?

BA ? ? ?

▶ corresponds to notion of commutative diagram cryptanalysis [Wagner, 2004]
▶ advantage needs to be formalized (e.g., A = B = id is not meaningful)
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Commutative Cryptanalysis as a Unifying Framework (cont.)
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▶ Differential cryptanalysis [Biham, Shamir, ’91]: A = Tα := (x 7→ x + α) and
B = Tβ := (x 7→ x + β)

▶ Rotational cryptanalysis [Khovratovich, Nikolić, 2010]: Let G = Fn
2 and

ρ : (x1, . . . , xn) 7→ (x2, . . . , xn, x1). Then, A = ρi and B = ρj

▶ Rotational differential cryptanalysis [Ashur, Liu, 2016]: Let G = Fn
2.

A = ρi ◦ Tα and B = Tβ

▶ c-differentials: finite field G = Fpn , A = Tα and B : x 7→ cx + β with
α, β, c ∈ Fpn , c ̸= 0
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Commutative Cryptanalysis as a Unifying Framework (cont.)
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Commutative Cryptanalysis as a Unifying Framework (cont.)

S
...
S

L

S
...
S

L

S
...
S

L. . .
x y

k0 k1 k2 kr

A(x) B(y)?

BA ? ? ?

▶ Differential cryptanalysis [Biham, Shamir, ’91]: A = Tα := (x 7→ x + α) and
B = Tβ := (x 7→ x + β)

▶ Rotational cryptanalysis [Khovratovich, Nikolić, 2010]: Let G = Fn
2 and

ρ : (x1, . . . , xn) 7→ (x2, . . . , xn, x1). Then, A = ρi and B = ρj

▶ Rotational differential cryptanalysis [Ashur, Liu, 2016]: Let G = Fn
2.

A = ρi ◦ Tα and B = Tβ

▶ c-differentials: finite field G = Fpn , A = Tα and B : x 7→ cx + β with
α, β, c ∈ Fpn , c ̸= 0

7 / 37



Commutative Cryptanalysis as a Unifying Framework (cont.)

S
...
S

L

S
...
S

L

S
...
S

L. . .
x y

k0 k1 k2 kr

A(x) B(y)?

BA ? ? ?

▶ Differential cryptanalysis [Biham, Shamir, ’91]: A = Tα := (x 7→ x + α) and
B = Tβ := (x 7→ x + β)

▶ Rotational cryptanalysis [Khovratovich, Nikolić, 2010]: Let G = Fn
2 and

ρ : (x1, . . . , xn) 7→ (x2, . . . , xn, x1). Then, A = ρi and B = ρj

▶ Rotational differential cryptanalysis [Ashur, Liu, 2016]: Let G = Fn
2.

A = ρi ◦ Tα and B = Tβ

▶ c-differentials: finite field G = Fpn , A = Tα and B : x 7→ cx + β with
α, β, c ∈ Fpn , c ̸= 0

7 / 37



Commutative Cryptanalysis as a Unifying Framework (cont.)
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▶ [Baudrin et al., 2023] studied the case of G = Fn
2 and A, B affine permutations

Question
Can we study the resistance by studying an isolated property of S (as for differentials)?

Affine Uniformity [Baudrin et al., 2023]
Given an S-box S : Fn

2 → Fn
2 and A, B ∈ AGL(n,F2), define

ΓS(A, B) = |{x ∈ Fn
2 | S(A(x)) = B(S(x))}|, ΓS := max

A,B,id/∈{A,B}
ΓS(A, B).
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Commutative Cryptanalysis as a Unifying Framework (cont.)
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Outline

1 The distinguishing advantage of a commutative distinguisher, relations to differentials,
and limitations of the general attack

2 Constructing commutative trails: Examples of the general attack in the weak-key model

3 Commutation over the Key Addition

4 Analyzing S-boxes

5 The Linear Layer
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A Chosen-Plaintext Distinguisher

Commutative Distinguisher (Informal)
Pair (A, B) with A, B : G → G such that Prx [Ek(A(x)) = B(Ek(x))] is high for many k.

The security model
Adversary A interacts with O = Ek : G → G for an (unknown) uniformly chosen k ∈ κ or
with a uniformly random chosen permutation O = P : G → G (such that
Pr(O = Ek) = Pr(O = P) = 0.5). A tells whether O = Ek (return 1) or O = P (ret. 0).

How the commutative (chosen-plaintext) distinguisher works:
▶ A encrypts xi and A(xi) for a random xi and checks O(A(xi))

?= B(O(xi))
▶ makes a guess for O ∈ {Ek , P} and returns 1 or 0
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The Distinguishing Advantage

For a permutation P : G → G , we have

Pr(A P→ B) = Prx∈G [P(A(x)) = B(P(x))] = ΓP(A, B)
|G |

,

where ΓP(A, B) := |{x ∈ G | P(A(x)) = B(P(x))}|. For (Ek)k∈κ, define the expected
commutative probability as

ECP(A E→ B) := 1
|κ|

∑
k∈κ

Pr(A Ek→ B).

Distinguishing Advantage of Commutative Distinguisher (A, B)

Adv(A,B) := |ECP(A E→ B) − PrP∈Perm(G),x∈G [P(A(x)) = B(P(x))]|,

where Perm(G) denotes the set of all permutations of G .
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The Distinguishing Advantage (cont.)

Distinguishing Advantage of Commutative Distinguisher (A, B)

Adv(A,B) := |ECP(A E→ B) − PrP∈Perm(G),x∈G [P(A(x)) = B(P(x))]|

Lemma
Let G be a finite set and A, B : G → G . Then,

PrP∈Perm(G),x∈G [P ◦A(x) = B ◦P(x)] = |G | − |Fix(A)| − |Fix(B)| + |Fix(A)| · |Fix(B)|
|G | · (|G | − 1) ,

where Fix(·) denotes the set of fixed points.
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The Distinguishing Advantage (cont.)

Distinguishing Advantage of Commutative Distinguisher (A, B)

Adv(A,B) := |ECP(A E→ B) − |G | − |Fix(A)| − |Fix(B)| + |Fix(A)| · |Fix(B)|
|G | · (|G | − 1) |

If G = Fn
p, C ∈ AGL(n,Fp) such that C = L + c with L being linear, we have

|Fix(C)| =
{

0 if c /∈ Im(id − L)
pdim ker(id−L) otherwise (and Fix(C) is an affine subspace of Fn

p)
,

Be careful with the notion of affine uniformity!
The notion of affine uniformity is only meaningful if we restrict to sets A ⊆ AGL(n,Fp)2

such that (A1, B1), (A2, B2) ∈ A implies |Fix(A1)| = |Fix(A2)| and |Fix(B1)| = |Fix(B2)|.
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Expressing ECP(A E→ B) using Commutative Trails

Commutative Trail Formula for Iterated Ciphers (over independent round keys)
Let (Ek)k∈G×G be the family of permutations defined by E(k1,k2) = F3 ◦ Tk2 ◦ F2 ◦ Tk1 ◦ F1
for permutations F1, F2, F3 : G → G and let A, B : G → G . We have

ECP(A E→ B) =
∑
γ∈G

∑
δ∈G

Pr(A F1→ Tγ) · Pr(Tγ
F2→ Tδ) · Pr(Tδ

F3→ B).

F1 F2 F3

k1 k2
x

A(x)

y

B(y)

A B
Tγ1
Tγ2.

.

.Tγ|G|

Tδ1
Tδ2.

.

.Tδ|G|

▶ Generalization of the case where A, B are translations [Lai, Massey, Murphy, ’91]
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Expressing ECP(A E→ B) using Commutative Trails (cont.)

Commutative Trail Formula for Iterated Ciphers
Let (Ek)k∈G×G be the family of permutations defined by E(k1,k2) = F3 ◦ Tk2 ◦ F2 ◦ Tk1 ◦ F1
for permutations F1, F2, F3 : G → G and let A, B : G → G . We have

ECP(A E→ B) =
∑
γ∈G

∑
δ∈G

Pr(A F1→ Tγ) · Pr(Tγ
F2→ Tδ) · Pr(Tδ

F3→ B).

Application to Even-Mansour Cipher (Setting F1 = F3 = id, F2 = R)

ECP(A E→ B) ≤ δR
|G |

· (|G | − |Fix(A)|)(|G | − |Fix(B)|)
|G |2

+ |Fix(A)| · |Fix(B)|
|G |2

.

If one of A − id or B − id is bijective, we have ECP(A E→ B) = 1
|G| .
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Putting All Together

Distinguishing Advantage over Cipher with Independent Whitening Keys

Adv(A,B) ≤ max
γ,δ∈G,γ ̸=0

ECP(Tγ
E→ Tδ) + 2

|G | − 1 .

If one of A − id or B − id is invertible, then Adv(A,B) = 0.

▶ When there are independent whitening keys, we cannot do better than a differential
attack (already shown in [Liu, Tessaro, Vaikuntanathan, 2021])

▶ c-differentials (c ̸= 1) yield advantage 0, as x 7→ cx + β − x is invertible

Weak-Key Model
A commutative (non-differential) attack only works in the weak-key model, or exploits
properties of the key schedule!

16 / 37



Putting All Together

Distinguishing Advantage over Cipher with Independent Whitening Keys

Adv(A,B) ≤ max
γ,δ∈G,γ ̸=0

ECP(Tγ
E→ Tδ) + 2

|G | − 1 .

If one of A − id or B − id is invertible, then Adv(A,B) = 0.

▶ When there are independent whitening keys, we cannot do better than a differential
attack (already shown in [Liu, Tessaro, Vaikuntanathan, 2021])

▶ c-differentials (c ̸= 1) yield advantage 0, as x 7→ cx + β − x is invertible

Weak-Key Model
A commutative (non-differential) attack only works in the weak-key model, or exploits
properties of the key schedule!

16 / 37



Putting All Together

Distinguishing Advantage over Cipher with Independent Whitening Keys

Adv(A,B) ≤ max
γ,δ∈G,γ ̸=0

ECP(Tγ
E→ Tδ) + 2

|G | − 1 .

If one of A − id or B − id is invertible, then Adv(A,B) = 0.

▶ When there are independent whitening keys, we cannot do better than a differential
attack (already shown in [Liu, Tessaro, Vaikuntanathan, 2021])

▶ c-differentials (c ̸= 1) yield advantage 0, as x 7→ cx + β − x is invertible

Weak-Key Model
A commutative (non-differential) attack only works in the weak-key model, or exploits
properties of the key schedule!

16 / 37



Outline

1 The distinguishing advantage of a commutative distinguisher, relations to differentials,
and limitations of the general attack

2 Constructing commutative trails: Examples of the general attack in the weak-key model
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4 Analyzing S-boxes
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Commutative Trails of Probability 1

In the following, let G = Fn
p.

Deterministic Commutative Trail
Let F = Fr ◦ · · · ◦ F2 ◦ F1 be an iterated permutation, Fi : Fn

p → Fn
p permutations.

Let C0, . . . , Cr ∈ AGL(n,Fp) such that Fi ◦ Ci−1 = Ci ◦ Fi for all i , then F ◦ A = B ◦ F
with A = C0, B = Cr (i.e., ΓF (A, B) = pn).

Idea (as studied in [Baudrin et al., 2023]):
▶ Separate the block cipher (SPN) into the S-box layer (S), linear layer (L), and key

addition (Tk)
▶ for all X ∈ {S, L}∪{Tk | k ∈ WeakKeys} find C , C ′ ∈ AGL(n,Fp) with X◦C = C ′◦X

(i.e., ΓX (C , C ′) = pn)
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Example 1 (Two-Round Cipher [B., Felke, Leander, Neumann, Stennes])

S

S

S

L

S

S

S

L
x y

k0 k1 k2

x+∆ y + L(∆)?

T∆ T∆ C C → C T∆ TL(∆) TL(∆)

▶ S-box layer S applies three 5-bit S-boxes in parallel, i.e., S = (S, S, S)
▶ Linear layer L defined by a special 15 × 15 matrix over F2
▶ The two-round cipher defined as Ek0,k1,k2 := Tk2 ◦ L ◦ S ◦ Tk1 ◦ L ◦ S ◦ Tk0

Special properties of S and L (we see later how such S, L can be constructed)

▶ ∃δ ∈ F5
2 \ {0} and C ∈ AGL(5,F2) such that S ◦ Tδ = C ◦ S and S ◦ C = Tδ ◦ S.

Then, S ◦ T∆ = C ◦ S and S ◦ C = T∆ ◦ S where ∆ = (δ, δ, δ), C = Diag(C , C , C)
▶ S has non-trivial differential uniformity and non-trivial linearity (here δS = 20).
▶ C commutes with L, i.e., L ◦ C = C ◦ L
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Special properties of S and L (we see later how such S, L can be constructed)

▶ ∃δ ∈ F5
2 \ {0} and C ∈ AGL(5,F2) such that S ◦ Tδ = C ◦ S and S ◦ C = Tδ ◦ S.

Then, S ◦ T∆ = C ◦ S and S ◦ C = T∆ ◦ S where ∆ = (δ, δ, δ), C = Diag(C , C , C)
▶ S has non-trivial differential uniformity and non-trivial linearity (here δS = 20).
▶ C commutes with L, i.e., L ◦ C = C ◦ L
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Example 1 (cont.)

S

S

S

L

S

S

S

L
x y

k0 k1 k2

x+∆ y + L(∆)?

T∆ T∆ C C → C T∆ TL(∆) TL(∆)

▶ If k1 is a weak key (in the sense that Tk1 ◦ C = C ◦ Tk1), we have Ek0,k1,k2(x + ∆) =
Ek0,k1,k2(x) + L(∆), i.e., a probability-1 differential

▶ There are no probability-1 differentials over a single round (since δS < 25)

What are the weak keys?
In this example, the weak keys form a 12-dimensional subspace of F15

2 .
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Example 2 (Midori) and Example 3 (Scream)

▶ Midori [Banik et al., 2015] is a 64-bit block cipher (SPN) using a 128-bit key
▶ Scream [Grosso et al., 2015] is a 128-bit tweakable block cipher using a 128-bit key

Results shown in [Baudrin et al., 2023]

▶ Midori: If the round constants are slightly modified, there exists a probability-1
commutative trail covering an arbitrary number of rounds for 296 keys

▶ Scream: There is a probability-1 commutative trail for 280 keys

Question
What are the properties of the S-box, key addition and linear layer to make such attacks
possible?
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Outline

1 The distinguishing advantage of a commutative distinguisher, relations to differentials,
and limitations of the general attack

2 Constructing commutative trails: Examples of the general attack in the weak-key model

3 Commutation over the Key Addition

4 Analyzing S-boxes

5 The Linear Layer
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Characterizing Weak Keys

Let A, B ∈ AGL(n,Fp) with A = LA + cA, B = LB + cB for LA, LB linear and k ∈ κ. For
x ∈ Fn

p, we have

Tk ◦ A(x) = B ◦ Tk(x) ⇔ (LA − LB)(x) = (LB − id)(k) + cB − cA

Examples

▶ Differentials (A = Tα = id + α, B = Tβ = id + β): Commutation is equivalent to
0 = β − α, hence ΓTk (Tα, Tα) = pn (independently of x and k)

▶ c-Differentials (A = Tα, B = c · id + β): For c ̸= 1, commutation is equivalent to

x = c − 1
1 − c · k + β − α

1 − c .

Hence, for each k, we have ΓTk (A, B) = 1.
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Characterizing Weak Keys (cont.)

Tk ◦ A(x) = B ◦ Tk(x) ⇔ (LA − LB)(x) = (LB − id)(k) + cB − cA

More general requirement
An attacker would like to have many solutions (x , k) ∈ (Fn

p)2 of Tk ◦ A(x) = B ◦ Tk(x),
i.e., rank(MA,B), where

MA,B := [LA − LB | id − LB],

should be as low as possible.

▶ Attacker’s best case (rank(MA,B) = 0): Commutation holds independently of x and
k. This is if and only if LA = LB = id (differential attack)

▶ Attacker’s worst case (rank(MA,B) = n): For example if LA = id, LB = c · id, c ̸= 1,
i.e., the case of c-differentials
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Characterizing Weak Keys (cont.)
Tk ◦ A(x) = B ◦ Tk(x) ⇔ (LA − LB)(x) = (LB − id)(k) + cB − cA

Condition on deterministic commutation
If Tk ◦ A = B ◦ Tk , we must have LA = LB and then, (LA − id)(k) = cA − cB. Hence,

|WeakKeys| =
{

pn−rank(LA−id) if cA − cB ∈ Im(LA − id)
0 else

.

▶ In Example 1, rank(C − id) = 3, so there are 212 weak keys out of 215 choices for k1

To summarize
For commutation over S and L, we will mainly be interested in those A, B with
dA := rank(LA − id) and dB := rank(LB − id) as low as possible (or at least one of them)
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Coming Back to Example 1

▶ S was a 5-bit S-Box S : F5
2 → F5

2
▶ ∃δ ∈ F5

2 \ {0}, C ∈ AGL(5,F2) such that S ◦ Tδ = C ◦ S and S ◦ C = Tδ ◦ S
▶ S was chosen ad-hoc by computer search to allow many weak keys
▶ In fact, rank(LC − id) = 1

Question
How can we construct such S-boxes (with non-trivial differential uniformity)?
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A Possible Construction (Two-Round Feistel)

f1

f2

l

l + α

r

r

l′

l′ + α

l′

l′ + α

r′

r′ + f2(l
′ + α)− f2(l

′)

▶ S : F2m
2 → F2m

2 , (ℓ, r) 7→ (ℓ′, r ′)
with ℓ′ = ℓ + f1(r), r ′ = r + f2(ℓ′)

▶ Fulfills S ◦ T(α,0) = B ◦ S with
B(x , y) = (x + α, y + f2(x + α) − f2(x))

▶ If f2 has alg. degree at most 2,
then B ∈ AGL(n,F2)

▶ δS = 2m · max{δf1 , δf2}

Example
f1 = f2 : x 7→ x3(∈ F2n). Then rank(LB − id) = rank(αx2 + α2x) = m − 1 and δS = 2m+1
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Relation to Differential Uniformity

▶ This construction allows trade-offs between differential uniformity and rank(LB − id)
(corresponding to number of weak keys)

▶ For instance, choose f2 with δf2 = 2m−1. Then, δS = 2n−1, but rank(LB − id) = 1

Question
How does ΓS(A, B) relate to the differential uniformity δS in general (not assuming a
specific construction)?

Recall: ΓS(A, B) := |{x | S ◦ A(x) = B ◦ S(x)}|.
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Bounds
An upper bound ΓS(A, B) based on the differential uniformity
Let S, A, B : G → G . Then,

ΓS(A, B) ≤
{

|Im(A − id)| · |Im(B − id)| · δS if |Fix(A)| = ∅
(|Im(A − id)| − 1) · |Im(B − id)| · δS + min{|Fix(A)|, |Fix(B)|} else

.

Corollary for G = Fn
p and A, B ∈ AGL(n,Fp)

Let A = LA + a, B = LB + b with LA, LB linear, dA := rank(LA − id),dB := rank(LB − id).

ΓS(A, B) ≤
{

pdA+dB · δS if a /∈ Im(id − LA)
(pdA − 1) · pdB · δS + min{pn−dA , pn−dB } else

.
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Bounds (cont.)

Corollary for G = Fn
p and A, B ∈ AGL(n,Fp)

Let A = LA + a, B = LB + b with LA, LB linear, dA := rank(LA − id),dB := rank(LB − id).

ΓS(A, B) ≤
{

pdA+dB · δS if a /∈ Im(id − LA)
(pdA − 1) · pdB · δS + min{pn−dA , pn−dB } else

.

▶ For low dA, dB, the differential uniformity must be high if we want ΓS(A, B) = pn.
▶ Suppose ΓS(A, B) = pn for A = Tα (α ̸= 0). Then, δS ≥ pn−dB .
▶ The two-round Feistel construction (p = 2) given before meets this bound exactly
▶ If S is bijective and ΓS(A, B) = pn for A = Tα (α ̸= 0), we can further show

dB ≤ n(p−1)
p , thus, δS ≥ max{p

n
p , pn−dB }
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Link to APN Functions with Self-Equivalences

Corollary for G = Fn
p and A, B ∈ AGL(n,Fp)

Let A = LA + a, B = LB + b with LA, LB linear, dA := rank(LA − id),dB := rank(LB − id).

ΓS(A, B) ≤
{

pdA+dB · δS if a /∈ Im(id − LA)
(pdA − 1) · pdB · δS + min{pn−dA , pn−dB } else

.

▶ If ΓS(A, B) = pn, then S = B−1 ◦ S ◦ A (i.e., (A, B) defines an affine self-equivalence)
▶ Suppose ΓS(A, B) = pn (no further restriction on A now). Then, δS > pn−(dA+dB)−1.
▶ If we want ΓS(A, B) = pn and δS ≤ p, we obtain dA + dB > n − 2
▶ APN case: If S : Fn

2 → Fn
2 is APN with affine self-equivalence S = B−1 ◦ S ◦ A, then

dA + dB > n − 2

32 / 37



Link to APN Functions with Self-Equivalences

Corollary for G = Fn
p and A, B ∈ AGL(n,Fp)

Let A = LA + a, B = LB + b with LA, LB linear, dA := rank(LA − id),dB := rank(LB − id).

ΓS(A, B) ≤
{

pdA+dB · δS if a /∈ Im(id − LA)
(pdA − 1) · pdB · δS + min{pn−dA , pn−dB } else

.

▶ If ΓS(A, B) = pn, then S = B−1 ◦ S ◦ A (i.e., (A, B) defines an affine self-equivalence)
▶ Suppose ΓS(A, B) = pn (no further restriction on A now). Then, δS > pn−(dA+dB)−1.
▶ If we want ΓS(A, B) = pn and δS ≤ p, we obtain dA + dB > n − 2
▶ APN case: If S : Fn

2 → Fn
2 is APN with affine self-equivalence S = B−1 ◦ S ◦ A, then

dA + dB > n − 2

32 / 37



Link to APN Functions with Self-Equivalences

Corollary for G = Fn
p and A, B ∈ AGL(n,Fp)

Let A = LA + a, B = LB + b with LA, LB linear, dA := rank(LA − id),dB := rank(LB − id).

ΓS(A, B) ≤
{

pdA+dB · δS if a /∈ Im(id − LA)
(pdA − 1) · pdB · δS + min{pn−dA , pn−dB } else

.

▶ If ΓS(A, B) = pn, then S = B−1 ◦ S ◦ A (i.e., (A, B) defines an affine self-equivalence)
▶ Suppose ΓS(A, B) = pn (no further restriction on A now). Then, δS > pn−(dA+dB)−1.
▶ If we want ΓS(A, B) = pn and δS ≤ p, we obtain dA + dB > n − 2
▶ APN case: If S : Fn

2 → Fn
2 is APN with affine self-equivalence S = B−1 ◦ S ◦ A, then

dA + dB > n − 2

32 / 37



Link to APN Functions with Self-Equivalences

Corollary for G = Fn
p and A, B ∈ AGL(n,Fp)

Let A = LA + a, B = LB + b with LA, LB linear, dA := rank(LA − id),dB := rank(LB − id).

ΓS(A, B) ≤
{

pdA+dB · δS if a /∈ Im(id − LA)
(pdA − 1) · pdB · δS + min{pn−dA , pn−dB } else

.

▶ If ΓS(A, B) = pn, then S = B−1 ◦ S ◦ A (i.e., (A, B) defines an affine self-equivalence)
▶ Suppose ΓS(A, B) = pn (no further restriction on A now). Then, δS > pn−(dA+dB)−1.
▶ If we want ΓS(A, B) = pn and δS ≤ p, we obtain dA + dB > n − 2
▶ APN case: If S : Fn

2 → Fn
2 is APN with affine self-equivalence S = B−1 ◦ S ◦ A, then

dA + dB > n − 2

32 / 37



Link to APN Functions with Self-Equivalences

Corollary for G = Fn
p and A, B ∈ AGL(n,Fp)

Let A = LA + a, B = LB + b with LA, LB linear, dA := rank(LA − id),dB := rank(LB − id).

ΓS(A, B) ≤
{

pdA+dB · δS if a /∈ Im(id − LA)
(pdA − 1) · pdB · δS + min{pn−dA , pn−dB } else

.

▶ If ΓS(A, B) = pn, then S = B−1 ◦ S ◦ A (i.e., (A, B) defines an affine self-equivalence)
▶ Suppose ΓS(A, B) = pn (no further restriction on A now). Then, δS > pn−(dA+dB)−1.
▶ If we want ΓS(A, B) = pn and δS ≤ p, we obtain dA + dB > n − 2
▶ APN case: If S : Fn

2 → Fn
2 is APN with affine self-equivalence S = B−1 ◦ S ◦ A, then

dA + dB > n − 2

32 / 37



Link to APN Functions with Self-Equivalences

Theorem [B., Brinkmann, Leander, 2021]
Suppose F : F8

2 → F8
2 is an APN permutation with non-trivial linear self-equivalence. Then,

F is CCZ-equivalent to a permutation G for which G ◦ A = B ◦ G with
1. B = A = Comp(X 4 + X 3 + X 2 + X + 1) ⊕ Comp(X 4 + X 3 + X 2 + X + 1) or
2. B = A = I2 ⊕ Comp(X 2 + 1) ⊕ Comp(X 2 + 1) ⊕ Comp(X 2 + 1).

▶ With our bound, it follows that Class 2 is impossible!
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Commutation over Linear Layer [Baudrin et al., 2023]

Let A = LA + cA, B = LB + cB ∈ AGL(n,Fp) with LA, LB linear.

L ◦ A(x) = B ◦ L(x) ⇔ (L ◦ LA − LB ◦ L)(x) = cB − L(cA)

Corollary

ΓL(A, B) =
{

0 if cB − L(cA) /∈ Im(L ◦ LA − LB ◦ L)
2dim ker(L◦LA−LB◦L) otherwise

.

Further, ΓL(A, B) = pn if and only if L ◦ LA = LB ◦ L and cB = L(cA).

▶ We are mainly interested in the case where LA and LB are block-diagonal matrices
(aligned with the size of the S-box)
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Commutation over Linear Layer (cont.)

Commutation for Block-Diagonal Matrices
Let LA = Diag(L(1)

A , . . . , L(m)
A ) and LB = Diag(L(1)

B , . . . , L(m)
B ). Then, L ◦ LA = LB ◦ L if

and only if Lij ◦ L(j)
A = L(i)

B ◦ Lij for all i , j , where Lij are the blocks of L.

▶ Given LA, LB, such L can be constructed using linear algebra (solving equations with
coefficients of L as unknowns)
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Conclusion

▶ In the commutative cryptanalysis framework, differentials have the best potential for
an attack

▶ A commutative attack cannot be better than a differential attack, unless in the
weak-key model and/or if properties of the key-schedule are exploited

▶ c-differentials belong to those cases with the least potential to mount attacks
▶ Still, the study of S-boxes with respect to more general notions than differential

uniformity can be interesting from a mathematical point of view (e.g., understanding
probability-1 differentials over multiple rounds, example of APNs with fixed points)
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