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Preliminaries CYBER SECURITY 18 THE AGE

OF LARGE-SCALE ADVERSARIES

» Throughout this talk, let G = (G, +) be a finite abelian group
» For each v € G, the group structure allows to define the bijective mapping

T,: G~ G,x— Xx+7,

called translation by ~
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Differential Uniformity of S-boxes and Differential Cryptanalysis Crmee Secummy T Ace

Differential Uniformity [Nyberg, '93]

Let S: G — G. The differential uniformity of S is

ds = max [{x € G| SoTa(x) = TyoS(H = max [{x € G| S(x+a)=5(x) = B}
ac ae
,BGG BeG
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Differential Uniformity of S-boxes and Differential Cryptanalysis Crmee Secummy T Ace

Differential Uniformity [Nyberg, '93]

Let S: G — G. The differential uniformity of S is

ds := max \{x € G| SoTa(x) = TgoS(x)} = max [{x € G| S(x+a)-5(x) =B}
ae,BGeG aeﬁi\éo}

» widely-studied notion, of mathematical interest (e.g., APN functions, planar functions)
» measures resistance against differential cryptanalysis of ciphers (originally G = F?).
» choose S-box S with small ds, argue resistance with wide-trail strategy [Daemen '95]
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A Generalization of Differential Uniformity CYoER SECURITY I THE AGE

OF LARGE-SCALE ADVERSARIES

c-Differential Uniformity (G = F,n) [Ellingsen, Felke, Riera, Stanica, Tkachenko]

Let S: Fpn — Fpn and ¢ € Fpn. The c-differential uniformity of S is

s = oaﬁGFp'Taa;?O if c:1|{X € ]FP" | S(X + Oé) - CS(X) - BH

» widely studied for S-boxes from a theoretic point of view

ko kl k2 .
’ + “ @ @ l + ﬂ?
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c-Differential Uniformity (G = F,n) [Ellingsen, Felke, Riera, Stanica, Tkachenko]

Let S: Fpn — Fpn and ¢ € Fpn. The c-differential uniformity of S is

s = oaﬁGFp'Taa;?O if c:1|{X € ]FP" | S(X + Oé) - CS(X) - BH

» widely studied for S-boxes from a theoretic point of view

A cryptographic attack for ¢ # 1 remains to be shown

k k
f . f .
z+a W D cy +ﬂ7
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Commutative Distinguisher (Informal)

Let (Ex)kex a finite family of permutations over G (i.e., a block cipher). A commutative
distinguisher is a pair (A, B) with A,B: G — G s.t.

P(A 5 B) = Procc[Ex(A(x)) = B(Ex(x))]

is high for many keys k € k.

ko k1 ko k.
e B e Lo
@) O LD LD (LD
A ? ? v B

» corresponds to notion of commutative diagram cryptanalysis [Wagner, 2004]

» advantage needs to be formalized (e.g., A = B = id is not meaningful)




CASA

Commutative Cryptanalysis as a Unifying Framework (cont.) CYeER SEcuRITY I THE Ace

OF LARGE-SCALE ADVERSARIES

ky
v Ly
Az L S5
A ? B

» Differential cryptanalysis [Biham, Shamir, '91]: A= T, = (x — x + «) and
B=Ts:=(x+x+0)
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» Differential cryptanalysis [Biham, Shamir, '91]: A= T, = (x — x + «) and
B=Ts:=(x+x+0)

» Rotational cryptanalysis [Khovratovich, Nikoli¢, 2010]: Let G = F35 and
p: (x1,...,%n) = (x2,...,%n,x1). Then, A= p' and B = p/
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» Differential cryptanalysis [Biham, Shamir, '91]: A= T, = (x — x + «) and
B=Ts:=(x+x+0)

» Rotational cryptanalysis [Khovratovich, Nikoli¢, 2010]: Let G = F35 and
p: (x1,...,%n) = (x2,...,%n,x1). Then, A= p' and B = p/

» Rotational differential cryptanalysis [Ashur, Liu, 2016]: Let G = FJ.
A=p oT, and B=Ts
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kr
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» Differential cryptanalysis [Biham, Shamir, '91]: A= T, = (x — x + «) and
B=Ts:=(x+x+0)

» Rotational cryptanalysis [Khovratovich, Nikoli¢, 2010]: Let G = F35 and
p: (x1,...,%n) = (x2,...,%n,x1). Then, A= p' and B = p/

» Rotational differential cryptanalysis [Ashur, Liu, 2016]: Let G = FJ.
A=p oT, and B=Ts

» c-differentials: finite field G = F,n, A= T, and B: x — cx + 3 with
a,fB,c €Fpn,c#0
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» [Baudrin et al., 2023] studied the case of G =[5 and A, B affine permutations

Can we study the resistance by studying an isolated property of S (as for differentials)?
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» [Baudrin et al., 2023] studied the case of G =[5 and A, B affine permutations

Queston

Can we study the resistance by studying an isolated property of S (as for differentials)?

Affine Uniformity [Baudrin et al., 2023]
Given an S-box S: F§ — F3 and A, B € AGL(n,Fy), define

(A, B) = [{x € F3 [ S(A(x)) = B(S(:))}|, Ts= P Is(A, B).
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CYBER SECURITY IN THE AGE
OF LARGE-SCALE ADVERSARIES

@ The distinguishing advantage of a commutative distinguisher, relations to differentials,
and limitations of the general attack

@ Constructing commutative trails: Examples of the general attack in the weak-key model

@® Commutation over the Key Addition
@ Analyzing S-boxes

® The Linear Layer
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Commutative Distinguisher (Informal)

Pair (A, B) with A, B: G — G such that Pr[Ex(A(x)) = B(Ex(x))] is high for many k.
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CYBER SECURITY IN THE AGE
OF LARGE-SCALE ADVERSARIES

Commutative Distinguisher (Informal)

Pair (A, B) with A, B: G — G such that Pry[Ex(A(x)) = B(Ek(x))] is high for many k.

The security model

Adversary A interacts with O = Ex: G — G for an (unknown) uniformly chosen k € & or
with a uniformly random chosen permutation O = P: G — G (such that
Pr(O = Ex) = Pr(O = P) = 0.5). A tells whether O = Ej (return 1) or O = P (ret. 0).

How the commutative (chosen-plaintext) distinguisher works:

» A encrypts x; and A(x;) for a random x; and checks O(A(x;)) L B(O(xi))
» makes a guess for O € {Ex, P} and returns 1 or 0
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For a permutation P: G — G, we have
p lp(A, B
Pr(A £ B) = PrcalP(A()) = B(P())] = EB)

where 'p(A,B) = [{x € G| P(A(x)) = B(P(x))}|. For (Ex)kex, define the expected
commutative probability as

ECP(A S B) = ‘i' S Pr(A % B).
ker
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CYBER SECURITY IN THE AGE
OF LARGE-SCALE ADVERSARIES

For a permutation P: G — G, we have

Pr(A £ B) = PrcalP(A()) = B(P())] = EB)

where 'p(A,B) = [{x € G| P(A(x)) = B(P(x))}|. For (Ex)kex, define the expected
commutative probability as

ECP(A S B) = —

Distinguishing Advantage of Commutative Distinguisher (A, B)

Adv(4 ) = [ECP(A 5 B) — Prpcperm(6)xc6P(AX)) = B(P(x))],

where Perm(G) denotes the set of all permutations of G.




CASA
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Distinguishing Advantage of Commutative Distinguisher (A, B)

Adv(ap) = [ECP(A 5 B) — Procperm(c)xcclP(A(X)) = B(P(x))]]

Lemma

Let G be a finite set and A, B: G — G. Then,

PrPePerm(GLxeG[PoA(X) = BoP(x)] = 6] = [FidA) _|‘§|IXE‘BG?“ __'_ E‘iX(A)’ : ‘FiX(B)‘,

where Fix(-) denotes the set of fixed points.




CASA

The Distinguishing Advantage (cont.) o Securmy m THE Ace

OF LARGE-SCALE ADVERSARIES

Distinguishing Advantage of Commutative Distinguisher (A, B)

6] = [Fix(A)] = [Fix(B)| + [Fix(A)| - [Fix(8)]
6] (I6]=1)

AdV A B ‘ECP( B) —

If G =F}, Ce AGL(n,F,) such that C = L + ¢ with L being linear, we have

if c ¢ Im(id — L)

otherwise (and Fix(C) is an affine subspace of F}) ’

0
rFix(C)rz{. .
pd|m ker(id—L)
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Distinguishing Advantage of Commutative Distinguisher (A, B)

|G| — [Fix(A)| — [Fix(B)| + |Fix(A)| - [Fix(B)|
6] - (I6] = 1)

AdV A B |ECP( B) — ’

If G =F}, C € AGL(n,Fp) such that C = L + ¢ with L being linear, we have

Fix(C)] = {o if ¢ ¢ Im(id — L)

pdimker(id=0L)  otherwise (and Fix(C) is an affine subspace of F7) ’

Be careful with the notion of affine uniformity!

The notion of affine uniformity is only meaningful if we restrict to sets A C AGL(n,IFp)2
such that (A1, B1), (A2, B2) € A implies |Fix(A;1)| = |Fix(A2)| and |Fix(B1)| = |Fix(Bz)].
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Commutative Trail Formula for Iterated Ciphers (over independent round keys)

Let (Ex)keGxc be the family of permutations defined by E(, x,) = F30 Ty, 0 Fao Ty o Fy
for permutations F1, Fp, F3: G — G and let A,B: G — G. We have

ECP(A =S S P(AB ) P(T, B T5) - P(T5 B B).
YEG deG
el é{ A [~ st
7
Dyjg Tsig)

» Generalization of the case where A, B are translations [Lai, Massey, Murphy, '91]
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Commutative Trail Formula for Iterated Ciphers

Let (Ex)keGxG be the family of permutations defined by E(y, s,y = F30 Ty, 0 Fa0 Ty 0 Fy
for permutations F1, Fp, F3: G — G and let A,B: G — G. We have

ECP(A L B) =Y Y Pr(AB T) - Pu(T, B T5) - Pr(T5 B B).
YEG 6€G

Application to Even-Mansour Cipher (Setting F; = F3 = id, F, = R)

dp (6] = IEe(A) (I GI= [Fix(B)|)7 ()| - |E5(E))
4] |GI? |GI?

ECP(A B) <

If one of A—id or B —id is bijective, we have ECP(A 5 B) = ﬁ
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Distinguishing Advantage over Cipher with Independent Whitening Keys

E 2
A < ECP(T- T, .
dv(a,B) = R CP(T, = Ts5) + G -1

If one of A —id or B —id is invertible, then Adv(4 ) = 0.
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OF LARGE-SCALE ADVERSARIES

Distinguishing Advantage over Cipher with Independent Whitening Keys

E 2
A < ECP(T T, .
dv(a,B) = R CP(T, = Ts) + G -1

If one of A —id or B —id is invertible, then Adv(4 ) = 0.

» When there are independent whitening keys, we cannot do better than a differential
attack (already shown in [Liu, Tessaro, Vaikuntanathan, 2021])

» c-differentials (c # 1) yield advantage 0, as x — ¢x + 3 — x is invertible




CASA

Putting All Together CYoER SECURITY I THE AGE
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Distinguishing Advantage over Cipher with Independent Whitening Keys

E 2
A < ECP(T. T, —_
I < oy BRI, = 5”\@\_1

If one of A —id or B —id is invertible, then Adv(4 g) = 0.

» When there are independent whitening keys, we cannot do better than a differential
attack (already shown in [Liu, Tessaro, Vaikuntanathan, 2021])

» c-differentials (c # 1) yield advantage 0, as x — ¢x + 3 — x is invertible

Weak-Key Model

A commutative (non-differential) attack only works in the weak-key model, or exploits
properties of the key schedule!
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@ Constructing commutative trails: Examples of the general attack in the weak-key model
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In the following, let G = Fg.

Deterministic Commutative Trail

Let F=F,0---0F,0 F be an iterated permutation, F;: IF,’; — IF"; permutations.
Let Co, ..., G € AGL(n,F,) such that Fjo Ci_y = C;jo Fj for all i, then Fo A= BoF
with A= Gy, B=C, (i.e., Tr(A,B) =p").
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OF LARGE-SCALE ADVERSARIES

In the following, let G = Fg.

Deterministic Commutative Trail

Let F=F,0---0F,0 F be an iterated permutation, F;: IF,’; — IF"; permutations.
Let Co, ..., G € AGL(n,F,) such that Fjo Ci_y = C;jo Fj for all i, then Fo A= BoF
with A= Gy, B=C, (i.e., Tr(A,B) =p").

Idea (as studied in [Baudrin et al., 2023]):

» Separate the block cipher (SPN) into the S-box layer (S), linear layer (L), and key
addition (Tk)

» forall X € {S, L}U{Ty | k € WeakKeys} find C, C" € AGL(n,Fp) with XoC = C'oX
(i.e., Tx(C,C") = p")
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Example 1 (Two-Round Cipher [B., Felke, Leander, Neumann, Stennes|) cueseum mmease

OF LARGE-SCALE ADVERSARIES

» S-box layer S applies three 5-bit S-boxes in parallel, i.e., S = (S, S, S)
» Linear layer L defined by a special 15 x 15 matrix over [Fa
» The two-round cipher defined as Ey s, k, = Tk, 0 LoSo Ty oL oS o Ty,
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Example 1 (Two-Round Cipher [B., Felke, Leander, Neumann, Stennes|) cueseum mmease

OF LARGE-SCALE ADVERSARIES

» S-box layer S applies three 5-bit S-boxes in parallel, i.e., S = (S, S, S)
» Linear layer L defined by a special 15 x 15 matrix over [Fa
» The two-round cipher defined as Ey s, k, = Tk, 0 LoSo Ty oL oS o Ty,

Special properties of S and L (we see later how such S, L can be constructed)

» 36 € F3\ {0} and C € AGL(5,F>) such that So Ts = CoS and So C = Ts50S.
Then, SoTp =CoS and SoC = Tp oS where A = (4,9,9),C = Diag(C, C, C)
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Example 1 (Two-Round Cipher [B., Felke, Leander, Neumann, Stennes|) cueseum mmease

OF LARGE-SCALE ADVERSARIES

» S-box layer S applies three 5-bit S-boxes in parallel, i.e., S = (S, S, S)
» Linear layer L defined by a special 15 x 15 matrix over [Fa
» The two-round cipher defined as Ey s, k, = Tk, 0 LoSo Ty oL oS o Ty,

Special properties of S and L (we see later how such S, L can be constructed)

» 36 € F3\ {0} and C € AGL(5,F>) such that So Ts = CoS and So C = Ts50S.
Then, SoTp =CoS and SoC = Tp oS where A = (4,9,9),C = Diag(C, C, C)

» S has non-trivial differential uniformity and non-trivial linearity (here 65 = 20).
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Example 1 (Two-Round Cipher [B., Felke, Leander, Neumann, Stennes|) cueseum mmease

OF LARGE-SCALE ADVERSARIES

» S-box layer S applies three 5-bit S-boxes in parallel, i.e., S = (S, S, S)
» Linear layer L defined by a special 15 x 15 matrix over [Fa
» The two-round cipher defined as Ey s, k, = Tk, 0 LoSo Ty oL oS o Ty,

Special properties of S and L (we see later how such S, L can be constructed)

» 36 € F3\ {0} and C € AGL(5,F>) such that So Ts = CoS and So C = Ts50S.
Then, SoTp =CoS and SoC = Tp oS where A = (4,9,9),C = Diag(C, C, C)

» S has non-trivial differential uniformity and non-trivial linearity (here 65 = 20).
» C commutes with L, i.e., LoC=ColL
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Ta Tan C C—C Ta Toay Tra

» If ki is a weak key (in the sense that Ty, oC = C o Ty, ), we have Ej jq k(X + A) =
Ek ko ko (X) + L(A), i.e., a probability-1 differential
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OF LARGE-SCALE ADVERSARIES

Ta Tan C C—C Ta Toay Tra

» If ki is a weak key (in the sense that Ty, oC = C o Ty, ), we have Ej jq k(X + A) =
Ek ko ko (X) + L(A), i.e., a probability-1 differential

» There are no probability-1 differentials over a single round (since ds < 2°)
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(A)

» If ki is a weak key (in the sense that Ty, oC = C o Ty, ), we have Ej jq k(X + A) =
Eko ki ko (x) + L(A), i.e., a probability-1 differential

» There are no probability-1 differentials over a single round (since ds < 2°)

What are the weak keys?

In this example, the weak keys form a 12-dimensional subspace of F4°.
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» Midori [Banik et al., 2015] is a 64-bit block cipher (SPN) using a 128-bit key
» Scream [Grosso et al., 2015] is a 128-bit tweakable block cipher using a 128-bit key

Results shown in [Baudrin et al., 2023]

» Midori: If the round constants are slightly modified, there exists a probability-1
commutative trail covering an arbitrary number of rounds for 2% keys

» Scream: There is a probability-1 commutative trail for 280 keys
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» Midori [Banik et al., 2015] is a 64-bit block cipher (SPN) using a 128-bit key
» Scream [Grosso et al., 2015] is a 128-bit tweakable block cipher using a 128-bit key

Results shown in [Baudrin et al., 2023]

» Midori: If the round constants are slightly modified, there exists a probability-1
commutative trail covering an arbitrary number of rounds for 2% keys

» Scream: There is a probability-1 commutative trail for 280 keys

What are the properties of the S-box, key addition and linear layer to make such attacks
possible?
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@® Commutation over the Key Addition
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Let A,B € AGL(n,Fp) with A= Ls+ ca,B= Lg+ cg for La, Lp linear and k € k. For
X € Fg, we have

TioAx) = BoTi(x) <« (La—Lg)(x)=(Lg—id)(k)+ cs— ca




CASA

Characterizing Weak Keys CYeER SEcuRITY I THE Ace

OF LARGE-SCALE ADVERSARIES

Let A,B € AGL(n,Fp) with A= Ls+ ca,B= Lg+ cg for La, Lp linear and k € k. For
X € Fg, we have

TioAx) = BoTi(x) <« (La—Lg)(x)=(Lg—id)(k)+ cs— ca

» Differentials (A= T, =id 4+ o, B = Tz = id + ): Commutation is equivalent to
0=/ —a, hence ', (Ta, To) = p" (independently of x and k)
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Let A,B € AGL(n,Fp) with A= Ls+ ca,B= Lg+ cg for La, Lp linear and k € k. For
X € Fg, we have

TioAx) = BoTi(x) <« (La—Lg)(x)=(Lg—id)(k)+ cs— ca

» Differentials (A= T, =id 4+ o, B = Tz = id + ): Commutation is equivalent to
0=/ —a, hence ', (Ta, To) = p" (independently of x and k)

» c-Differentials (A= T,,B = c-id + ): For ¢ # 1, commutation is equivalent to

c—1 b — «
= -k .
x l1-—c +1—c

Hence, for each k, we have I'1, (A, B) = 1.
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TkoAlx) = BoTi(x) < (La—Lg)(x)=(Lg—id)(k)+cB—ca

More general requirement

An attacker would like to have many solutions (x, k) € (Fp)? of Ty 0 A(x) = Bo Ty(x),
i.e., rank(Ma g), where

MA,B = [LA — LB ’ id — LB],

should be as low as possible.
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OF LARGE-SCALE ADVERSARIES

TkoAlx) = BoTi(x) < (La—Lg)(x)=(Lg—id)(k)+cB—ca

More general requirement

An attacker would like to have many solutions (x, k) € (Fp)? of Ty 0 A(x) = Bo Ty(x),
i.e., rank(Ma g), where

MA,B = [LA — LB ’ id — LB],
should be as low as possible.

» Attacker’s best case (rank(Ma g) = 0): Commutation holds independently of x and
k. This is if and only if Ly = Lg = id (differential attack)
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CYBER SECURITY IN THE AGE
OF LARGE-SCALE ADVERSARIES

TkoAlx) = BoTi(x) < (La—Lg)(x)=(Lg—id)(k)+cB—ca

More general requirement

An attacker would like to have many solutions (x, k) € (Fp)? of Ty 0 A(x) = Bo Ty(x),
i.e., rank(Ma g), where

MA,B = [LA — LB ’ id — LB],

should be as low as possible.

» Attacker’s best case (rank(Ma g) = 0): Commutation holds independently of x and
k. This is if and only if Ly = Lg = id (differential attack)

> Attacker's worst case (rank(Ma g) = n): For example if Ly =id,Lg = c-id,c # 1,
i.e., the case of c-differentials
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TkOA(X): Bo Tk(X) = (LA*LB)(X):(LB*id)(k)qLCB*CA

Condition on deterministic commutation

If Tx o A= Bo Ty, we must have Ly = Lg and then, (Ly — id)(k) = ca — cg. Hence,

’WGakKeyS’ _ {Pn—rank(LA—id) if caA—Cg € Im(LA - ld) |
0

else

» In Example 1, rank(C — id) = 3, so there are 212 weak keys out of 215 choices for kq
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TkOA(X) =Bo Tk(X) =4 (LA—LB)(X) = (LB—id)(k)—l-CB—CA

Condition on deterministic commutation

If Tx o A= Bo Ty, we must have Ly = Lg and then, (L —id)(k) = ca — cg. Hence,

|WeakKeys| = prrenklbaid) i cp — cp € Im(La — id)
0 else :

» In Example 1, rank(C — id) = 3, so there are 212 weak keys out of 21° choices for ki

To summarize

For commutation over S and L, we will mainly be interested in those A, B with
da = rank(La — id) and dp := rank(Lg — id) as low as possible (or at least one of them)
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@ Analyzing S-boxes
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» S was a 5-bit S-Box S: F3 — F3

> 36 € F3\ {0}, C € AGL(5,F,) such that So Ts=CoSand SoC=Ts0S
> S was chosen ad-hoc by computer search to allow many weak keys

» In fact, rank(Lc —id) =1

How can we construct such S-boxes (with non-trivial differential uniformity)?




A Possible Construction (Two-Round Feistel) CYeeR SEcUBITY W T Aot

I+«
l/
'+«

l/
'+«

S

7,,/
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> S:TF3m 5 F3m (4,r) — (¢, 1)
with ¢/ =0+ fi(r), r' = r+ H(¥)
> Fulfills So T(ag) = Bo S with
B(x,y) = (x + o,y + fa(x + a) — ()
» If f, has alg. degree at most 2,
then B € AGL(n,F>)
> 05 =2"-max{dg, 05}

fi = fp: x = x3(€ Fan). Then rank(Lg —id) = rank(ax?+ a?x) = m—1 and 65 = 2m*!
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» This construction allows trade-offs between differential uniformity and rank(Lg — id)
(corresponding to number of weak keys)

» For instance, choose f, with 6, = 2™~1. Then, §s = 2771, but rank(Lg —id) = 1




Relation to Differential Uniformity C‘\S‘\
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» This construction allows trade-offs between differential uniformity and rank(Lg — id)
(corresponding to number of weak keys)

» For instance, choose f, with 6, = 2™~1. Then, §s = 2771, but rank(Lg —id) = 1

How does I's(A, B) relate to the differential uniformity ds in general (not assuming a
specific construction)?

Recall: Ts(A,B) = |{x| SoA(x) = Bo S(x)}|.
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An upper bound 's(A, B) based on the differential uniformity

Let S,A,B: G — G. Then,

Im(A — id)| - [Im(B — id)| - 5 f [Fix(A) = 0

rS(A7 B) < { . . " : :
(Im(A —id)| = 1) - [Im(B —id)| - s + min{|Fix(A)|, |Fix(B)|} else
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An upper bound 's(A, B) based on the differential uniformity

Let S,A,B: G — G. Then,

lIm(A — id)| - Im(B — id)| - 65 if [Fix(A)| = 0
(Im(A — id)| — 1) - [Im(B — id)| - 65 + min{|Fix(A)|, |[Fix(B)|} else

Corollary for G = F] and A, B € AGL(n,F,)

Let A=La+ a,B = Lg+ bwith L, Lg linear, dy = rank(LA = id),dB = rank(LB = ld)

rS(A7 B) < {

pdatds . 5 if a¢ Im(id — L)
(p9r — 1) - p8 - 55 + min{p"~9 pr=9e} else

rS(A7 B) < {
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Corollary for G = F] and A, B € AGL(n,F,)
Let A=La+ a,B=Lg+ b with La, Lg linear, da == rank(Ls — id),dg := rank(Lg — id).

pdatds . §s if a¢ Im(id — La)
(p% — 1) p% - 55 + min{p"~9 p"~de} else '

rS(Av B) < {
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Corollary for G = F] and A, B € AGL(n,F,)
Let A=La+ a,B=Lg+ b with La, Lg linear, da == rank(Ls — id),dg := rank(Lg — id).

pdatds . §s if a¢ Im(id — La)
(p% — 1) p% - 55 + min{p"~9 p"~de} else '

rS(Av B) < {

» For low da, dg, the differential uniformity must be high if we want ['s(A, B) = p".
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Corollary for G = F] and A, B € AGL(n,F,)
Let A=La+ a,B=Lg+ b with La, Lg linear, da == rank(Ls — id),dg := rank(Lg — id).

pdatds . §s if a¢ Im(id — La)
(p% — 1) p% - 55 + min{p"~9 p"~de} else '

rS(Av B) < {

» For low da, dg, the differential uniformity must be high if we want ['s(A, B) = p".
» Suppose ['s(A,B) = p" for A= T, (a # 0). Then, §s > p"~%.
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Corollary for G = F] and A, B € AGL(n,F,)
Let A=La+ a,B=Lg+ b with La, Lg linear, da == rank(Ls — id),dg := rank(Lg — id).

pdatds . §s if a¢ Im(id — La)
(p% — 1) p% - 55 + min{p"~9 p"~de} else '

rS(Av B) < {

» For low da, dg, the differential uniformity must be high if we want ['s(A, B) = p".
» Suppose ['s(A,B) = p" for A= T, (a # 0). Then, §s > p"~%.

» The two-round Feistel construction (p = 2) given before meets this bound exactly
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Corollary for G = F] and A, B € AGL(n,F,)
Let A=La+ a,B=Lg+ b with La, Lg linear, da == rank(Ls — id),dg := rank(Lg — id).

pdatds . §s if a¢ Im(id — La)
(p% — 1) p% - 55 + min{p"~9 p"~de} else '

rS(Av B) < {

» For low da, dg, the differential uniformity must be high if we want ['s(A, B) = p".

» Suppose ['s(A,B) = p" for A= T, (a # 0). Then, §s > p"~%.

» The two-round Feistel construction (p = 2) given before meets this bound exactly

» If S is bijective and I's(A,B) = p" for A = T, (a # 0), we can further show
dg < @, thus, ds > max{pg,p”_ds}
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Corollary for G = F} and A, B € AGL(n,F})

Let A=La+ a,B=Lg+ b with La, Lg linear, da = rank(Ls — id),dg := rank(Lg — id).

pdatds . §g if a¢ Im(id — La)
(p9* — 1) - p98 - §s + min{p"~9 p"~98} else

rS(A7 B) < {
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Corollary for G = F} and A, B € AGL(n,F})

Let A=La+ a,B=Lg+ b with La, Lg linear, da = rank(Ls — id),dg := rank(Lg — id).

pdatds . §g if a¢ Im(id — La)
(p9* — 1) - p98 - §s + min{p"~9 p"~98} else

rS(A7 B) < {

» If [s(A,B) = p", then S= B 1oSoA ie., (A, B) defines an affine self-equivalence)
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Corollary for G = F} and A, B € AGL(n,F})

Let A=La+ a,B=Lg+ b with La, Lg linear, da = rank(Ls — id),dg := rank(Lg — id).

pdatds . §g if a¢ Im(id — La)
(p9* — 1) - p98 - §s + min{p"~9 p"~98} else

rS(A7 B) < {

» If [s(A,B) = p", then S= B 1oSoA ie., (A, B) defines an affine self-equivalence)
» Suppose ['s(A, B) = p" (no further restriction on A now). Then, §s > p—(datds)—1,
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Corollary for G = F} and A, B € AGL(n,F})

Let A=La+ a,B=Lg+ b with La, Lg linear, da = rank(Ls — id),dg := rank(Lg — id).

pdatds . §g if a¢ Im(id — La)
(p9* — 1) - p98 - §s + min{p"~9 p"~98} else

rS(A7 B) < {

» If [5(A, B)=p", then S =B 1oSoA ie., (A B) defines an affine self-equivalence)
» Suppose ['s(A, B) = p" (no further restriction on A now). Then, §s > p—(datds)—1,
» If we want ['s(A, B) = p"” and ds < p, we obtain da + dg > n—2
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Corollary for G = F} and A, B € AGL(n,F})

Let A=La+ a,B=Lg+ b with La, Lg linear, da = rank(Ls — id),dg := rank(Lg — id).

pdatds . §g if a¢ Im(id — La)
(p9* — 1) - p98 - §s + min{p"~9 p"~98} else

rS(A7 B) < {

» If [5(A, B)=p", then S =B 1oSoA ie., (A B) defines an affine self-equivalence)
» Suppose ['s(A, B) = p" (no further restriction on A now). Then, §s > p—(datds)—1,
» If we want ['s(A, B) = p"” and ds < p, we obtain da + dg > n—2

» APN case: If S: F§ — F3 is APN with affine self-equivalence S = B~ 0 So A, then
da+dg>n—2
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Theorem [B., Brinkmann, Leander, 2021]

Suppose F: F§ — [F§ is an APN permutation with non-trivial linear self-equivalence. Then,
F is CCZ-equivalent to a permutation G for which G o A= B o G with

1. B=A=Comp(X*+ X3+ X2+ X+1)® Comp(X*+ X3+ X2+ X+1) or
2. B=A= k@ Comp(X?+1)® Comp(X? + 1) ® Comp(X? + 1).

» With our bound, it follows that Class 2 is impossible!
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® The Linear Layer
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Let A=La+ca,B=Lg+cg € AGL(H,FP) with La, Lg linear.

LoA(x)=Bol(x) < (LolLa—Lgol)(x)=cg—L(ca)
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Let A=La+ca,B=Lg+cg € AGL(H,FP) with La, Lg linear.

LoA(x)=Bol(x) < (LolLa—Lgol)(x)=cg—L(ca)

Corollary

0 if cB — L(CA) ¢Im(LOLA— LBOL)

rL(Aa B) - {2dim ker(LoLa—Lpgol) otherwise .

Further, [ (A,B) = p" if and only if Lo Ly = Lgo L and cg = L(ca).
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Commutation over Linear Layer [Baudrin et al., 2023] CYoER SECURITY I THE AGe
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Let A=La+ca,B=Lg+cg € AGL(H,FP) with La, Lg linear.

LoA(x)=Bol(x) < (LolLa—Lgol)(x)=cg—L(ca)

Corollary

0 if cB — L(CA) ¢Im(LOLA— LBOL)

rL(Aa B) - {2dim ker(LoLa—Lpgol) otherwise .

Further, [ (A,B) = p" if and only if Lo Ly = Lgo L and cg = L(ca).

> We are mainly interested in the case where L, and Lg are block-diagonal matrices
(aligned with the size of the S-box)
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Commutation for Block-Diagonal Matrices
Let L = Diag(LYy,..., L) and Lg = Diag(tW, ..., LL™M). Then, Lola=LgoLif
and only if L; o L(/L{) = Lg) o Lj for all i, j, where L are the blocks of L.

» Given La, Lg, such L can be constructed using linear algebra (solving equations with
coefficients of L as unknowns)
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» In the commutative cryptanalysis framework, differentials have the best potential for
an attack
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» In the commutative cryptanalysis framework, differentials have the best potential for
an attack

> A commutative attack cannot be better than a differential attack, unless in the
weak-key model and/or if properties of the key-schedule are exploited
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» In the commutative cryptanalysis framework, differentials have the best potential for

an attack
» A commutative attack cannot be better than a differential attack, unless in the
weak-key model and/or if properties of the key-schedule are exploited

P c-differentials belong to those cases with the least potential to mount attacks
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» In the commutative cryptanalysis framework, differentials have the best potential for
an attack

» A commutative attack cannot be better than a differential attack, unless in the
weak-key model and/or if properties of the key-schedule are exploited

P c-differentials belong to those cases with the least potential to mount attacks

» Still, the study of S-boxes with respect to more general notions than differential
uniformity can be interesting from a mathematical point of view (e.g., understanding
probability-1 differentials over multiple rounds, example of APNs with fixed points)
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