

Commutative Cryptanalysis as a Generalization of Differential Cryptanalysis **WCC 2024**, June 17 – 21, 2024

Christof Beierle

RUHR UNIVERSITÄT BOCHUM

Gefördert durch DFG Deutsche Forschungsgemeinschaft

- J. Baudrin, P. Felke, G. Leander, P. Neumann, L. Perrin, L. Stennes. Commutative Cryptanalysis Made Practical. IACR Transactions on Symmetric Cryptology, 2023(4), 299–329, 2023
- J. Baudrin, C. Beierle, P. Felke, G. Leander, P. Neumann, L. Perrin, L. Stennes. On a Generalization of Differential Uniformity for Commutative Cryptanalysis (in preparation)

Preliminaries

- Throughout this talk, let G = (G, +) be a finite abelian group
- ▶ For each $\gamma \in G$, the group structure allows to define the bijective mapping

$$T_{\gamma}\colon G\mapsto G, x\mapsto x+\gamma,$$

called translation by γ

Differential Uniformity of S-boxes and Differential Cryptanalysis

Differential Uniformity [Nyberg, '93]

Let $S \colon G \to G$. The differential uniformity of S is

$$\delta_{S} \coloneqq \max_{\substack{\alpha \in G \setminus \{0\}\\\beta \in G}} |\{x \in G \mid S \circ T_{\alpha}(x) = T_{\beta} \circ S(x)\}| = \max_{\substack{\alpha \in G \setminus \{0\}\\\beta \in G}} |\{x \in G \mid S(x+\alpha) - S(x) = \beta\}|.$$

▶ widely-studied notion, of mathematical interest (e.g., APN functions, planar functions)
 ▶ measures resistance against differential cryptanalysis of ciphers (originally G = 𝔽ⁿ₂).
 ▶ choose S-box S with small δ_S, argue resistance with wide-trail strategy [Daemen '95]

$$\begin{array}{c} x \xrightarrow{k_0} S \\ x + \alpha \xrightarrow{\downarrow} & \vdots \\ T_{\alpha} \end{array} \xrightarrow{k_1} S \xrightarrow{k_2} & \vdots \\ x + \alpha \xrightarrow{\downarrow} & \vdots \\ T_{\gamma_1} \end{array} \xrightarrow{k_1} S \xrightarrow{k_2} & \vdots \\ T_{\gamma_2} \xrightarrow{k_2} & \vdots \\ T_{\gamma_2} \xrightarrow{k_2} & \vdots \\ T_{\gamma_2} \xrightarrow{k_2} & \vdots \\ T_{\gamma_r} = T_{\beta} \end{array}$$

Differential Uniformity of S-boxes and Differential Cryptanalysis

Differential Uniformity [Nyberg, '93]

Let $S \colon G \to G$. The differential uniformity of S is

$$\delta_{S} \coloneqq \max_{\substack{\alpha \in G \setminus \{0\}\\\beta \in G}} |\{x \in G \mid S \circ T_{\alpha}(x) = T_{\beta} \circ S(x)\}| = \max_{\substack{\alpha \in G \setminus \{0\}\\\beta \in G}} |\{x \in G \mid S(x+\alpha) - S(x) = \beta\}|.$$

widely-studied notion, of mathematical interest (e.g., APN functions, planar functions)
 measures resistance against differential cryptanalysis of ciphers (originally G = 𝔽ⁿ₂).
 choose S-box S with small δ_S, argue resistance with wide-trail strategy [Daemen '95]

$$\begin{array}{c} x \xrightarrow{k_0} S \\ x + \alpha \xrightarrow{\bullet} & \vdots \\ T_{\alpha} \end{array} \begin{array}{c} k_1 \\ \downarrow \\ \vdots \\ L \\ \downarrow \\ T_{\gamma_1} \end{array} \begin{array}{c} k_2 \\ \downarrow \\ \vdots \\ L \\ \downarrow \\ T_{\gamma_2} \end{array} \begin{array}{c} k_2 \\ \downarrow \\ \vdots \\ \vdots \\ T_{\gamma_2} \end{array} \begin{array}{c} k_r \\ \downarrow \\ \vdots \\ T_{\gamma_r} = T_{\beta} \end{array}$$

A Generalization of Differential Uniformity

c-Differential Uniformity $(G = \mathbb{F}_{p^n})$ [Ellingsen, Felke, Riera, Stănică, Tkachenko]

Let $S \colon \mathbb{F}_{p^n} \to \mathbb{F}_{p^n}$ and $c \in \mathbb{F}_{p^n}^*$. The *c*-differential uniformity of *S* is

$${}_{c}\delta_{\mathcal{S}} \coloneqq \max_{\alpha,\beta \in \mathbb{F}_{p^{n}}, \alpha \neq 0} \max_{\text{if } c=1} |\{x \in \mathbb{F}_{p^{n}} \mid S(x+\alpha) - cS(x) = \beta\}|$$

widely studied for S-boxes from a theoretic point of view

A cryptographic attack for $c \neq 1$ remains to be shown

$$\begin{array}{c} x \xrightarrow{k_0} (S) \xrightarrow{k_1} (S) \xrightarrow{k_1} (S) \xrightarrow{k_2} (S) \xrightarrow{$$

A Generalization of Differential Uniformity

c-Differential Uniformity $(G = \mathbb{F}_{p^n})$ [Ellingsen, Felke, Riera, Stănică, Tkachenko]

Let $S \colon \mathbb{F}_{p^n} \to \mathbb{F}_{p^n}$ and $c \in \mathbb{F}_{p^n}^*$. The *c*-differential uniformity of *S* is

$${}_{c}\delta_{\mathcal{S}} := \max_{\alpha,\beta \in \mathbb{F}_{p^{n}}, \alpha \neq 0 \text{ if } c=1} |\{x \in \mathbb{F}_{p^{n}} \mid S(x+\alpha) - cS(x) = \beta\}|$$

widely studied for S-boxes from a theoretic point of view

A cryptographic attack for $c \neq 1$ remains to be shown

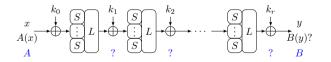
$$\begin{array}{c} x \\ x + \alpha \\ T_{\alpha} \end{array} \xrightarrow{k_{0}} (S) \\ T_{\alpha} \end{array} \xrightarrow{k_{1}} (S) \\ S \\ z \\ (S) \\ (S) \\ z \\ (S) \\ ($$

Commutative Distinguisher (Informal)

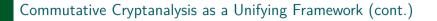
Let $(E_k)_{k \in \kappa}$ a finite family of permutations over G (i.e., a block cipher). A commutative distinguisher is a pair (A, B) with $A, B \colon G \to G$ s.t.

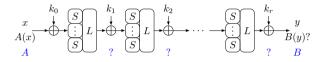
$$\mathsf{P}(A \stackrel{E_k}{\to} B) \coloneqq \Pr_{x \in G}[E_k(A(x)) = B(E_k(x))]$$

is high for many keys $k \in \kappa$.



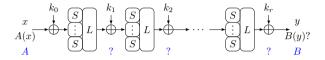
corresponds to notion of commutative diagram cryptanalysis [Wagner, 2004]
 advantage needs to be formalized (e.g., A = B = id is not meaningful)





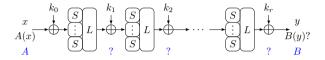
- <u>Differential cryptanalysis</u> [Biham, Shamir, '91]: $A = T_{\alpha} := (x \mapsto x + \alpha)$ and $B = T_{\beta} := (x \mapsto x + \beta)$
- ▶ Rotational cryptanalysis [Khovratovich, Nikolić, 2010]: Let $G = \mathbb{F}_2^n$ and $\rho: (x_1, \ldots, x_n) \mapsto (x_2, \ldots, x_n, x_1)$. Then, $A = \rho^i$ and $B = \rho^j$
- ► Rotational differential cryptanalysis [Ashur, Liu, 2016]: Let $G = \mathbb{F}_2^n$. $A = \rho^i \circ T_\alpha$ and $B = T_\beta$

• <u>c-differentials</u>: finite field $G = \mathbb{F}_{p^n}$, $A = T_{\alpha}$ and $B: x \mapsto cx + \beta$ with $\alpha, \beta, c \in \mathbb{F}_{p^n}, c \neq 0$



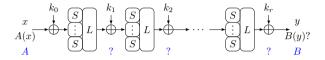
- <u>Differential cryptanalysis</u> [Biham, Shamir, '91]: $A = T_{\alpha} := (x \mapsto x + \alpha)$ and $B = T_{\beta} := (x \mapsto x + \beta)$
- Rotational cryptanalysis [Khovratovich, Nikolić, 2010]: Let $G = \mathbb{F}_2^n$ and $\rho: (x_1, \ldots, x_n) \mapsto (x_2, \ldots, x_n, x_1)$. Then, $A = \rho^i$ and $B = \rho^j$
- ► Rotational differential cryptanalysis [Ashur, Liu, 2016]: Let $G = \mathbb{F}_2^n$. $A = \rho^i \circ T_\alpha$ and $B = T_\beta$

• <u>c-differentials</u>: finite field $G = \mathbb{F}_{p^n}$, $A = T_{\alpha}$ and $B: x \mapsto cx + \beta$ with $\alpha, \beta, c \in \mathbb{F}_{p^n}, c \neq 0$

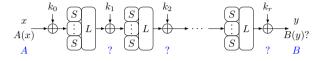


- <u>Differential cryptanalysis</u> [Biham, Shamir, '91]: $A = T_{\alpha} := (x \mapsto x + \alpha)$ and $B = T_{\beta} := (x \mapsto x + \beta)$
- Rotational cryptanalysis [Khovratovich, Nikolić, 2010]: Let $G = \mathbb{F}_2^n$ and $\rho: (x_1, \ldots, x_n) \mapsto (x_2, \ldots, x_n, x_1)$. Then, $A = \rho^i$ and $B = \rho^j$
- Rotational differential cryptanalysis [Ashur, Liu, 2016]: Let $G = \mathbb{F}_2^n$. $\overline{A} = \rho^i \circ T_\alpha$ and $\overline{B} = T_\beta$

• <u>c-differentials</u>: finite field $G = \mathbb{F}_{p^n}$, $A = T_{\alpha}$ and $B: x \mapsto cx + \beta$ with $\alpha, \beta, c \in \mathbb{F}_{p^n}, c \neq 0$



- <u>Differential cryptanalysis</u> [Biham, Shamir, '91]: $A = T_{\alpha} := (x \mapsto x + \alpha)$ and $B = T_{\beta} := (x \mapsto x + \beta)$
- Rotational cryptanalysis [Khovratovich, Nikolić, 2010]: Let $G = \mathbb{F}_2^n$ and $\rho: (x_1, \ldots, x_n) \mapsto (x_2, \ldots, x_n, x_1)$. Then, $A = \rho^i$ and $B = \rho^j$
- Rotational differential cryptanalysis [Ashur, Liu, 2016]: Let $G = \mathbb{F}_2^n$. $\overline{A} = \rho^i \circ T_\alpha$ and $\overline{B} = T_\beta$
- <u>c-differentials</u>: finite field $G = \mathbb{F}_{p^n}$, $A = T_{\alpha}$ and $B: x \mapsto cx + \beta$ with $\alpha, \beta, c \in \mathbb{F}_{p^n}, c \neq 0$



▶ [Baudrin et al., 2023] studied the case of $G = \mathbb{F}_2^n$ and A, B affine permutations

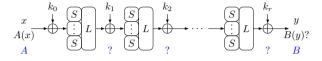
Question

Can we study the resistance by studying an isolated property of S (as for differentials)?

Affine Uniformity [Baudrin et al., 2023

Given an S-box $S \colon \mathbb{F}_2^n \to \mathbb{F}_2^n$ and $A, B \in AGL(n, \mathbb{F}_2)$, define

 $\Gamma_{\mathcal{S}}(A,B) = |\{x \in \mathbb{F}_{2}^{n} \mid \mathcal{S}(A(x)) = B(\mathcal{S}(x))\}|, \quad \Gamma_{\mathcal{S}} \coloneqq \max_{A \mid B \mid d \notin J \mid A \mid B} \Gamma_{\mathcal{S}}(A,B).$



▶ [Baudrin et al., 2023] studied the case of $G = \mathbb{F}_2^n$ and A, B affine permutations

Question

Can we study the resistance by studying an isolated property of S (as for differentials)?

Affine Uniformity [Baudrin et al., 2023]

Given an S-box $S \colon \mathbb{F}_2^n \to \mathbb{F}_2^n$ and $A, B \in AGL(n, \mathbb{F}_2)$, define

$$\Gamma_{\mathcal{S}}(A,B) = |\{x \in \mathbb{F}_{2}^{n} \mid \mathcal{S}(A(x)) = B(\mathcal{S}(x))\}|, \quad \Gamma_{\mathcal{S}} \coloneqq \max_{A,B \text{ id} \notin \{A,B\}} \Gamma_{\mathcal{S}}(A,B).$$

- The distinguishing advantage of a commutative distinguisher, relations to differentials, and limitations of the general attack
- 2 Constructing commutative trails: Examples of the general attack in the weak-key model
- **3** Commutation over the Key Addition
- 4 Analyzing S-boxes
- 5 The Linear Layer

A Chosen-Plaintext Distinguisher

Commutative Distinguisher (Informal)

Pair (A, B) with $A, B: G \to G$ such that $\Pr_x[E_k(A(x)) = B(E_k(x))]$ is high for many k.

The security model

Adversary \mathcal{A} interacts with $\mathcal{O} = E_k : G \to G$ for an (unknown) uniformly chosen $k \in \kappa$ or with a uniformly random chosen permutation $\mathcal{O} = P : G \to G$ (such that $\Pr(\mathcal{O} = E_k) = \Pr(\mathcal{O} = P) = 0.5$). \mathcal{A} tells whether $\mathcal{O} = E_k$ (return 1) or $\mathcal{O} = P$ (ret. 0).

How the commutative (chosen-plaintext) distinguisher works:

• \mathcal{A} encrypts x_i and $A(x_i)$ for a random x_i and checks $\mathcal{O}(A(x_i)) \stackrel{?}{=} B(\mathcal{O}(x_i))$

• makes a guess for $\mathcal{O} \in \{E_k, P\}$ and returns 1 or 0

A Chosen-Plaintext Distinguisher

Commutative Distinguisher (Informal)

Pair (A, B) with $A, B: G \to G$ such that $\Pr_x[E_k(A(x)) = B(E_k(x))]$ is high for many k.

The security model

Adversary \mathcal{A} interacts with $\mathcal{O} = E_k : G \to G$ for an (unknown) uniformly chosen $k \in \kappa$ or with a uniformly random chosen permutation $\mathcal{O} = P : G \to G$ (such that $\Pr(\mathcal{O} = E_k) = \Pr(\mathcal{O} = P) = 0.5$). \mathcal{A} tells whether $\mathcal{O} = E_k$ (return 1) or $\mathcal{O} = P$ (ret. 0).

How the commutative (chosen-plaintext) distinguisher works:

- \mathcal{A} encrypts x_i and $A(x_i)$ for a random x_i and checks $\mathcal{O}(A(x_i)) \stackrel{?}{=} B(\mathcal{O}(x_i))$
- makes a guess for $\mathcal{O} \in \{E_k, P\}$ and returns 1 or 0

The Distinguishing Advantage

For a permutation $P \colon G \to G$, we have

$$\Pr(A \xrightarrow{P} B) = \Pr_{x \in G}[P(A(x)) = B(P(x))] = \frac{\Gamma_P(A, B)}{|G|},$$

where $\Gamma_P(A, B) := |\{x \in G \mid P(A(x)) = B(P(x))\}|$. For $(E_k)_{k \in \kappa}$, define the expected commutative probability as

$$\operatorname{ECP}(A \xrightarrow{E} B) \coloneqq \frac{1}{|\kappa|} \sum_{k \in \kappa} \operatorname{Pr}(A \xrightarrow{E_k} B).$$

Distinguishing Advantage of Commutative Distinguisher (A, B)

 $\operatorname{Adv}_{(A,B)} := |\operatorname{ECP}(A \xrightarrow{E} B) - \operatorname{Pr}_{P \in \operatorname{Perm}(G), x \in G}[P(A(x)) = B(P(x))]|$

where Perm(G) denotes the set of all permutations of G.

The Distinguishing Advantage

For a permutation $P \colon G \to G$, we have

$$\Pr(A \xrightarrow{P} B) = \Pr_{x \in G}[P(A(x)) = B(P(x))] = \frac{\Gamma_P(A, B)}{|G|},$$

where $\Gamma_P(A, B) := |\{x \in G \mid P(A(x)) = B(P(x))\}|$. For $(E_k)_{k \in \kappa}$, define the expected commutative probability as

$$\operatorname{ECP}(A \xrightarrow{E} B) := \frac{1}{|\kappa|} \sum_{k \in \kappa} \operatorname{Pr}(A \xrightarrow{E_k} B).$$

Distinguishing Advantage of Commutative Distinguisher (A, B)

$$\operatorname{Adv}_{(A,B)} := |\operatorname{ECP}(A \xrightarrow{E} B) - \operatorname{Pr}_{P \in \operatorname{Perm}(G), x \in G}[P(A(x)) = B(P(x))]|$$

where Perm(G) denotes the set of all permutations of G.

The Distinguishing Advantage (cont.)

Distinguishing Advantage of Commutative Distinguisher (A, B)

$$\operatorname{Adv}_{(A,B)} := |\operatorname{ECP}(A \xrightarrow{E} B) - \operatorname{Pr}_{P \in \operatorname{Perm}(G), x \in G}[P(A(x)) = B(P(x))]$$

Lemma

Let G be a finite set and $A, B: G \rightarrow G$. Then,

$$\Pr_{P \in \operatorname{Perm}(G), x \in G}[P \circ A(x) = B \circ P(x)] = \frac{|G| - |\operatorname{Fix}(A)| - |\operatorname{Fix}(B)| + |\operatorname{Fix}(A)| \cdot |\operatorname{Fix}(B)|}{|G| \cdot (|G| - 1)}$$

where $Fix(\cdot)$ denotes the set of fixed points.

The Distinguishing Advantage (cont.)

Distinguishing Advantage of Commutative Distinguisher (A, B)

$$\operatorname{Adv}_{(A,B)} \coloneqq |\operatorname{ECP}(A \xrightarrow{E} B) - \frac{|G| - |\operatorname{Fix}(A)| - |\operatorname{Fix}(B)| + |\operatorname{Fix}(A)| \cdot |\operatorname{Fix}(B)|}{|G| \cdot (|G| - 1)}$$

If $G = \mathbb{F}_p^n$, $C \in AGL(n, \mathbb{F}_p)$ such that C = L + c with L being linear, we have

$$|\operatorname{Fix}(C)| = \begin{cases} 0 & \text{if } c \notin \operatorname{Im}(\operatorname{id} - L) \\ p^{\dim \ker(\operatorname{id} - L)} & \text{otherwise (and } \operatorname{Fix}(C) \text{ is an affine subspace of } \mathbb{F}_p^n) \end{cases}$$

Be careful with the notion of affine uniformity!

The notion of affine uniformity is only meaningful if we restrict to sets $\mathcal{A} \subseteq \operatorname{AGL}(n, \mathbb{F}_p)^2$ such that $(A_1, B_1), (A_2, B_2) \in \mathcal{A}$ implies $|\operatorname{Fix}(A_1)| = |\operatorname{Fix}(A_2)|$ and $|\operatorname{Fix}(B_1)| = |\operatorname{Fix}(B_2)|$.

The Distinguishing Advantage (cont.)

Distinguishing Advantage of Commutative Distinguisher (A, B)

$$\operatorname{Adv}_{(A,B)} \coloneqq |\operatorname{ECP}(A \xrightarrow{E} B) - \frac{|G| - |\operatorname{Fix}(A)| - |\operatorname{Fix}(B)| + |\operatorname{Fix}(A)| \cdot |\operatorname{Fix}(B)|}{|G| \cdot (|G| - 1)}$$

If $G = \mathbb{F}_p^n$, $C \in AGL(n, \mathbb{F}_p)$ such that C = L + c with L being linear, we have

$$|\operatorname{Fix}(C)| = \begin{cases} 0 & \text{if } c \notin \operatorname{Im}(\operatorname{id} - L) \\ p^{\dim \ker(\operatorname{id} - L)} & \text{otherwise (and } \operatorname{Fix}(C) \text{ is an affine subspace of } \mathbb{F}_p^n) \end{cases}$$

Be careful with the notion of affine uniformity!

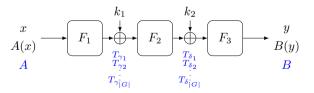
The notion of affine uniformity is only meaningful if we restrict to sets $\mathcal{A} \subseteq \operatorname{AGL}(n, \mathbb{F}_p)^2$ such that $(A_1, B_1), (A_2, B_2) \in \mathcal{A}$ implies $|\operatorname{Fix}(A_1)| = |\operatorname{Fix}(A_2)|$ and $|\operatorname{Fix}(B_1)| = |\operatorname{Fix}(B_2)|$.

Expressing $ECP(A \xrightarrow{E} B)$ using Commutative Trails

Commutative Trail Formula for Iterated Ciphers (over independent round keys)

Let $(E_k)_{k \in G \times G}$ be the family of permutations defined by $E_{(k_1,k_2)} = F_3 \circ T_{k_2} \circ F_2 \circ T_{k_1} \circ F_1$ for permutations $F_1, F_2, F_3 \colon G \to G$ and let $A, B \colon G \to G$. We have

$$\operatorname{ECP}(A \xrightarrow{E} B) = \sum_{\gamma \in G} \sum_{\delta \in G} \operatorname{Pr}(A \xrightarrow{F_1} T_{\gamma}) \cdot \operatorname{Pr}(T_{\gamma} \xrightarrow{F_2} T_{\delta}) \cdot \operatorname{Pr}(T_{\delta} \xrightarrow{F_3} B)$$



▶ Generalization of the case where A, B are translations [Lai, Massey, Murphy, '91]

Expressing $ECP(A \xrightarrow{E} B)$ using Commutative Trails (cont.)

Commutative Trail Formula for Iterated Ciphers

Let $(E_k)_{k \in G \times G}$ be the family of permutations defined by $E_{(k_1,k_2)} = F_3 \circ T_{k_2} \circ F_2 \circ T_{k_1} \circ F_1$ for permutations $F_1, F_2, F_3 \colon G \to G$ and let $A, B \colon G \to G$. We have

$$\operatorname{ECP}(A \xrightarrow{E} B) = \sum_{\gamma \in G} \sum_{\delta \in G} \operatorname{Pr}(A \xrightarrow{F_1} T_{\gamma}) \cdot \operatorname{Pr}(T_{\gamma} \xrightarrow{F_2} T_{\delta}) \cdot \operatorname{Pr}(T_{\delta} \xrightarrow{F_3} B).$$

Application to Even-Mansour Cipher (Setting $F_1 = F_3 = id, F_2 = R$)

$$\operatorname{ECP}(A \xrightarrow{E} B) \leq \frac{\delta_R}{|G|} \cdot \frac{(|G| - |\operatorname{Fix}(A)|)(|G| - |\operatorname{Fix}(B)|)}{|G|^2} + \frac{|\operatorname{Fix}(A)| \cdot |\operatorname{Fix}(B)|}{|G|^2}$$

If one of $A - \operatorname{id}$ or $B - \operatorname{id}$ is bijective, we have $\operatorname{ECP}(A \xrightarrow{E} B) = \frac{1}{|G|}$.

Putting All Together

Distinguishing Advantage over Cipher with Independent Whitening Keys

$$\operatorname{Adv}_{(A,B)} \leq \max_{\gamma,\delta\in G, \gamma
eq 0} \operatorname{ECP}(T_{\gamma} \xrightarrow{E} T_{\delta}) + rac{2}{|G|-1}.$$

If one of A - id or B - id is invertible, then $Adv_{(A,B)} = 0$.

When there are independent whitening keys, we cannot do better than a differential attack (already shown in [Liu, Tessaro, Vaikuntanathan, 2021])

• *c*-differentials ($c \neq 1$) yield advantage 0, as $x \mapsto cx + \beta - x$ is invertible

Weak-Key Model

A commutative (non-differential) attack only works in the weak-key model, or exploits properties of the key schedule!

Putting All Together

Distinguishing Advantage over Cipher with Independent Whitening Keys

$$\operatorname{Adv}_{(A,B)} \leq \max_{\gamma,\delta\in G, \gamma \neq 0} \operatorname{ECP}(T_{\gamma} \stackrel{E}{
ightarrow} T_{\delta}) + rac{2}{|G|-1}.$$

If one of A - id or B - id is invertible, then $Adv_{(A,B)} = 0$.

- When there are independent whitening keys, we cannot do better than a differential attack (already shown in [Liu, Tessaro, Vaikuntanathan, 2021])
- *c*-differentials ($c \neq 1$) yield advantage 0, as $x \mapsto cx + \beta x$ is invertible

Weak-Key Model

A commutative (non-differential) attack only works in the weak-key model, or exploits properties of the key schedule!

Putting All Together

Distinguishing Advantage over Cipher with Independent Whitening Keys

$$\operatorname{Adv}_{(A,B)} \leq \max_{\gamma,\delta\in G, \gamma \neq 0} \operatorname{ECP}(T_{\gamma} \stackrel{E}{
ightarrow} T_{\delta}) + rac{2}{|G|-1}.$$

If one of A - id or B - id is invertible, then $Adv_{(A,B)} = 0$.

- When there are independent whitening keys, we cannot do better than a differential attack (already shown in [Liu, Tessaro, Vaikuntanathan, 2021])
- *c*-differentials ($c \neq 1$) yield advantage 0, as $x \mapsto cx + \beta x$ is invertible

Weak-Key Model

A commutative (non-differential) attack only works in the weak-key model, or exploits properties of the key schedule!

Outline

- The distinguishing advantage of a commutative distinguisher, relations to differentials, and limitations of the general attack
- 2 Constructing commutative trails: Examples of the general attack in the weak-key model
- 3 Commutation over the Key Addition
- 4 Analyzing S-boxes
- 5 The Linear Layer

Commutative Trails of Probability 1

In the following, let $G = \mathbb{F}_p^n$.

Deterministic Commutative Trail

Let $F = F_r \circ \cdots \circ F_2 \circ F_1$ be an iterated permutation, $F_i \colon \mathbb{F}_p^n \to \mathbb{F}_p^n$ permutations. Let $C_0, \ldots, C_r \in \mathrm{AGL}(n, \mathbb{F}_p)$ such that $F_i \circ C_{i-1} = C_i \circ F_i$ for all *i*, then $F \circ A = B \circ F$ with $A = C_0, B = C_r$ (i.e., $\Gamma_F(A, B) = p^n$).

Idea (as studied in [Baudrin et al., 2023]):

- Separate the block cipher (SPN) into the S-box layer (S), linear layer (L), and key addition (T_k)
- ► for all $X \in \{S, L\} \cup \{T_k \mid k \in WeakKeys\}$ find $C, C' \in AGL(n, \mathbb{F}_p)$ with $X \circ C = C' \circ X$ (i.e., $\Gamma_X(C, C') = p^n$)

Commutative Trails of Probability 1

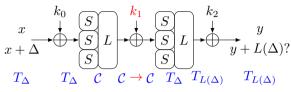
In the following, let $G = \mathbb{F}_p^n$.

Deterministic Commutative Trail

Let $F = F_r \circ \cdots \circ F_2 \circ F_1$ be an iterated permutation, $F_i \colon \mathbb{F}_p^n \to \mathbb{F}_p^n$ permutations. Let $C_0, \ldots, C_r \in \mathrm{AGL}(n, \mathbb{F}_p)$ such that $F_i \circ C_{i-1} = C_i \circ F_i$ for all *i*, then $F \circ A = B \circ F$ with $A = C_0, B = C_r$ (i.e., $\Gamma_F(A, B) = p^n$).

Idea (as studied in [Baudrin et al., 2023]):

- Separate the block cipher (SPN) into the S-box layer (S), linear layer (L), and key addition (T_k)
- ► for all $X \in \{S, L\} \cup \{T_k \mid k \in WeakKeys\}$ find $C, C' \in AGL(n, \mathbb{F}_p)$ with $X \circ C = C' \circ X$ (i.e., $\Gamma_X(C, C') = p^n$)



- S-box layer S applies three 5-bit S-boxes in parallel, i.e., S = (S, S, S)
 Linear layer L defined by a special 15 × 15 matrix over F₂
- The two-round cipher defined as $E_{k_0,k_1,k_2} := T_{k_2} \circ L \circ S \circ T_{k_1} \circ L \circ S \circ T_{k_0}$

Special properties of S and L (we see later how such S, L can be constructed)

∃δ ∈ ℙ⁵₂ \ {0} and C ∈ AGL(5, ℙ₂) such that S ∘ T_δ = C ∘ S and S ∘ C = T_δ ∘ S Then, S ∘ T_Δ = C ∘ S and S ∘ C = T_Δ ∘ S where Δ = (δ, δ, δ), C = Diag(C, C, C)
S has non-trivial differential uniformity and non-trivial linearity (here δ_S = 20).
C commutes with L, i.e., L ∘ C = C ∘ L

▶ S-box layer S applies three 5-bit S-boxes in parallel, i.e., S = (S, S, S)

• Linear layer L defined by a special 15 imes 15 matrix over \mathbb{F}_2

▶ The two-round cipher defined as $E_{k_0,k_1,k_2} := T_{k_2} \circ L \circ S \circ T_{k_1} \circ L \circ S \circ T_{k_0}$

Special properties of S and L (we see later how such S, L can be constructed)

∃δ ∈ 𝔽⁵₂ \ {0} and C ∈ AGL(5,𝔽₂) such that S ∘ T_δ = C ∘ S and S ∘ C = T_δ ∘ S. Then, S ∘ T_Δ = C ∘ S and S ∘ C = T_Δ ∘ S where Δ = (δ, δ, δ), C = Diag(C, C, C)
S has non-trivial differential uniformity and non-trivial linearity (here δ_S = 20).
C commutes with L, i.e., L ∘ C = C ∘ L

$$\begin{array}{c} x & \stackrel{k_{0}}{\longrightarrow} S \\ x + \Delta & \stackrel{k_{1}}{\longrightarrow} S \\ T_{\Delta} & T_{\Delta} & \mathcal{C} & \mathcal{C} \rightarrow \mathcal{C} & T_{\Delta} & T_{L(\Delta)} & T_{L(\Delta)} \end{array} \xrightarrow{k_{1}} y \\ \begin{array}{c} k_{1} & & & \\ k_{2} & & \\ S & & \\ T_{\Delta} & & \\ T_{\Delta} & & \\ T_{\Delta} & & \\ \end{array} \xrightarrow{k_{1}} S \\ \begin{array}{c} k_{2} & & \\ s & \\ S & \\ S & \\ S & \\ \end{array} \xrightarrow{k_{2}} y \\ \begin{array}{c} y \\ y \\ y \\ + \\ L(\Delta) \end{array} \xrightarrow{k_{2}} y \\ \begin{array}{c} y \\ y \\ y \\ + \\ L(\Delta) \end{array} \xrightarrow{k_{2}} y \\ \begin{array}{c} y \\ y \\ y \\ - \\ L(\Delta) \end{array} \xrightarrow{k_{2}} y \\ \begin{array}{c} y \\ y \\ - \\ L(\Delta) \end{array} \xrightarrow{k_{2}} y \\ \begin{array}{c} y \\ y \\ - \\ L(\Delta) \end{array} \xrightarrow{k_{2}} y \\ \begin{array}{c} y \\ y \\ - \\ L(\Delta) \end{array} \xrightarrow{k_{2}} y \\ \begin{array}{c} y \\ y \\ - \\ L(\Delta) \end{array} \xrightarrow{k_{2}} y \\ \begin{array}{c} y \\ y \\ - \\ L(\Delta) \end{array} \xrightarrow{k_{2}} y \\ \begin{array}{c} y \\ y \\ - \\ L(\Delta) \end{array} \xrightarrow{k_{2}} y \\ \begin{array}{c} y \\ y \\ - \\ L(\Delta) \end{array} \xrightarrow{k_{2}} y \\ \begin{array}{c} y \\ y \\ - \\ L(\Delta) \end{array} \xrightarrow{k_{2}} y \\ \begin{array}{c} y \\ y \\ - \\ L(\Delta) \end{array} \xrightarrow{k_{2}} y \\ \begin{array}{c} y \\ y \\ - \\ L(\Delta) \end{array} \xrightarrow{k_{2}} y \\ \begin{array}{c} y \\ y \\ - \\ L(\Delta) \end{array} \xrightarrow{k_{2}} y \\ \begin{array}{c} y \\ y \\ - \\ L(\Delta) \end{array} \xrightarrow{k_{2}} y \\ \begin{array}{c} y \\ y \\ - \\ L(\Delta) \end{array} \xrightarrow{k_{2}} y \\ \begin{array}{c} y \\ y \\ - \\ L(\Delta) \end{array} \xrightarrow{k_{2}} y \\ \begin{array}{c} y \\ y \\ - \\ L(\Delta) \end{array} \xrightarrow{k_{2}} y \\ \begin{array}{c} y \\ y \\ - \\ L(\Delta) \end{array} \xrightarrow{k_{2}} y \\ \begin{array}{c} y \\ y \\ - \\ L(\Delta) \end{array} \xrightarrow{k_{2}} y \\ \begin{array}{c} y \\ y \\ - \\ L(\Delta) \end{array} \xrightarrow{k_{2}} y \\ \begin{array}{c} y \\ y \\ - \\ L(\Delta) \end{array} \xrightarrow{k_{2}} y \\ \begin{array}{c} y \\ y \\ - \\ L(\Delta) \end{array} \xrightarrow{k_{2}} y \\ \begin{array}{c} y \\ y \\ - \\ L(\Delta) \end{array} \xrightarrow{k_{2}} y \\ \begin{array}{c} y \\ y \\ - \\ L(\Delta) \end{array} \xrightarrow{k_{2}} y \\ \begin{array}{c} y \\ - \\ L(\Delta) \end{array} \xrightarrow{k_{2}} y \\ \begin{array}{c} y \\ - \\ L(\Delta) \end{array} \xrightarrow{k_{2}} y \\ \begin{array}{c} y \\ - \\ L(\Delta) \end{array} \xrightarrow{k_{2}} y \\ \begin{array}{c} y \\ - \\ L(\Delta) \end{array} \xrightarrow{k_{2}} y \\ \begin{array}{c} y \\ - \\ L(\Delta) \end{array} \xrightarrow{k_{2}} y \\ \begin{array}{c} y \\ - \\ L(\Delta) \end{array} \xrightarrow{k_{2}} y \\ \begin{array}{c} y \\ - \\ L(\Delta) \end{array} \xrightarrow{k_{2}} y \\ \begin{array}{c} y \\ - \\ L(\Delta) \end{array} \xrightarrow{k_{2}} y \\ \begin{array}{c} y \\ - \\ L(\Delta) \end{array} \xrightarrow{k_{2}} y \\ \begin{array}{c} y \\ - \\ L(\Delta) \end{array} \xrightarrow{k_{2}} y \\ \begin{array}{c} y \\ - \\ L(\Delta) \end{array} \xrightarrow{k_{2}} y \\ \begin{array}{c} y \\ - \\ L(\Delta) \end{array} \xrightarrow{k_{2}} y \\ \begin{array}{c} y \\ - \\ L(\Delta) \end{array} \xrightarrow{k_{2}} y \\ \begin{array}{c} y \\ - \\ L(\Delta) \end{array} \xrightarrow{k_{2}} y \\ \end{array}$$

▶ S-box layer S applies three 5-bit S-boxes in parallel, i.e., S = (S, S, S)

• Linear layer L defined by a special 15×15 matrix over \mathbb{F}_2

▶ The two-round cipher defined as $E_{k_0,k_1,k_2} := T_{k_2} \circ L \circ S \circ T_{k_1} \circ L \circ S \circ T_{k_0}$

Special properties of S and L (we see later how such S, L can be constructed)

∃δ ∈ 𝔽⁵₂ \ {0} and C ∈ AGL(5,𝔽₂) such that S ∘ T_δ = C ∘ S and S ∘ C = T_δ ∘ S. Then, S ∘ T_Δ = C ∘ S and S ∘ C = T_Δ ∘ S where Δ = (δ, δ, δ), C = Diag(C, C, C)
S has non-trivial differential uniformity and non-trivial linearity (here δ_S = 20).
C commutes with L i.e. L ∘ C = C ∘ L

$$\begin{array}{c} x & \stackrel{k_{0}}{\longrightarrow} S \\ x + \Delta & \stackrel{k_{1}}{\longrightarrow} S \\ T_{\Delta} & T_{\Delta} & \mathcal{C} & \mathcal{C} \rightarrow \mathcal{C} & T_{\Delta} & T_{L(\Delta)} & T_{L(\Delta)} \end{array} \xrightarrow{k_{1}} y \\ \begin{array}{c} k_{1} & & & \\ k_{2} & & \\ S & & \\ T_{\Delta} & & \\ T_{\Delta} & & \\ T_{\Delta} & & \\ \end{array} \xrightarrow{k_{1}} S \\ \begin{array}{c} k_{2} & & \\ s & \\ S & \\ S & \\ S & \\ \end{array} \xrightarrow{k_{2}} y \\ \begin{array}{c} y \\ y \\ y \\ + \\ L(\Delta) \end{array} \xrightarrow{k_{2}} y \\ \begin{array}{c} y \\ y \\ y \\ + \\ L(\Delta) \end{array} \xrightarrow{k_{2}} y \\ \begin{array}{c} y \\ y \\ y \\ - \\ L(\Delta) \end{array} \xrightarrow{k_{2}} y \\ \begin{array}{c} y \\ y \\ - \\ L(\Delta) \end{array} \xrightarrow{k_{2}} y \\ \begin{array}{c} y \\ y \\ - \\ L(\Delta) \end{array} \xrightarrow{k_{2}} y \\ \begin{array}{c} y \\ y \\ - \\ L(\Delta) \end{array} \xrightarrow{k_{2}} y \\ \begin{array}{c} y \\ y \\ - \\ L(\Delta) \end{array} \xrightarrow{k_{2}} y \\ \begin{array}{c} y \\ y \\ - \\ L(\Delta) \end{array} \xrightarrow{k_{2}} y \\ \begin{array}{c} y \\ y \\ - \\ L(\Delta) \end{array} \xrightarrow{k_{2}} y \\ \begin{array}{c} y \\ y \\ - \\ L(\Delta) \end{array} \xrightarrow{k_{2}} y \\ \begin{array}{c} y \\ y \\ - \\ L(\Delta) \end{array} \xrightarrow{k_{2}} y \\ \begin{array}{c} y \\ y \\ - \\ L(\Delta) \end{array} \xrightarrow{k_{2}} y \\ \begin{array}{c} y \\ y \\ - \\ L(\Delta) \end{array} \xrightarrow{k_{2}} y \\ \begin{array}{c} y \\ y \\ - \\ L(\Delta) \end{array} \xrightarrow{k_{2}} y \\ \begin{array}{c} y \\ y \\ - \\ L(\Delta) \end{array} \xrightarrow{k_{2}} y \\ \begin{array}{c} y \\ y \\ - \\ L(\Delta) \end{array} \xrightarrow{k_{2}} y \\ \begin{array}{c} y \\ y \\ - \\ L(\Delta) \end{array} \xrightarrow{k_{2}} y \\ \begin{array}{c} y \\ y \\ - \\ L(\Delta) \end{array} \xrightarrow{k_{2}} y \\ \begin{array}{c} y \\ y \\ - \\ L(\Delta) \end{array} \xrightarrow{k_{2}} y \\ \begin{array}{c} y \\ y \\ - \\ L(\Delta) \end{array} \xrightarrow{k_{2}} y \\ \begin{array}{c} y \\ y \\ - \\ L(\Delta) \end{array} \xrightarrow{k_{2}} y \\ \begin{array}{c} y \\ y \\ - \\ L(\Delta) \end{array} \xrightarrow{k_{2}} y \\ \begin{array}{c} y \\ y \\ - \\ L(\Delta) \end{array} \xrightarrow{k_{2}} y \\ \begin{array}{c} y \\ y \\ - \\ L(\Delta) \end{array} \xrightarrow{k_{2}} y \\ \begin{array}{c} y \\ y \\ - \\ L(\Delta) \end{array} \xrightarrow{k_{2}} y \\ \begin{array}{c} y \\ - \\ L(\Delta) \end{array} \xrightarrow{k_{2}} y \\ \begin{array}{c} y \\ - \\ L(\Delta) \end{array} \xrightarrow{k_{2}} y \\ \begin{array}{c} y \\ - \\ L(\Delta) \end{array} \xrightarrow{k_{2}} y \\ \begin{array}{c} y \\ - \\ L(\Delta) \end{array} \xrightarrow{k_{2}} y \\ \begin{array}{c} y \\ - \\ L(\Delta) \end{array} \xrightarrow{k_{2}} y \\ \begin{array}{c} y \\ - \\ L(\Delta) \end{array} \xrightarrow{k_{2}} y \\ \begin{array}{c} y \\ - \\ L(\Delta) \end{array} \xrightarrow{k_{2}} y \\ \begin{array}{c} y \\ - \\ L(\Delta) \end{array} \xrightarrow{k_{2}} y \\ \begin{array}{c} y \\ - \\ L(\Delta) \end{array} \xrightarrow{k_{2}} y \\ \begin{array}{c} y \\ - \\ L(\Delta) \end{array} \xrightarrow{k_{2}} y \\ \begin{array}{c} y \\ - \\ L(\Delta) \end{array} \xrightarrow{k_{2}} y \\ \begin{array}{c} y \\ - \\ L(\Delta) \end{array} \xrightarrow{k_{2}} y \\ \begin{array}{c} y \\ - \\ L(\Delta) \end{array} \xrightarrow{k_{2}} y \\ \begin{array}{c} y \\ - \\ L(\Delta) \end{array} \xrightarrow{k_{2}} y \\ \end{array}$$

- ▶ S-box layer S applies three 5-bit S-boxes in parallel, i.e., S = (S, S, S)
- Linear layer L defined by a special 15 imes 15 matrix over \mathbb{F}_2
- ▶ The two-round cipher defined as $E_{k_0,k_1,k_2} := T_{k_2} \circ L \circ S \circ T_{k_1} \circ L \circ S \circ T_{k_0}$

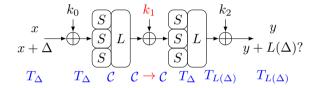
Special properties of S and L (we see later how such S, L can be constructed)

► $\exists \delta \in \mathbb{F}_2^5 \setminus \{0\}$ and $C \in AGL(5, \mathbb{F}_2)$ such that $S \circ T_\delta = C \circ S$ and $S \circ C = T_\delta \circ S$. Then, $S \circ T_\Delta = C \circ S$ and $S \circ C = T_\Delta \circ S$ where $\Delta = (\delta, \delta, \delta), C = Diag(C, C, C)$

► S has non-trivial differential uniformity and non-trivial linearity (here $\delta_S = 20$).

• C commutes with L, i.e., $L \circ C = C \circ L$

Example 1 (cont.)



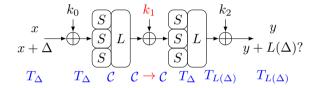
▶ If k_1 is a weak key (in the sense that $T_{k_1} \circ C = C \circ T_{k_1}$), we have $E_{k_0,k_1,k_2}(x + \Delta) = E_{k_0,k_1,k_2}(x) + L(\Delta)$, i.e., a probability-1 differential

• There are no probability-1 differentials over a single round (since $\delta_S < 2^5$)

What are the weak keys?

In this example, the weak keys form a 12-dimensional subspace of \mathbb{F}_2^{15} .

Example 1 (cont.)

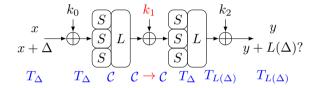


- ▶ If k_1 is a weak key (in the sense that $T_{k_1} \circ C = C \circ T_{k_1}$), we have $E_{k_0,k_1,k_2}(x + \Delta) = E_{k_0,k_1,k_2}(x) + L(\Delta)$, i.e., a probability-1 differential
- ▶ There are no probability-1 differentials over a single round (since $\delta_S < 2^5$)

What are the weak keys?

In this example, the weak keys form a 12-dimensional subspace of $\mathbb{F}_2^{15}.$

Example 1 (cont.)



▶ If k_1 is a weak key (in the sense that $T_{k_1} \circ C = C \circ T_{k_1}$), we have $E_{k_0,k_1,k_2}(x + \Delta) = E_{k_0,k_1,k_2}(x) + L(\Delta)$, i.e., a probability-1 differential

• There are no probability-1 differentials over a single round (since $\delta_S < 2^5$)

What are the weak keys?

In this example, the weak keys form a 12-dimensional subspace of \mathbb{F}_2^{15} .

Example 2 (Midori) and Example 3 (Scream)

- ▶ Midori [Banik et al., 2015] is a 64-bit block cipher (SPN) using a 128-bit key
- Scream [Grosso et al., 2015] is a 128-bit tweakable block cipher using a 128-bit key

Results shown in [Baudrin et al., 2023]

- Midori: If the round constants are slightly modified, there exists a probability-1 commutative trail covering an arbitrary number of rounds for 2⁹⁶ keys
- ▶ Scream: There is a probability-1 commutative trail for 2⁸⁰ keys

Question

What are the properties of the S-box, key addition and linear layer to make such attacks possible?

Example 2 (Midori) and Example 3 (Scream)

- ▶ Midori [Banik et al., 2015] is a 64-bit block cipher (SPN) using a 128-bit key
- Scream [Grosso et al., 2015] is a 128-bit tweakable block cipher using a 128-bit key

Results shown in [Baudrin et al., 2023]

- Midori: If the round constants are slightly modified, there exists a probability-1 commutative trail covering an arbitrary number of rounds for 2⁹⁶ keys
- ▶ Scream: There is a probability-1 commutative trail for 2⁸⁰ keys

Question

What are the properties of the S-box, key addition and linear layer to make such attacks possible?

Outline

- The distinguishing advantage of a commutative distinguisher, relations to differentials, and limitations of the general attack
- Denstructing commutative trails: Examples of the general attack in the weak-key mode
- **3** Commutation over the Key Addition
- 4 Analyzing S-boxes
- 5 The Linear Layer

Characterizing Weak Keys

Let $A, B \in AGL(n, \mathbb{F}_p)$ with $A = L_A + c_A, B = L_B + c_B$ for L_A, L_B linear and $k \in \kappa$. For $x \in \mathbb{F}_p^n$, we have

$$T_k \circ A(x) = B \circ T_k(x) \quad \Leftrightarrow \quad (L_A - L_B)(x) = (L_B - \mathrm{id})(k) + c_B - c_A$$

Examples

• Differentials $(A = T_{\alpha} = id + \alpha, B = T_{\beta} = id + \beta)$: Commutation is equivalent to $0 = \beta - \alpha$, hence $\Gamma_{T_k}(T_{\alpha}, T_{\alpha}) = p^n$ (independently of x and k)

• *c*-Differentials $(A = T_{\alpha}, B = c \cdot id + \beta)$: For $c \neq 1$, commutation is equivalent to

$$x = rac{c-1}{1-c} \cdot k + rac{eta - lpha}{1-c}.$$

Hence, for each k, we have $\Gamma_{T_k}(A, B) = 1$.

Characterizing Weak Keys

Let $A, B \in AGL(n, \mathbb{F}_p)$ with $A = L_A + c_A, B = L_B + c_B$ for L_A, L_B linear and $k \in \kappa$. For $x \in \mathbb{F}_p^n$, we have

$$T_k \circ A(x) = B \circ T_k(x) \quad \Leftrightarrow \quad (L_A - L_B)(x) = (L_B - \mathrm{id})(k) + c_B - c_A$$

Examples

• Differentials $(A = T_{\alpha} = id + \alpha, B = T_{\beta} = id + \beta)$: Commutation is equivalent to $0 = \beta - \alpha$, hence $\Gamma_{T_k}(T_{\alpha}, T_{\alpha}) = p^n$ (independently of x and k)

• *c*-Differentials $(A = T_{\alpha}, B = c \cdot id + \beta)$: For $c \neq 1$, commutation is equivalent to

$$x = rac{c-1}{1-c} \cdot k + rac{eta - lpha}{1-c}.$$

Hence, for each k, we have $\Gamma_{T_k}(A, B) = 1$.

Characterizing Weak Keys

Let $A, B \in AGL(n, \mathbb{F}_p)$ with $A = L_A + c_A, B = L_B + c_B$ for L_A, L_B linear and $k \in \kappa$. For $x \in \mathbb{F}_p^n$, we have

$$T_k \circ A(x) = B \circ T_k(x) \quad \Leftrightarrow \quad (L_A - L_B)(x) = (L_B - \mathrm{id})(k) + c_B - c_A$$

Examples

- Differentials (A = T_α = id + α, B = T_β = id + β): Commutation is equivalent to 0 = β − α, hence Γ_{T_k}(T_α, T_α) = pⁿ (independently of x and k)
- *c*-Differentials $(A = T_{\alpha}, B = c \cdot id + \beta)$: For $c \neq 1$, commutation is equivalent to

$$x = \frac{c-1}{1-c} \cdot k + \frac{\beta-\alpha}{1-c}$$

Hence, for each k, we have $\Gamma_{T_k}(A, B) = 1$.

$$T_k \circ A(x) = B \circ T_k(x) \quad \Leftrightarrow \quad (L_A - L_B)(x) = (L_B - \mathrm{id})(k) + c_B - c_A$$

More general requirement

An attacker would like to have many solutions $(x, k) \in (\mathbb{F}_p^n)^2$ of $T_k \circ A(x) = B \circ T_k(x)$, i.e., $\operatorname{rank}(M_{A,B})$, where

$$M_{A,B} := [L_A - L_B \mid \mathrm{id} - L_B],$$

should be as low as possible.

- Attacker's best case (rank(M_{A,B}) = 0): Commutation holds independently of x and k. This is if and only if L_A = L_B = id (differential attack)
- Attacker's worst case (rank(M_{A,B}) = n): For example if L_A = id, L_B = c ⋅ id, c ≠ 1, i.e., the case of c-differentials

$$T_k \circ A(x) = B \circ T_k(x) \quad \Leftrightarrow \quad (L_A - L_B)(x) = (L_B - \mathrm{id})(k) + c_B - c_A$$

More general requirement

An attacker would like to have many solutions $(x, k) \in (\mathbb{F}_p^n)^2$ of $T_k \circ A(x) = B \circ T_k(x)$, i.e., $\operatorname{rank}(M_{A,B})$, where

$$M_{A,B} \coloneqq [L_A - L_B \mid \mathrm{id} - L_B],$$

should be as low as possible.

- Attacker's best case (rank(M_{A,B}) = 0): Commutation holds independently of x and k. This is if and only if L_A = L_B = id (differential attack)
- Attacker's worst case (rank(M_{A,B}) = n): For example if L_A = id, L_B = c ⋅ id, c ≠ 1, i.e., the case of c-differentials

$$T_k \circ A(x) = B \circ T_k(x) \quad \Leftrightarrow \quad (L_A - L_B)(x) = (L_B - \mathrm{id})(k) + c_B - c_A$$

More general requirement

An attacker would like to have many solutions $(x, k) \in (\mathbb{F}_p^n)^2$ of $T_k \circ A(x) = B \circ T_k(x)$, i.e., $\operatorname{rank}(M_{A,B})$, where

$$M_{A,B} \coloneqq [L_A - L_B \mid \mathrm{id} - L_B],$$

should be as low as possible.

- Attacker's best case (rank(M_{A,B}) = 0): Commutation holds independently of x and k. This is if and only if L_A = L_B = id (differential attack)
- Attacker's worst case $(\operatorname{rank}(M_{A,B}) = n)$: For example if $L_A = \operatorname{id}, L_B = c \cdot \operatorname{id}, c \neq 1$, i.e., the case of *c*-differentials

$$T_k \circ A(x) = B \circ T_k(x) \quad \Leftrightarrow \quad (L_A - L_B)(x) = (L_B - \mathrm{id})(k) + c_B - c_A$$

Condition on deterministic commutation

If $T_k \circ A = B \circ T_k$, we must have $L_A = L_B$ and then, $(L_A - id)(k) = c_A - c_B$. Hence,

$$|\text{WeakKeys}| = \begin{cases} p^{n-\text{rank}(L_A-\text{id})} & \text{if } c_A - c_B \in \text{Im}(L_A-\text{id}) \\ 0 & \text{else} \end{cases}$$

▶ In Example 1, rank(C - id) = 3, so there are 2^{12} weak keys out of 2^{15} choices for k_1

To summarize

For commutation over S and L, we will mainly be interested in those A, B with $d_A \coloneqq \operatorname{rank}(L_A - \operatorname{id})$ and $d_B \coloneqq \operatorname{rank}(L_B - \operatorname{id})$ as low as possible (or at least one of them)

$$T_k \circ A(x) = B \circ T_k(x) \quad \Leftrightarrow \quad (L_A - L_B)(x) = (L_B - \mathrm{id})(k) + c_B - c_A$$

Condition on deterministic commutation

If $T_k \circ A = B \circ T_k$, we must have $L_A = L_B$ and then, $(L_A - id)(k) = c_A - c_B$. Hence,

$$|\text{WeakKeys}| = \begin{cases} p^{n-\text{rank}(L_A-\text{id})} & \text{if } c_A - c_B \in \text{Im}(L_A-\text{id}) \\ 0 & \text{else} \end{cases}$$

▶ In Example 1, rank(C - id) = 3, so there are 2^{12} weak keys out of 2^{15} choices for k_1

To summarize

For commutation over S and L, we will mainly be interested in those A, B with $d_A \coloneqq \operatorname{rank}(L_A - \operatorname{id})$ and $d_B \coloneqq \operatorname{rank}(L_B - \operatorname{id})$ as low as possible (or at least one of them)

Outline

- The distinguishing advantage of a commutative distinguisher, relations to differentials, and limitations of the general attack
- Constructing commutative trails: Examples of the general attack in the weak-key mode
- Sommutation over the Key Addition
- 4 Analyzing S-boxes
- 5 The Linear Layer

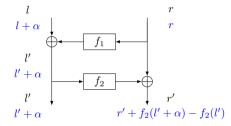
Coming Back to Example 1 $% \left({{{\rm{D}}}_{{\rm{A}}}} \right)$

- S was a 5-bit S-Box $S \colon \mathbb{F}_2^5 \to \mathbb{F}_2^5$
- $\blacktriangleright \ \exists \delta \in \mathbb{F}_2^5 \setminus \{0\}, C \in \mathrm{AGL}(5, \mathbb{F}_2) \text{ such that } S \circ T_\delta = C \circ S \text{ and } S \circ C = T_\delta \circ S$
- \blacktriangleright S was chosen ad-hoc by computer search to allow many weak keys
- ▶ In fact, $rank(L_C id) = 1$

Question

How can we construct such S-boxes (with non-trivial differential uniformity)?

A Possible Construction (Two-Round Feistel)



$\blacktriangleright S: \mathbb{F}_2^{2m} \to \mathbb{F}_2^{2m}, (\ell, r) \mapsto (\ell', r')$ with $\ell' = \ell + f_1(r), r' = r + f_2(\ell')$

- Fulfills $S \circ T_{(\alpha,0)} = B \circ S$ with $B(x, y) = (x + \alpha, y + f_2(x + \alpha) - f_2(x))$
- ▶ If f_2 has alg. degree at most 2, then $B \in AGL(n, \mathbb{F}_2)$

$$\blacktriangleright \ \delta_S = 2^m \cdot \max\{\delta_{f_1}, \delta_{f_2}\}$$

Example

 $f_1 = f_2 \colon x \mapsto x^3 (\in \mathbb{F}_{2^n})$. Then $\operatorname{rank}(\mathcal{L}_B - \operatorname{id}) = \operatorname{rank}(\alpha x^2 + \alpha^2 x) = m - 1$ and $\delta_S = 2^{m+1}$

Relation to Differential Uniformity

- This construction allows trade-offs between differential uniformity and rank(L_B id) (corresponding to number of weak keys)
- For instance, choose f_2 with $\delta_{f_2} = 2^{m-1}$. Then, $\delta_S = 2^{n-1}$, but rank $(L_B id) = 1$

Question

How does $\Gamma_{S}(A, B)$ relate to the differential uniformity δ_{S} in general (not assuming a specific construction)?

Recall: $\Gamma_{\mathcal{S}}(A, B) \coloneqq |\{x \mid S \circ A(x) = B \circ S(x)\}|.$

Relation to Differential Uniformity

- This construction allows trade-offs between differential uniformity and rank(L_B id) (corresponding to number of weak keys)
- For instance, choose f_2 with $\delta_{f_2} = 2^{m-1}$. Then, $\delta_S = 2^{n-1}$, but rank $(L_B id) = 1$

Question

How does $\Gamma_S(A, B)$ relate to the differential uniformity δ_S in general (not assuming a specific construction)?

Recall: $\Gamma_S(A, B) := |\{x \mid S \circ A(x) = B \circ S(x)\}|.$

Bounds

An upper bound $\Gamma_S(A, B)$ based on the differential uniformity

Let $S, A, B: G \rightarrow G$. Then,

$$\Gamma_{\mathcal{S}}(A,B) \leq \begin{cases} |\operatorname{Im}(A-\operatorname{id})| \cdot |\operatorname{Im}(B-\operatorname{id})| \cdot \delta_{\mathcal{S}} & \text{if } |\operatorname{Fix}(A)| = \emptyset \\ (|\operatorname{Im}(A-\operatorname{id})| - 1) \cdot |\operatorname{Im}(B-\operatorname{id})| \cdot \delta_{\mathcal{S}} + \min\{|\operatorname{Fix}(A)|, |\operatorname{Fix}(B)|\} & \text{else} \end{cases}$$

Corollary for $G = \mathbb{F}_p^n$ and $A, B \in AGL(n, \mathbb{F}_p)$

Let $A = L_A + a$, $B = L_B + b$ with L_A , L_B linear, $d_A \coloneqq \operatorname{rank}(L_A - \operatorname{id})$, $d_B \coloneqq \operatorname{rank}(L_B - \operatorname{id})$.

$$\Gamma_{\mathcal{S}}(A,B) \leq \begin{cases} p^{d_A+d_B} \cdot \delta_{\mathcal{S}} & \text{if } a \notin \operatorname{Im}(\operatorname{id} - L_A) \\ (p^{d_A} - 1) \cdot p^{d_B} \cdot \delta_{\mathcal{S}} + \min\{p^{n-d_A}, p^{n-d_B}\} & \text{else} \end{cases}$$

Bounds

An upper bound $\Gamma_{S}(A, B)$ based on the differential uniformity

Let $S, A, B: G \rightarrow G$. Then,

$$\Gamma_{\mathcal{S}}(A,B) \leq \begin{cases} |\operatorname{Im}(A-\operatorname{id})| \cdot |\operatorname{Im}(B-\operatorname{id})| \cdot \delta_{\mathcal{S}} & \text{if } |\operatorname{Fix}(A)| = \emptyset \\ (|\operatorname{Im}(A-\operatorname{id})| - 1) \cdot |\operatorname{Im}(B-\operatorname{id})| \cdot \delta_{\mathcal{S}} + \min\{|\operatorname{Fix}(A)|, |\operatorname{Fix}(B)|\} & \text{else} \end{cases}$$

Corollary for $G = \mathbb{F}_p^n$ and $A, B \in AGL(n, \mathbb{F}_p)$

Let $A = L_A + a$, $B = L_B + b$ with L_A , L_B linear, $d_A \coloneqq \operatorname{rank}(L_A - \operatorname{id})$, $d_B \coloneqq \operatorname{rank}(L_B - \operatorname{id})$.

$$\Gamma_{\mathcal{S}}(A,B) \leq egin{cases} p^{d_A+d_B} \cdot \delta_{\mathcal{S}} & ext{if } a
otin \operatorname{Im}(\operatorname{id} - L_A) \ (p^{d_A}-1) \cdot p^{d_B} \cdot \delta_{\mathcal{S}} + \min\{p^{n-d_A},p^{n-d_B}\} & ext{else} \end{cases}$$

Corollary for $G = \mathbb{F}_p^n$ and $A, B \in AGL(n, \mathbb{F}_p)$

Let $A = L_A + a$, $B = L_B + b$ with L_A , L_B linear, $d_A \coloneqq \operatorname{rank}(L_A - \operatorname{id})$, $d_B \coloneqq \operatorname{rank}(L_B - \operatorname{id})$.

$$\Gamma_{\mathcal{S}}(A,B) \leq \begin{cases} p^{d_A+d_B} \cdot \delta_{\mathcal{S}} & \text{if } a \notin \mathsf{Im}(\mathrm{id}-L_A) \\ (p^{d_A}-1) \cdot p^{d_B} \cdot \delta_{\mathcal{S}} + \min\{p^{n-d_A}, p^{n-d_B}\} & \text{else} \end{cases}$$

For low d_A, d_B, the differential uniformity must be high if we want Γ_S(A, B) = pⁿ.
 Suppose Γ_S(A, B) = pⁿ for A = T_α (α ≠ 0). Then, δ_S ≥ p^{n-d_B}.

• The two-round Feistel construction (p = 2) given before meets this bound exactly

▶ If S is bijective and $\Gamma_S(A, B) = p^n$ for $A = T_\alpha$ ($\alpha \neq 0$), we can further show $d_B \leq \frac{n(p-1)}{p}$, thus, $\delta_S \geq \max\{p^{\frac{n}{p}}, p^{n-d_B}\}$

Corollary for $G = \mathbb{F}_p^n$ and $A, B \in AGL(n, \mathbb{F}_p)$

Let $A = L_A + a$, $B = L_B + b$ with L_A , L_B linear, $d_A \coloneqq \operatorname{rank}(L_A - \operatorname{id})$, $d_B \coloneqq \operatorname{rank}(L_B - \operatorname{id})$.

$$\Gamma_{\mathcal{S}}(A,B) \leq \begin{cases} p^{d_A+d_B} \cdot \delta_{\mathcal{S}} & \text{if } a \notin \mathsf{Im}(\mathrm{id}-L_A) \\ (p^{d_A}-1) \cdot p^{d_B} \cdot \delta_{\mathcal{S}} + \min\{p^{n-d_A},p^{n-d_B}\} & \text{else} \end{cases}$$

For low d_A, d_B, the differential uniformity must be high if we want Γ_S(A, B) = pⁿ.
 Suppose Γ_S(A, B) = pⁿ for A = T_α (α ≠ 0). Then, δ_S ≥ p^{n-d_B}.

• The two-round Feistel construction (p = 2) given before meets this bound exactly

▶ If S is bijective and
$$\Gamma_S(A, B) = p^n$$
 for $A = T_\alpha$ ($\alpha \neq 0$), we can further show $d_B \leq \frac{n(p-1)}{p}$, thus, $\delta_S \geq \max\{p^{\frac{n}{p}}, p^{n-d_B}\}$

Corollary for $G = \mathbb{F}_p^n$ and $A, B \in \overline{AGL}(n, \mathbb{F}_p)$

Let $A = L_A + a$, $B = L_B + b$ with L_A , L_B linear, $d_A \coloneqq \operatorname{rank}(L_A - \operatorname{id})$, $d_B \coloneqq \operatorname{rank}(L_B - \operatorname{id})$.

$$\Gamma_{\mathcal{S}}(A,B) \leq \begin{cases} p^{d_A+d_B} \cdot \delta_{\mathcal{S}} & \text{if } a \notin \operatorname{Im}(\operatorname{id} - L_A) \\ (p^{d_A} - 1) \cdot p^{d_B} \cdot \delta_{\mathcal{S}} + \min\{p^{n-d_A}, p^{n-d_B}\} & \text{else} \end{cases}$$

For low d_A, d_B, the differential uniformity must be high if we want Γ_S(A, B) = pⁿ.
 Suppose Γ_S(A, B) = pⁿ for A = T_α (α ≠ 0). Then, δ_S ≥ p^{n-d_B}.

▶ The two-round Feistel construction (p = 2) given before meets this bound exactly

▶ If S is bijective and $\Gamma_S(A, B) = p^n$ for $A = T_\alpha$ ($\alpha \neq 0$), we can further show $d_B \leq \frac{n(p-1)}{p}$, thus, $\delta_S \geq \max\{p^{\frac{n}{p}}, p^{n-d_B}\}$

Corollary for $G = \mathbb{F}_p^n$ and $A, B \in AGL(n, \mathbb{F}_p)$

Let $A = L_A + a$, $B = L_B + b$ with L_A , L_B linear, $d_A \coloneqq \operatorname{rank}(L_A - \operatorname{id})$, $d_B \coloneqq \operatorname{rank}(L_B - \operatorname{id})$.

$$\Gamma_{\mathcal{S}}(A,B) \leq \begin{cases} p^{d_A+d_B} \cdot \delta_{\mathcal{S}} & \text{if } a \notin \mathsf{Im}(\mathrm{id}-L_A) \\ (p^{d_A}-1) \cdot p^{d_B} \cdot \delta_{\mathcal{S}} + \min\{p^{n-d_A}, p^{n-d_B}\} & \text{else} \end{cases}$$

For low d_A, d_B, the differential uniformity must be high if we want Γ_S(A, B) = pⁿ.
 Suppose Γ_S(A, B) = pⁿ for A = T_α (α ≠ 0). Then, δ_S ≥ p^{n-d_B}.

• The two-round Feistel construction (p = 2) given before meets this bound exactly

▶ If S is bijective and $\Gamma_S(A, B) = p^n$ for $A = T_\alpha$ ($\alpha \neq 0$), we can further show $d_B \leq \frac{n(p-1)}{p}$, thus, $\delta_S \geq \max\{p^{\frac{n}{p}}, p^{n-d_B}\}$

Corollary for $G = \mathbb{F}_p^n$ and $A, B \in AGL(n, \mathbb{F}_p)$

Let $A = L_A + a$, $B = L_B + b$ with L_A , L_B linear, $d_A \coloneqq \operatorname{rank}(L_A - \operatorname{id})$, $d_B \coloneqq \operatorname{rank}(L_B - \operatorname{id})$.

$$abla_{\mathcal{S}}(A,B) \leq egin{cases} p^{d_A+d_B} \cdot \delta_{\mathcal{S}} & ext{if } a \notin \operatorname{\mathsf{Im}}(\operatorname{id}-L_A) \ (p^{d_A}-1) \cdot p^{d_B} \cdot \delta_{\mathcal{S}} + \min\{p^{n-d_A},p^{n-d_B}\} & ext{else} \end{cases}$$

For low d_A , d_B , the differential uniformity must be high if we want $\Gamma_S(A, B) = p^n$.

- Suppose $\Gamma_{\mathcal{S}}(A,B) = p^n$ for $A = T_{\alpha}$ ($\alpha \neq 0$). Then, $\delta_{\mathcal{S}} \geq p^{n-d_B}$.
- The two-round Feistel construction (p = 2) given before meets this bound exactly
- ▶ If S is bijective and $\Gamma_S(A, B) = p^n$ for $A = T_\alpha$ ($\alpha \neq 0$), we can further show $d_B \leq \frac{n(p-1)}{p}$, thus, $\delta_S \geq \max\{p^{\frac{n}{p}}, p^{n-d_B}\}$

Let $A = L_A + a$, $B = L_B + b$ with L_A , L_B linear, $d_A := \operatorname{rank}(L_A - \operatorname{id})$, $d_B := \operatorname{rank}(L_B - \operatorname{id})$.

$$\Gamma_{\mathcal{S}}(A,B) \leq \begin{cases} p^{d_A+d_B} \cdot \delta_{\mathcal{S}} & \text{if } a \notin \operatorname{Im}(\operatorname{id} - L_A) \\ (p^{d_A} - 1) \cdot p^{d_B} \cdot \delta_{\mathcal{S}} + \min\{p^{n-d_A}, p^{n-d_B}\} & \text{else} \end{cases}$$

If Γ_S(A, B) = pⁿ, then S = B⁻¹ ∘ S ∘ A (i.e., (A, B) defines an affine self-equivalence)
Suppose Γ_S(A, B) = pⁿ (no further restriction on A now). Then, δ_S > p^{n-(d_A+d_B)-1}.
If we want Γ_S(A, B) = pⁿ and δ_S ≤ p, we obtain d_A + d_B > n - 2
APN case: If S: ℝⁿ₂ → ℝⁿ₂ is APN with affine self-equivalence S = B⁻¹ ∘ S ∘ A, then d_A + d_B > n - 2

Let $A = L_A + a$, $B = L_B + b$ with L_A , L_B linear, $d_A := \operatorname{rank}(L_A - \operatorname{id})$, $d_B := \operatorname{rank}(L_B - \operatorname{id})$.

$$\Gamma_{\mathcal{S}}(A,B) \leq \begin{cases} p^{d_A+d_B} \cdot \delta_{\mathcal{S}} & \text{if } a \notin \operatorname{Im}(\operatorname{id} - L_A) \\ (p^{d_A} - 1) \cdot p^{d_B} \cdot \delta_{\mathcal{S}} + \min\{p^{n-d_A}, p^{n-d_B}\} & \text{else} \end{cases}$$

If Γ_S(A, B) = pⁿ, then S = B⁻¹ ∘ S ∘ A (i.e., (A, B) defines an affine self-equivalence)
Suppose Γ_S(A, B) = pⁿ (no further restriction on A now). Then, δ_S > p^{n-(d_A+d_B)-1}.
If we want Γ_S(A, B) = pⁿ and δ_S ≤ p, we obtain d_A + d_B > n - 2
APN case: If S: 𝔽ⁿ₂ → 𝔽ⁿ₂ is APN with affine self-equivalence S = B⁻¹ ∘ S ∘ A, then d_A + d_B > n - 2

Let $A = L_A + a$, $B = L_B + b$ with L_A , L_B linear, $d_A := \operatorname{rank}(L_A - \operatorname{id})$, $d_B := \operatorname{rank}(L_B - \operatorname{id})$.

$$\Gamma_{\mathcal{S}}(A,B) \leq \begin{cases} p^{d_A+d_B} \cdot \delta_{\mathcal{S}} & \text{if } a \notin \operatorname{Im}(\operatorname{id} - L_A) \\ (p^{d_A} - 1) \cdot p^{d_B} \cdot \delta_{\mathcal{S}} + \min\{p^{n-d_A}, p^{n-d_B}\} & \text{else} \end{cases}$$

- ▶ If $\Gamma_S(A, B) = p^n$, then $S = B^{-1} \circ S \circ A$ (i.e., (A, B) defines an affine self-equivalence)
- Suppose $\Gamma_S(A, B) = p^n$ (no further restriction on A now). Then, $\delta_S > p^{n-(d_A+d_B)-1}$.
- If we want $\Gamma_S(A, B) = p^n$ and $\delta_S \leq p$, we obtain $d_A + d_B > n 2$
- ▶ APN case: If $S : \mathbb{F}_2^n \to \mathbb{F}_2^n$ is APN with affine self-equivalence $S = B^{-1} \circ S \circ A$, then $d_A + d_B > n 2$

Let $A = L_A + a$, $B = L_B + b$ with L_A , L_B linear, $d_A := \operatorname{rank}(L_A - \operatorname{id})$, $d_B := \operatorname{rank}(L_B - \operatorname{id})$.

$$\Gamma_{\mathcal{S}}(A,B) \leq \begin{cases} p^{d_A+d_B} \cdot \delta_{\mathcal{S}} & \text{if } a \notin \operatorname{Im}(\operatorname{id} - L_A) \\ (p^{d_A} - 1) \cdot p^{d_B} \cdot \delta_{\mathcal{S}} + \min\{p^{n-d_A}, p^{n-d_B}\} & \text{else} \end{cases}$$

- ▶ If $\Gamma_S(A, B) = p^n$, then $S = B^{-1} \circ S \circ A$ (i.e., (A, B) defines an affine self-equivalence)
- Suppose $\Gamma_S(A, B) = p^n$ (no further restriction on A now). Then, $\delta_S > p^{n-(d_A+d_B)-1}$.
- If we want $\Gamma_S(A, B) = p^n$ and $\delta_S \leq p$, we obtain $d_A + d_B > n 2$

▶ APN case: If $S : \mathbb{F}_2^n \to \mathbb{F}_2^n$ is APN with affine self-equivalence $S = B^{-1} \circ S \circ A$, then $d_A + d_B > n - 2$

Let $A = L_A + a$, $B = L_B + b$ with L_A , L_B linear, $d_A := \operatorname{rank}(L_A - \operatorname{id})$, $d_B := \operatorname{rank}(L_B - \operatorname{id})$.

$$\mathsf{T}_{\mathcal{S}}(A,B) \leq egin{cases} p^{d_A+d_B} \cdot \delta_{\mathcal{S}} & ext{if } a \notin \operatorname{Im}(\operatorname{id}-L_A) \ (p^{d_A}-1) \cdot p^{d_B} \cdot \delta_{\mathcal{S}} + \min\{p^{n-d_A},p^{n-d_B}\} & ext{else} \end{cases}$$

- ▶ If $\Gamma_S(A, B) = p^n$, then $S = B^{-1} \circ S \circ A$ (i.e., (A, B) defines an affine self-equivalence)
- Suppose $\Gamma_S(A, B) = p^n$ (no further restriction on A now). Then, $\delta_S > p^{n-(d_A+d_B)-1}$.
- If we want $\Gamma_S(A, B) = p^n$ and $\delta_S \leq p$, we obtain $d_A + d_B > n 2$
- ▶ APN case: If $S : \mathbb{F}_2^n \to \mathbb{F}_2^n$ is APN with affine self-equivalence $S = B^{-1} \circ S \circ A$, then $d_A + d_B > n 2$

Link to APN Functions with Self-Equivalences

Theorem [B., Brinkmann, Leander, 2021]

Suppose $F : \mathbb{F}_2^8 \to \mathbb{F}_2^8$ is an APN permutation with non-trivial linear self-equivalence. Then, F is CCZ-equivalent to a permutation G for which $G \circ A = B \circ G$ with 1. $B = A = \text{Comp}(X^4 + X^3 + X^2 + X + 1) \oplus \text{Comp}(X^4 + X^3 + X^2 + X + 1)$ or 2. $B = A = I_2 \oplus \text{Comp}(X^2 + 1) \oplus \text{Comp}(X^2 + 1) \oplus \text{Comp}(X^2 + 1)$.

▶ With our bound, it follows that Class 2 is impossible!

Outline

- The distinguishing advantage of a commutative distinguisher, relations to differentials, and limitations of the general attack
- Onstructing commutative trails: Examples of the general attack in the weak-key mode
- 3 Commutation over the Key Addition
- 4 Analyzing S-boxes
- 5 The Linear Layer

Commutation over Linear Layer [Baudrin et al., 2023]

Let $A = L_A + c_A$, $B = L_B + c_B \in AGL(n, \mathbb{F}_p)$ with L_A, L_B linear.

 $L \circ A(x) = B \circ L(x) \quad \Leftrightarrow \quad (L \circ L_A - L_B \circ L)(x) = c_B - L(c_A)$

Corollary

$$\Gamma_{L}(A,B) = \begin{cases} 0 & \text{if } c_{B} - L(c_{A}) \notin \operatorname{Im}(L \circ L_{A} - L_{B} \circ L) \\ 2^{\dim \ker(L \circ L_{A} - L_{B} \circ L)} & \text{otherwise} \end{cases}$$

Further, $\Gamma_L(A, B) = p^n$ if and only if $L \circ L_A = L_B \circ L$ and $c_B = L(c_A)$.

We are mainly interested in the case where L_A and L_B are block-diagonal matrices (aligned with the size of the S-box)

Commutation over Linear Layer [Baudrin et al., 2023]

Let $A = L_A + c_A$, $B = L_B + c_B \in AGL(n, \mathbb{F}_p)$ with L_A, L_B linear.

 $L \circ A(x) = B \circ L(x) \quad \Leftrightarrow \quad (L \circ L_A - L_B \circ L)(x) = c_B - L(c_A)$

Corollary

$$\Gamma_{L}(A,B) = \begin{cases} 0 & \text{if } c_{B} - L(c_{A}) \notin \operatorname{Im}(L \circ L_{A} - L_{B} \circ L) \\ 2^{\dim \ker(L \circ L_{A} - L_{B} \circ L)} & \text{otherwise} \end{cases}$$

Further, $\Gamma_L(A, B) = p^n$ if and only if $L \circ L_A = L_B \circ L$ and $c_B = L(c_A)$.

▶ We are mainly interested in the case where *L_A* and *L_B* are block-diagonal matrices (aligned with the size of the S-box)

Commutation over Linear Layer [Baudrin et al., 2023]

Let $A = L_A + c_A$, $B = L_B + c_B \in AGL(n, \mathbb{F}_p)$ with L_A, L_B linear.

 $L \circ A(x) = B \circ L(x) \quad \Leftrightarrow \quad (L \circ L_A - L_B \circ L)(x) = c_B - L(c_A)$

Corollary

$$\Gamma_L(A,B) = \begin{cases} 0 & \text{if } c_B - L(c_A) \notin \operatorname{Im}(L \circ L_A - L_B \circ L) \\ 2^{\dim \ker(L \circ L_A - L_B \circ L)} & \text{otherwise} \end{cases}$$

Further, $\Gamma_L(A, B) = p^n$ if and only if $L \circ L_A = L_B \circ L$ and $c_B = L(c_A)$.

We are mainly interested in the case where L_A and L_B are block-diagonal matrices (aligned with the size of the S-box)

Commutation over Linear Layer (cont.)

Commutation for Block-Diagonal Matrices

Let
$$L_A = \text{Diag}(L_A^{(1)}, \dots, L_A^{(m)})$$
 and $L_B = \text{Diag}(L_B^{(1)}, \dots, L_B^{(m)})$. Then, $L \circ L_A = L_B \circ L$ if and only if $L_{ij} \circ L_A^{(j)} = L_B^{(i)} \circ L_{ij}$ for all i, j , where L_{ij} are the blocks of L .

• Given L_A , L_B , such L can be constructed using linear algebra (solving equations with coefficients of L as unknowns)

Conclusion

- In the commutative cryptanalysis framework, differentials have the best potential for an attack
- A commutative attack cannot be better than a differential attack, unless in the weak-key model and/or if properties of the key-schedule are exploited
- c-differentials belong to those cases with the least potential to mount attacks
- Still, the study of S-boxes with respect to more general notions than differential uniformity can be interesting from a mathematical point of view (e.g., understanding probability-1 differentials over multiple rounds, example of APNs with fixed points)

- In the commutative cryptanalysis framework, differentials have the best potential for an attack
- A commutative attack cannot be better than a differential attack, unless in the weak-key model and/or if properties of the key-schedule are exploited
- c-differentials belong to those cases with the least potential to mount attacks
- Still, the study of S-boxes with respect to more general notions than differential uniformity can be interesting from a mathematical point of view (e.g., understanding probability-1 differentials over multiple rounds, example of APNs with fixed points)

Conclusion

- In the commutative cryptanalysis framework, differentials have the best potential for an attack
- A commutative attack cannot be better than a differential attack, unless in the weak-key model and/or if properties of the key-schedule are exploited
- c-differentials belong to those cases with the least potential to mount attacks
- Still, the study of S-boxes with respect to more general notions than differential uniformity can be interesting from a mathematical point of view (e.g., understanding probability-1 differentials over multiple rounds, example of APNs with fixed points)

Conclusion

- In the commutative cryptanalysis framework, differentials have the best potential for an attack
- A commutative attack cannot be better than a differential attack, unless in the weak-key model and/or if properties of the key-schedule are exploited
- c-differentials belong to those cases with the least potential to mount attacks
- Still, the study of S-boxes with respect to more general notions than differential uniformity can be interesting from a mathematical point of view (e.g., understanding probability-1 differentials over multiple rounds, example of APNs with fixed points)