The geometry of covering codes in the sum-rank metric

Matteo Bonini

joint work with M. Borello and E. Byrne

WCC 2024 18th June 2024

VFRSITFT

Preliminary notions

Covering Problem

Covering Radius

AALBORG

The covering radius of a code $\mathcal{C}\subseteq\mathcal{S}$ with respect to the metric d is the integer

$$\rho_d(\mathcal{C}) := \max\{\min\{d(x,c) : c \in \mathcal{C}\} : x \in \mathcal{S}\}\$$
$$= \min\{\rho : \bigcup_{x \in \mathcal{C}} \mathbb{B}(x,\rho) = \mathcal{S}\}$$

The distances we will consider in this talk are

- Hamming metric $d_{\rm H}$.
- Rank metric $d_{\rm rk}$.
- Sum-rank metric $d_{\rm srk}$.

Hamming and rank metrics

The Hamming distance is defined

$$d_{\mathrm{H}} : \mathbb{F}_{q}^{n} \times \mathbb{F}_{q}^{n} \longrightarrow \mathbb{N}$$
$$(x, y) \qquad \mapsto \mathrm{w}_{\mathrm{H}}(x - y) = |\{i : i \in \{1, \dots, n\} \mid x_{i} \neq y_{i}\}$$

The rank distance is defined

$$d_{\mathrm{rk}} : \mathbb{F}_{q^m}^n \times \mathbb{F}_{q^m}^n \longrightarrow \mathbb{N}$$
$$(\mathbf{x}, \mathbf{y}) \qquad \mapsto \mathrm{w}_{\mathrm{rk}}(\mathbf{x} - \mathbf{y}) = \mathrm{rk}(\mathbf{Z})$$

where $\mathbf{Z} \in \mathbb{F}_q^{m \times n}$ is the matrix obtained representing the entries of $\mathbf{z} = \mathbf{x} - \mathbf{y} \in \mathbb{F}_{q^m}^n$ respect to a fixed basis of \mathbb{F}_{q^m} over \mathbb{F}_q .

Sum-rank metric

Let t be a positive integer and $\mathbf{n} = (n_1, \dots, n_t), \mathbf{m} = (m_1, \dots, m_t) \in \mathbb{N}^t$ be ordered tuples with $n_1 \leq n_2 \leq \cdots \leq n_t$ and $m_1 \leq m_2, \leq \cdots \leq m_t$.

Let $X := (X_1, \ldots, X_t), Y = (Y_1, \ldots, Y_t) \in Mat(\mathbf{n}, \mathbf{m}, \mathbb{F}_q).$

The sum-rank distance is defined

$$l_{\mathrm{srk}} : \mathrm{Mat}_{\mathbf{n} \times \mathbf{m}}(\mathbb{F}_q) \times \mathrm{Mat}_{\mathbf{n} \times \mathbf{m}}(\mathbb{F}_q) \longrightarrow \mathbb{N}$$
$$(X, Y) \mapsto \mathrm{w}_{\mathrm{srk}}(X - Y) = \sum_{i=1}^{t} \mathrm{rk}(X_i - Y_i)$$

Saturating sets

Definition

A set $S \subseteq \mathrm{PG}(k-1,q^m)$ is called ρ -saturating if for any point $Q \in \mathrm{PG}(k-1,q^m)$ there exist $\rho + 1$ points $P_1, \ldots, P_{\rho+1} \in S$ such that $Q \in \langle P_1, \ldots, P_{\rho+1} \rangle_{\mathbb{F}_{q^m}}$ and ρ is the smallest value with this property.

 $\begin{array}{ccc} (\rho-1) \text{-saturating sets of} & \longleftrightarrow & \text{Duals of } [n,k]_{q^m} \text{ codes with} \\ & \text{size } n & \text{Hamming covering radius } \rho \end{array}$

Systems & Linear Sets

Definition

An $[n, k]_{q^m/q}$ system is an *n*-dimensional \mathbb{F}_q -space $\mathcal{U} \subseteq \mathbb{F}_{q^m}^k$ such that $\langle \mathcal{U} \rangle_{\mathbb{F}_{q^m}} = \mathbb{F}_{q^m}^k$. A generator matrix for \mathcal{U} is a $k \times n$ matrix over \mathbb{F}_{q^m} whose columns form an \mathbb{F}_q -basis for \mathcal{U} .

Definition

Let $\mathcal U$ be an $[n,k]_{q^m/q}$ system. The $\mathbb F_q$ -linear set in of rank n associated to $\mathcal U$ is the set

 $L_{\mathcal{U}} = \{ \langle u \rangle_{\mathbb{F}_{q^m}} \mid u \in \mathcal{U} \setminus \{0\} \} \subseteq \mathrm{PG}(k-1, q^m).$

Rank saturating systems

Definition

An $[n,k]_{q^m/q}$ system \mathcal{U} is rank ρ -saturating if $L_{\mathcal{U}}$ is a $(\rho - 1)$ -saturating set in $\mathrm{PG}(k-1,q^m)$. We call such a linear set a linear $(\rho - 1)$ -saturating set.

 $\begin{array}{ccc} \operatorname{rank}\rho\text{-saturating systems of} & \underset{\mathbb{F}_q\text{-dimension }n}{\longleftarrow} & \operatorname{Duals of} [n,k]_{q^m} \operatorname{codes with} \\ & \operatorname{rank covering radius}\rho \end{array}$

Sum-rank saturating systems

Definition

A **sum-rank system** \mathcal{U} is an ordered set $(\mathcal{U}_1, \ldots, \mathcal{U}_t)$, where, for any $i \in \{1, \ldots, t\}$, \mathcal{U}_i is a \mathbb{F}_q -subspace of $\mathbb{F}_{q^m}^k$ of dimension n_i , such that $\langle \mathcal{U}_1, \ldots, \mathcal{U}_t \rangle_{\mathbb{F}_{q^m}} = \mathbb{F}_{q^m}^k$. \mathcal{U} is called an $[\mathbf{n}, k]_{a^m/a}$ system if \mathcal{U} has dimension n over \mathbb{F}_q .

Definition

 \mathcal{U} is sum-rank ρ -saturating if $L_{\mathcal{U}_1} \cup \cdots \cup L_{\mathcal{U}_t}$ is $(\rho - 1)$ -saturating.

sum-rank ρ -saturating systems of \mathbb{F}_q -dimension n \longleftrightarrow Duals of $[\mathbf{n}, k]_{q^m}$ codes with sum-rank covering radius ρ

Characterization and bounds

Characterization

Theorem (B., Borello, Byrne)

Let \mathcal{U} be an $[\mathbf{n}, k]_{q^m/q}$ system and let G be any generator matrix of \mathcal{U} . The following are equivalent:

- (a) $\,\mathcal{U}\,$ is sum-rank $\rho\text{-saturating.}$
- (b) For each vector $v \in \mathbb{F}_{q^m}^k$ there exists $\lambda = (\lambda_1, \ldots, \lambda_t)$ such that $\operatorname{wt}_{\mathsf{srk}}(\lambda) \leq \rho$ such that $v = G(\lambda_1, \ldots, \lambda_t)^T$, and ρ is the smallest value with this property.
- (c) We have

$$\mathbb{F}_{q^m}^k = \bigcup_{\substack{(\mathcal{S}_i: i \in [t]): \ \mathcal{S}_i \leq_{\mathbb{F}_q} \mathcal{U}_i, \\ \sum_{i=1}^t \dim_{\mathbb{F}_q} \mathcal{S}_i \leq \rho}} \left(\bigcup_{i=1}^t \langle \mathcal{S}_i \rangle_{\mathbb{F}_{q^m}} \right)$$

and ρ is the smallest integer with this property.

Lower bound

Theorem (B., Borello, Byrne)

Let ${\mathcal U}$ be a sum-rank $\rho\text{-saturating }[{\mathbf n},k]_{q^m/q}$ system. Then

$$q^{m\rho} \sum_{\mathbf{s} \in \mathcal{N}, |\mathbf{s}| = \rho} \begin{bmatrix} \mathbf{n} \\ \mathbf{s} \end{bmatrix}_q \ge q^{mk}$$

In particular,

$$\frac{1}{4t} \cdot \sum_{1 \le i < j \le t} (n_j - n_i)^2 + \frac{\rho(|\mathbf{n}| - \rho)}{t} + 2t \ge m(k - \rho).$$

Shortest length

Definition

Let t be a positive integer. We define the **shortest length** $s_{q^m/q}(k, \rho, t)$ as the minimal sum of the \mathbb{F}_q -dimensions of the \mathcal{U}_i , $i \in \{1, \ldots, t\}$, of a sum-rank ρ -saturating system $\mathcal{U} = (\mathcal{U}_1, \ldots, \mathcal{U}_t)$ in $\mathbb{F}_{q^m}^k$.

We define the **homogeneous shortest length** $s_{q^m/q}^{\text{hom}}(k, \rho, t)$ the minimal sum of the \mathbb{F}_q -dimensions of the $\mathcal{U}_i, i \in \{1, \ldots, t\}$, of a sum-rank ρ -saturating system $\mathcal{U} = (\mathcal{U}_1, \ldots, \mathcal{U}_t)$ in $\mathbb{F}_{q^m}^k$, with the additional hypothesis that they all have equal dimension.

Monotonicity

Proposition (B., Borello, Byrne) We have that $s_{a^m/a}(k, \rho, t) \leq s_{a^m/a}(k, \rho, t+1)$

Theorem (B., Borello, Byrne) Let $|\mathbf{n}| > k$. The following hold.

1.
$$s_{q^m/q}(k, \rho, t) \leq s_{q^m/q}(k, \rho + 1, t).$$

2. $s_{q^m/q}(k, \rho, t) \leq s_{q^m/q}(k + 1, \rho, t) - 1.$
3. $s_{q^m/q}(k + 1, \rho + 1, t) \leq s_{q^m/q}(k, \rho + 1, t) + 1$

f-sums

Definition

For each $i \in \{1,2\}$, let $\mathcal{U}^{(i)}$ be an $[\mathbf{n^{(i)}}, k_i]_{q^m/q}$ system, associated with an $[\mathbf{n^{(i)}}, k_i]_{q^m/q}$ sum-rank-metric code \mathcal{C}_i . Let $f : \mathbb{F}_{q^m}^{\mathbf{n^{(1)}}} \longrightarrow \mathbb{F}_{q^m}^{\mathbf{n^{(2)}}}$ be an \mathbb{F}_{q^m} -linear map. The code

 $\mathcal{C} := \{(u, f(u) + v) : u \in \mathcal{C}_1, v \in \mathcal{C}_2\}$

is an $[(\mathbf{n^{(1)}}, \mathbf{n^{(2)}}), k_1 + k_2]_{q^m/q}$, which we call the *f*-sum of C_1 and C_2 . Its associated system is called the *f*-sum of $\mathcal{U}^{(1)}$ and $\mathcal{U}^{(2)}$, which we denote by $\mathcal{U}^{(1)} \oplus_f \mathcal{U}^{(2)}$.

Theorem (B., Borello, Byrne)

 $\mathcal{U}^{(1)} \oplus_f \mathcal{U}^{(2)}$ is an $[(\mathbf{n^{(1)}}, \mathbf{n^{(2)}}), k_1 + k_2]_{q^m/q}$ system that is sum-rank- ρ -saturating, where $\rho \leq \rho_1 + \rho_2$. In particular, if $\rho_1 + \rho_2 \leq \min\{k_1 + k_2, m\}$, then

 $s_{q^m/q}(k_1+k_2,\rho_1+\rho_2,t_1+t_2) \le s_{q^m/q}(k_1,\rho_1,t_1) + s_{q^m/q}(k_2,\rho_2,t_2).$

A construction

Theorem (B., Borello, Byrne) Let $\mathbb{F}_{q^m} = \mathbb{F}_q[\alpha]$, $r \ge 1$, $h \ge r$ and

$$A_{h,r} := \begin{bmatrix} I_r & \mathbf{0} & \mathbf{0} & \cdots & \mathbf{0} \\ \hline \mathbf{0} & I_{h-r} & \alpha I_{h-r} & \cdots & \alpha^{m-1} I_{h-r} \end{bmatrix}$$

Then

generates an homogeneous sum-rank rt-saturating system. So

 $s_{q^m/q}^{\text{hom}}(th, tr, t) \le t(m(h-r)+r).$

16/21

Constructions

Subgeometries

AALBORG UNIVERSITET

Proposition (B., Borello, Byrne)

Let $\mathcal{P} = {\mathcal{P}_i}_{i \in {1,...,t}}$ a partition of $\operatorname{PG}(k - 1, q^m)$ into subspaces. Let k_i be a positive integer such that $\mathcal{P}_i \simeq \operatorname{PG}(k_i - 1, q^m)$. If \mathcal{U} is such that each \mathcal{U}_i is rank ρ -saturating in \mathcal{P}_i , then \mathcal{U} is sum-rank ρ '-saturating with $\rho' \leq \rho$.

A classic result states that, if (m, k) = 1, there exists a partition of $PG(k - 1, q^m)$ into $t = \frac{(q^{mk}-1)(q-1)}{(q^m-1)(q^k-1)}$ subgeometries PG(k - 1, q).

This provides an example of an homogeneuous 1-saturating system of length $k \cdot \frac{(q^{mk}-1)(q-1)}{(q^m-1)(q^k-1)}$.

Strong Blocking Sets

Definition

A subset $\mathcal{M} \subseteq PG(k-1,q)$ is a **strong blocking set** (or **cutting blocking set**) if for every hyperplane \mathcal{H} of PG(k-1,q)

 $\langle \mathcal{M} \cap \mathcal{H} \rangle = \mathcal{H}.$

Theorem (Davydov, Giulietti, Marcugini, Pambianco) Any cutting blocking set in a subgeometry PG(k-1,q) of $PG(k-1,q^{k-1})$ is a (k-2)-saturating set in $PG(k-1,q^{k-1})$.

Cutting systems

Definition

A system $\mathcal{U} = (\mathcal{U}_1, \dots, \mathcal{U}_t) \subset \mathbb{F}_{q^m}^k$ is **cutting** if $L_{\mathcal{U}_1} \cup \ldots \cup L_{\mathcal{U}_t}$ is a strong blocking set in $\mathrm{PG}(k-1,q^m)$, that is if

$$\langle (L_{\mathcal{U}_1} \cup \ldots \cup L_{\mathcal{U}_t}) \cap \mathcal{H} \rangle_{\mathbb{F}_{q^m}} = \mathcal{H},$$

for every hyperplane \mathcal{H} in $\mathrm{PG}(k-1,q^m)$.

Theorem (B., Borello, Byrne)

If $\mathcal U$ is a cutting system in $\mathbb F_{q^m}^k$, then $\mathcal U$ is a sum-rank (k-1)-saturating system in $\mathbb F_{q^m(k-1)}^k.$

Thank you for your attention!