The geometry of covering codes in the sum-rank metric

Matteo Bonini

joint work with M. Borello and E. Byrne

WCC 2024 18th **June 2024**

Preliminary notions

Covering Problem

Covering Radius

The **covering radius** of a code $C \subseteq S$ with respect to the metric d is the integer

$$
\rho_d(C) := \max\{\min\{d(x, c) : c \in C\} : x \in S\}
$$

$$
= \min\{\rho : \cup_{x \in C} B(x, \rho) = S\}
$$

The distances we will consider in this talk are

- Hamming metric d_H .
- Rank metric d_{rk} .
- Sum-rank metric d_{crk} .

Hamming and rank metrics

The **Hamming distance** is defined

$$
d_{\mathrm{H}}: \mathbb{F}_q^n \times \mathbb{F}_q^n \longrightarrow \mathbb{N}
$$

(x, y) \mapsto $\mathbf{w}_{\mathrm{H}}(x - y) = |\{i : i \in \{1, ..., n\} | x_i \neq y_i\}|$

The **rank distance** is defined

$$
d_{\textrm{rk}}: \mathbb{F}_{q^m}^n \times \mathbb{F}_{q^m}^n \longrightarrow \mathbb{N}
$$

$$
(\mathbf{x}, \mathbf{y}) \longrightarrow \mathrm{w}_{\textrm{rk}}(\mathbf{x} - \mathbf{y}) = \textrm{rk}(\mathbf{Z})
$$

where $\mathbf{Z} \in \mathbb{F}_q^{m \times n}$ is the matrix obtained representing the entries of $\mathbf{z}=\mathbf{x}-\mathbf{y}\in\mathbb{F}_{q^m}^n$ respect to a fixed basis of \mathbb{F}_{q^m} over $\mathbb{F}_q.$

Sum-rank metric

Let t be a positive integer and $\mathbf{n}=(n_1,\ldots,n_t), \mathbf{m}=(m_1,\ldots,m_t)\in\mathbb{N}^t$ be ordered tuples with $n_1\leq n_2\leq \cdots \leq n_t$ and $m_1\leq m_2, \leq \cdots \leq m_t.$

Let $X := (X_1, \ldots, X_t), Y = (Y_1, \ldots, Y_t) \in \text{Mat}(\mathbf{n}, \mathbf{m}, \mathbb{F}_q).$

The **sum-rank distance** is defined

$$
d_{\text{srk}} : \text{Mat}_{\mathbf{n} \times \mathbf{m}}(\mathbb{F}_q) \times \text{Mat}_{\mathbf{n} \times \mathbf{m}}(\mathbb{F}_q) \longrightarrow \mathbb{N}
$$

$$
(X, Y) \mapsto \text{w}_{\text{srk}}(X - Y) = \sum_{i=1}^{t} \text{rk}(X_i - Y_i)
$$

Saturating sets

Definition

A set $S \subseteq PG(k-1, q^m)$ is called ρ -**saturating** if for any point $Q \in PG(k-1, q^m)$ there exist $\rho + 1$ points $P_1, \ldots, P_{\rho+1} \in S$ such that $Q \in \langle P_1, \ldots, P_{\rho+1} \rangle_{\mathbb{F}_{\rho^m}}$ and ρ is the smallest value with this property.

 $(\rho - 1)$ -saturating sets of size n $\longleftrightarrow \text{ Duals of } [n, k]_{q^m} \text{ codes with }$ Hamming covering radius ρ

Systems & Linear Sets

Definition

An $[n,k]_{q^m/q}$ **system** is an n -dimensional \mathbb{F}_q -space $\mathcal{U} \subseteq \mathbb{F}_{q^m}^k$ such that $\langle \mathcal{U} \rangle_{\mathbb{F}_{q^m}}=$ $\mathbb{F}_{q^m}^k$. A **generator matrix** for $\mathcal U$ is a $k\times n$ matrix over \mathbb{F}_{q^m} whose columns form an \mathbb{F}_q -basis for \mathcal{U} .

Definition

Let U be an $[n, k]_{q^m/q}$ system. The \mathbb{F}_q -linear set in of rank n associated to U is the set

 $L_{\mathcal{U}} = \{ \langle u \rangle_{\mathbb{F}_{q^m}} \mid u \in \mathcal{U} \setminus \{0\} \} \subseteq PG(k-1, q^m).$

Rank saturating systems

Definition

An $[n,k]_{q^m/q}$ system $\mathcal U$ is $\mathsf {rank}\ \rho\text{-} \mathsf {saturation}$ if $L_{\mathcal U}$ is a $(\rho-1)\text{-} \mathsf {saturation}$ set in $PG(k-1,q^m)$. We call such a linear set a **linear** $(\rho-1)$ -**saturating set**.

rank ρ -saturating systems of Fq-dimension n ←→ Duals of [n, k]q^m codes with rank covering radius ρ

Sum-rank saturating systems

Definition

A **sum-rank system** U is an ordered set (U_1, \ldots, U_t) , where, for any $i~\in~\{1,\ldots,t\}$, \mathcal{U}_i is a \mathbb{F}_q -subspace of $\mathbb{F}_{q^m}^k$ of dimension n_i , such that $\langle \mathcal{U}_1,\ldots,\mathcal{U}_t \rangle_{\mathbb{F}_{q^m}} = \mathbb{F}_{q^m}^k.$ $\mathcal U$ is called an $[n, k]_{am/q}$ system if $\mathcal U$ has dimension n over $\mathbb F_q$.

Definition

 $\mathcal U$ is ${\sf sum\text{-}rank}\ \rho\text{-} {\sf saturating}$ if $L_{\mathcal U_1}\cup\cdots\cup L_{\mathcal U_t}$ is $(\rho-1)\text{-} {\sf saturating}.$

sum-rank ρ -saturating systems

aturating systems $\longleftrightarrow\;\;$ Duals of $[{\bf n},k]_{q^m}$ codes with of \mathbb{F}_{q} -dimension n $\;\;\;\;\;\;\;\;$ sum-rank covering radius ρ sum-rank covering radius ρ

Characterization and bounds

Characterization

Theorem (B., Borello, Byrne)

Let *U* be an $[n, k]_{q^m/q}$ system and let *G* be any generator matrix of *U*. The following are equivalent:

- (a) U is sum-rank ρ -saturating.
- (b) For each vector $v \in \mathbb{F}_{q^m}^k$ there exists $\lambda = (\lambda_1, \dots, \lambda_t)$ such that $\mathrm{wt}_{\mathsf{srk}}(\lambda) \leq \rho$ such that $v = G(\lambda_1, \dots, \lambda_t)^T,$ and ρ is the smallest value with this property.
- (c) We have

$$
\mathbb{F}_{q^m}^k = \bigcup_{\substack{(\mathcal{S}_i:i\in[t]):\, \mathcal{S}_i \leq_{\mathbb{F}_q} \mathcal{U}_i, \\ \sum_{i=1}^t \dim_{\mathbb{F}_q} \mathcal{S}_i \leq \rho}} \left(\bigcup_{i=1}^t \langle \mathcal{S}_i \rangle_{\mathbb{F}_{q^m}}\right)
$$

and ρ is the smallest integer with this property.

Lower bound

Theorem (B., Borello, Byrne)

Let U be a sum-rank ρ -saturating $[n, k]_{q^m/q}$ system. Then

$$
q^{m\rho} \sum_{\mathbf{s}\in\mathcal{N},|\mathbf{s}|=\rho} \begin{bmatrix} \mathbf{n} \\ \mathbf{s} \end{bmatrix}_q \ge q^{mk}.
$$

In particular,

$$
\frac{1}{4t} \cdot \sum_{1 \le i < j \le t} (n_j - n_i)^2 + \frac{\rho(|\mathbf{n}| - \rho)}{t} + 2t \ge m(k - \rho).
$$

Shortest length

Definition

Let t be a positive integer. We define the **shortest length** $s_{q^m/q}(k, \rho, t)$ as the minimal sum of the \mathbb{F}_q -dimensions of the \mathcal{U}_i , $i\,\in\,\{1,\ldots,t\}$, of a sum-rank ρ saturating system $\mathcal{U} = (\mathcal{U}_1, \dots, \mathcal{U}_t)$ in $\mathbb{F}_{q^m}^k$.

We define the **homogeneous shortest length** $s_{q^m/q}^{\mathrm{hom}}(k,\rho,t)$ the minimal sum of the \mathbb{F}_q -dimensions of the \mathcal{U}_i , $i\in\{1,\ldots,t\}$, of a sum-rank ρ -saturating system $\mathcal{U}=(\mathcal{U}_1,\ldots,\mathcal{U}_t)$ in $\mathbb{F}_{q^m}^k$, with the additional hypothesis that they all have equal dimension.

Monotonicity

Proposition (B., Borello, Byrne) We have that $s_{q^m/q}(k, \rho, t) \leq s_{q^m/q}(k, \rho, t+1)$

Theorem (B., Borello, Byrne) Let $|n| > k$. The following hold.

1.
$$
s_{q^m/q}(k, \rho, t) \leq s_{q^m/q}(k, \rho + 1, t)
$$
.
\n2. $s_{q^m/q}(k, \rho, t) \leq s_{q^m/q}(k + 1, \rho, t) - 1$.
\n3. $s_{q^m/q}(k + 1, \rho + 1, t) \leq s_{q^m/q}(k, \rho + 1, t) + 1$.

f**-sums**

Definition

For each $i~\in~\{1,2\}$, let $\mathcal{U}^{(i)}$ be an $[\mathbf{n^{(i)}},k_i]_{q^m/q}$ system, associated with an $[n^{(\mathbf{i})},k_i]_{q^m/q}$ sum-rank-metric code \mathcal{C}_i . Let $f:\mathbb{F}_{q^m}^{\mathbf{n}^{(1)}}\longrightarrow\mathbb{F}_{q^m}^{\mathbf{n}^{(2)}}$ be an \mathbb{F}_{q^m} -linear map. The code

 $\mathcal{C} := \{(u, f(u) + v) : u \in \mathcal{C}_1, v \in \mathcal{C}_2\}$

is an $[(\mathbf{n^{(1)}},\mathbf{n^{(2)}}),k_1+k_2]_{q^m/q}$, which we call the f **-sum** of \mathcal{C}_1 and $\mathcal{C}_2.$ Its associated system is called the f -sum of $\mathcal{U}^{(1)}$ and $\mathcal{U}^{(2)}$, which we denote by $\mathcal{U}^{(1)}\oplus_f \mathcal{U}^{(2)}.$

Theorem (B., Borello, Byrne)

 ${\cal U}^{(1)}\oplus_f {\cal U}^{(2)}$ is an $[(\mathbf{n^{(1)}},\mathbf{n^{(2)}}),k_1\!+\!k_2]_{q^m/q}$ system that is sum-rank- ρ -saturating, where $\rho \leq \rho_1 + \rho_2$. In particular, if $\rho_1 + \rho_2 \leq \min\{k_1 + k_2, m\}$, then

 $s_{q^m/q}(k_1 + k_2, \rho_1 + \rho_2, t_1 + t_2) \leq s_{q^m/q}(k_1, \rho_1, t_1) + s_{q^m/q}(k_2, \rho_2, t_2).$

A construction

Theorem (B., Borello, Byrne) Let $\mathbb{F}_{q^m} = \mathbb{F}_q[\alpha], r \geq 1, h \geq r$ and

$$
A_{h,r} := \left[\begin{array}{c|c|c} I_r & \mathbf{0} & \mathbf{0} & \cdots & \mathbf{0} \\ \hline \mathbf{0} & I_{h-r} & \alpha I_{h-r} & \cdots & \alpha^{m-1} I_{h-r} \end{array} \right]
$$

Then

generates an homogeneous sum-rank rt -saturating system. So

 $s_{q^m/q}^{\text{hom}}(th, tr, t) \le t(m(h - r) + r).$ **16/21**

Constructions

Subgeometries

Proposition (B., Borello, Byrne)

Let $\mathcal{P} = \{P_i\}_{i \in \{1,\ldots,t\}}$ a partition of $PG(k-1,q^m)$ into subspaces. Let k_i be a positive integer such that $\mathcal{P}_i \simeq \mathrm{PG}(k_i-1,q^m).$ If $\mathcal U$ is such that each $\mathcal U_i$ is rank ρ -saturating in \mathcal{P}_i , then $\mathcal U$ is sum-rank ρ' -saturating with $\rho' \leq \rho.$

A classic result states that, if $(m, k) = 1$, there exists a partition of $PG(k-1, q^m)$ into $t = \frac{(q^{mk}-1)(q-1)}{(q^m-1)(q^k-1)}$ $\frac{(q^{m\omega}-1)(q-1)}{(q^m-1)(q^k-1)}$ subgeometries $\mathrm{PG}(k-1,q).$

This provides an example of an homogeneuous 1-saturating system of length $k \cdot \frac{(q^{mk}-1)(q-1)}{(q^m-1)(q^k-1)}$ $\frac{(q^{n+1}-1)(q-1)}{(q^m-1)(q^k-1)}$.

Strong Blocking Sets

Definition

A subset M ⊆ PG(k − 1, q) is a **strong blocking set** (or **cutting blocking set**) if for every hyperplane H of $PG(k-1, q)$

 $\langle \mathcal{M} \cap \mathcal{H} \rangle = \mathcal{H}.$

Theorem (Davydov, Giulietti, Marcugini, Pambianco) Any cutting blocking set in a subgeometry $\mathrm{PG}(k-1,q)$ of $\mathrm{PG}(k-1,q^{k-1})$ is a $(k-2)$ -saturating set in PG $(k-1, q^{k-1})$.

Cutting systems

Definition

A system $\mathcal{U}=(\mathcal{U}_1,\ldots,\mathcal{U}_t)\subset\mathbb{F}_{q^m}^k$ is $\bf{cutting}$ if $L_{\mathcal{U}_1}\cup\ldots\cup L_{\mathcal{U}_t}$ is a strong blocking set in $PG(k-1, q^m)$, that is if

$$
\langle (L_{\mathcal{U}_1} \cup \ldots \cup L_{\mathcal{U}_t}) \cap \mathcal{H} \rangle_{\mathbb{F}_{q^m}} = \mathcal{H},
$$

for every hyperplane $\mathcal H$ in $PG(k-1,q^m)$.

Theorem (B., Borello, Byrne)

If $\mathcal U$ is a cutting system in $\mathbb F_{q^m}^k$, then $\mathcal U$ is a sum-rank $(k-1)$ -saturating system in $\mathbb{F}_{q^{m(k-1)}}^k$.

Thank you for your attention!