Group Factorisation for Smaller Signatures from Cryptographic Group Actions

Giuseppe D'Alconzo* Department of Mathematical Sciences, Polytechnic of Turin

WCC 2024, June 17, 2024 Perugia, Italy

*joint work with A. Meneghetti and E. Signorini

Group actions in Cryptography

Let X be a set, G be a group and $\star : G \times X \to X$. (G, X, \star) is a **group action** if \star is compatible with the group operation: $e \star x = x$ and $(gh) \star x = g \star (h \star x)$.

Effective PPT algorithms

for G, X and \star .

Many constructions from GAs! We will focus on digital signatures (via Fiat-Shamir).

Alamati, De Feo, Montgomery, Patranabis. "Cryptographic group actions and applications." Asiacrypt 2020.

Sigma protocol for group actions

Let x_0 be in X and g in G. Set $x_1 = g \star x_0$.

Standard Optimisations

Seeds: for every ch = 0 the response is random => send a seed.

Unbalanced challenges: ch = 0 has smaller responses => take M - w 0s and w 1s (with M - w > w).

Multiple public keys: set $x_i = g_i \star x_0$ and enlarge the challenge space to $\{0, \dots, C\}$.

Bit length of the signature: $M + (M - w)\lambda + w len(G)$

Dominated by len(G)! Can we lower this quantity?

Linear Code Equivalence

Code Equivalence Problem: given two $k \times n$ matrices C_1 and C_2 with entries in \mathbb{F}_q such that $C_1 = SC_2Q$ with S in $GL(\mathbb{F}_q^k)$ and Q monomial, find S and Q.

$$X = \mathbb{F}_q^{k \times n}, G = GL(\mathbb{F}_q^k) \times Mon(\mathbb{F}_q^n)$$
$$\star : ((S, Q), C) \mapsto SCQ.$$

 $len(G) = len(\mathsf{GL}(\mathbb{F}_q^k)) + len(\mathsf{Mon}(\mathbb{F}_q^n)) = k^2 \log_2 q + n(\log_2 n + \log_2 q).$

In coding theory, it is common to represent codes in systematic form

 $\mathsf{SF}(C) = [I_k | M] = S_C C.$

In this case, we have the following action

 $(Q,C) \mapsto SF(CQ).$

Can this approach be generalised?

Yes! Up to semidirect product of groups $G = G_1 \rtimes G_2$. No need for new assumptions: everthing works as before. Smaller objects, shorter signatures. One can use the old parametrisations.

Ok, but at what cost?

One needs to find a **canonical form** for the relation induced by G_1 . **Computational overhead** due to this canonical form.

Equivalence from Group Factorisation

Suppose that $G = G_1 \times G_2$ and it is efficient to decompose $g = (g_1, g_2)$ for every g in G.

Define the following relation on *X*:

 $x \sim y \iff \exists g_1 \in G_1 \text{ such that } (g_1, e) \star x = y.$

It can be seen that ~ is an equivalence relation over X and we can define a new group action $(G_2, X_{\sim}, \star_{\sim})$ as

 $(g_2, [x]_{\sim}) \mapsto [(e, g_2) \star x]_{\sim}.$

Remark. This action is well defined when G_1 is normal in G. This leads to a generalisation to semidirect products.

Canonical Forms

The action $(g_2, [x]_{\sim}) \mapsto [(e, g_2) \star x]_{\sim}$ has all the properties to be effective, but one: finding a unique string representation for X_{\sim} could be hard.

Canonical Form. A canonical form with failures for a relation \sim over $X \times X$ is a map CF : $X \rightarrow X \cup \{\bot\}$ such that, for any $x, y \in X$

- 1. if $x \sim y$ then CF(x) = CF(y);
- 2. if $CF(x) \neq \bot$, then $x \sim CF(x)$.

Example. The systematic form is a canonical form for $M_1 \sim M_2 \iff \exists S \in GL(\mathbb{F}_q^k)$ such that $SM_1 = M_2$.

The Effective Action

Having access to an efficient canonical form for \sim , we can define the effective action $(G_2, X_{\sim}, \star_{\sim})$ as

 $(g_2, x) \mapsto \mathrm{CF}((e, g_2) \star x).$

Theorem. If we assume that the canonical form also returns g_1 such that $(g_1, e) \star x = CF(x)$, then inverting \star is equivalent to invert \star_{\sim} .

 $len(G_2) < len(G)$ and $len(X_{\sim}) \leq len(X)$: shorter signatures without new assumptions!

From the theorem, cryptanalysing \star can be done cryptanalysing \star_{\sim} .

Downside: we need to compute CF.

Application: Linear Code Equivalence

 $X = \mathbb{F}_q^{k \times n}, G = Mon(\mathbb{F}_q^n)$ *: (S, C) \mapsto CF(CQ).

Since $Mon(\mathbb{F}_q^n) = (\mathbb{F}_q^{\times})^n \rtimes S_n$, we can quotienting again on $(\mathbb{F}_q^{\times})^n$, defining a canonical form and the effective action $(S_n, X_{\sim}, \star_{\sim})$. Unfortunately, this is worse than the state of the art on LESS:

Parameter Set	Sec. Level	LEP	IS-LEP [PS23]	CF-LEP [CPS23]	Our Work
LESS-1b	I	15726	8646	2496	9096
LESS-3b		30408	17208	5658	18858
LESS-5b	V	53896	30616	10056	34696

signature sizes in bytes

Still, there are some advantages:

- 1. differently from [PS23] and [CPS23], we still have a group action.
- 2. The bit length of elements in X_{\sim} is slightly smaller.

Example: Matrix Code Equivalence

$$X = \mathbb{F}_q^{k \times nm}, G = GL(\mathbb{F}_q^k) \times GL(\mathbb{F}_q^m) \times GL(\mathbb{F}_q^n) \times K(A, B, C), M \mapsto AM(C^T \otimes B).$$

It is known that finding one matrix among (A, B, C) leads to finding the remaining two. Hence, we can define

$$M_1 \sim M_2 \iff \exists A, B \text{ such that } AM_1(I \otimes B) = M_2.$$

Then, we can have the action $(GL(\mathbb{F}_q^n), X_{\sim}, \star_{\sim})$ with respect to the above equivalence relation.

The Canonical Form for MEDS

Let $M = [M_1 | ... | M_n]$ be a $n \times n^2$ matrix. Then, the canonical form with respect to \sim is given by the following procedure.

- 1. Put *M* in systematic form: $[I_k | \overline{M}_2 | ... | \overline{M}_n]$.
- 2. Find V, the solution set of matrices B such that $B^{-1}\overline{M}_2B$ is equal to circ(e_n) on the first n 1 columns.
- 3. Find the unique \tilde{B} such that the first column of $\tilde{B}^{-1}\overline{M}_3\tilde{B}$ is the minimum among a fixed ordering.
- 4. The canonical form is given by $CF(M) = (M_1 \tilde{B})^{-1} M(I \otimes \tilde{B})$.

This canonical form is expected polynomial-time $O(qn^6)$ but it is impractical for a signature.

Designated Representative

We define a variant of the canonical form, with a **designated representative** in X_{\sim} .

In some sense, one can force the canonical form to go efficiently in a particular representative: choose the matrix \tilde{B} randomly in point 3.

In the sigma protocol, the verifier goes to the designated representative com.

In the signature, since we don't send com, we add the **first column of the third matrix** of com in resp.

We obtain a complexity of $O(n^6)$: we dropped the q term, which for practical parameters sets is $\sim 2^{12}$.

Some numbers on MEDS

Parameter Set	Sec. Level	Specs [Cho+23]	Our Work	Gain
MEDS-9923	I	9896	6074	38.6%
MEDS-13220	I	12976	7516	42.1%
MEDS-41711		41080	23062	43.9%
MEDS-69497		54736	29788	45.6%
MEDS-134180	V	132424	70284	46.9%
MEDS-167717	V	165332	86462	47.7%

signature sizes in bytes

We almost halve the signature length at the cost of introducing a computational overhead in the signing and verification procedure.

What's next?

- Find more efficient Canonical Forms.
- For MEDS, study new parameter sets taking into account the shorter representation of codes: $(n-1)n^2 \operatorname{vs} (n-2)n^2$ entries in \mathbb{F}_q .
- Join with optimisations given in [CNRS24].
- ALTEQ?

Stay tuned for the preprint!

Thanks! Questions?