Group Factorisation for Smaller Signatures from Cryptographic Group Actions

Giuseppe D'Alconzo* Department of Mathematical Sciences, Polytechnic of Turin

WCC 2024, June 17, 2024 Perugia, Italy

*joint work with A. Meneghetti and E. Signorini

Group actions in Cryptography

Let X be a set, G be a group and $\star : G \times X \to X$. (G, X, \star) is a **group action** if \star is compatible with the group operation: $e \star x = x$ and $(gh) \star x = g \star (h \star x)$.

Effective PPT algorithms for G , X and \star .

2

Many constructions from GAs! We will focus on digital signatures (via Fiat-Shamir).

Alamati, De Feo, Montgomery, Patranabis. "Cryptographic group actions and applications." Asiacrypt 2020.

Sigma protocol for group actions

Let x_0 be in X and g in G. Set $x_1 = g \star x_0$.

Standard Optimisations

Seeds: for every $ch = 0$ the response is random \Rightarrow send a seed.

Unbalanced challenges: $ch = 0$ has smaller responses => take $M - w$ 0s and w 1s (with $M - w > w$).

Multiple public keys: set $x_i = g_i \star x_0$ and enlarge the challenge space to $\{0, ..., C\}$.

Bit length of the signature: $M + (M - w)\lambda + w len(G)$

Dominated by $len(G)!$ Can we lower this quantity?

Linear Code Equivalence

Code Equivalence Problem: given two $k \times n$ matrices C_1 and C_2 with entries in \mathbb{F}_q such that $\mathcal{C}_1 = \mathit{SC}_2\mathit{Q}$ with S in GL(\mathbb{F}_q^k) and Q monomial, find S and Q .

> $X = \mathbb{F}_q^{k \times n}$, $G = \mathsf{GL}(\mathbb{F}_q^k) \times \mathsf{Mon}(\mathbb{F}_q^n)$ $\star : ((S, Q), C) \mapsto SCQ.$

 $len(G) = len(GL(\mathbb{F}_q^k)) + len(Mon(\mathbb{F}_q^n)) = k^2 \log_2 q + n(\log_2 n + \log_2 q).$

In coding theory, it is common to represent codes in systematic form

 $SF(C) = [I_k | M] = S_C C$.

In this case, we have the following action

 $(O, C) \mapsto SF(CO)$.

Can this approach be generalised?

Yes! Up to semidirect product of groups $G = G_1 \rtimes G_2$. **No need for new assumptions**: everthing works as before. **Smaller objects, shorter signatures**. One can use the old parametrisations.

Ok, but at what cost?

One needs to find a **canonical form** for the relation induced by G_1 . **Computational overhead** due to this canonical form.

Equivalence from Group Factorisation

Suppose that $G = G_1 \times G_2$ and it is efficient to decompose $g = (g_1, g_2)$ for every q in G .

Define the following relation on X :

 $x \sim y \Leftrightarrow \exists g_1 \in G_1$ such that $(g_1, e) \star x = y$.

It can be seen that \sim is an equivalence relation over X and we can define a new group action $(G_2, X_{\sim}, \star_{\sim})$ as

 $(g_2, [x]_{\sim}) \mapsto [(e, g_2) \star x]_{\sim}.$

Remark. This action is well defined when G_1 is normal in . This leads to a generalisation to semidirect products.

Canonical Forms

The action $(g_2, [x]_{\sim}) \mapsto [(e, g_2) \star x]_{\sim}$ has all the properties to be effective, but one: finding a unique string representation for X_{\sim} could be hard.

Canonical Form. A canonical form with failures for a relation \sim over $X \times X$ is a map $CF : X \to X \cup \{\perp\}$ such that, for any $x, y \in X$

- 1. if $x \sim y$ then $CF(x) = CF(y)$;
- 2. if $CF(x) \neq \perp$, then $x \sim CF(x)$.

Example. The systematic form is a canonical form for $M_1 \sim M_2 \iff \exists S \in \mathsf{GL}(\mathbb{F}_q^k)$ such that $SM_1 = M_2$.

The Effective Action

Having access to an efficient canonical form for \sim , we can define the effective action $(G_2, X_{\sim}, \star_{\sim})$ as

 $(g_2, x) \mapsto CF((e, g_2) \star x).$

Theorem. If we assume that the canonical form also returns g_1 such that $(g_1, e) \star x = \mathbb{C}F(x)$, then inverting \star is equivalent to invert \star_{\sim} .

 $len(G_2)$ < $len(G)$ and $len(X_>) \leq len(X)$: shorter signatures without new assumptions!

From the theorem, **cryptanalysing** ⋆ **can be done cryptanalysing** ⋆∼**.**

Downside: we need to compute CF.

Application: Linear Code Equivalence

 $X = \mathbb{F}_q^{k \times n}$, $G = \mathsf{Mon}(\mathbb{F}_q^n)$ $\star : (S, C) \mapsto CF(CQ).$

Since Mon $\left(\mathbb{F}_q^n\right)=\left(\mathbb{F}_q^\times\right)^n$ $\lambda \propto S_n$, we can quotienting again on $\left(\mathbb{F}_q^{\times}\right)^n$, defining a canonical form and the effective action $(S_n, X_{\sim}, \star_{\sim})$. Unfortunately, this is worse than the state of the art on LESS:

signature sizes in bytes

Still, there are some advantages:

- 1. differently from [PS23] and [CPS23], we still have a group action.
- The bit length of elements in X_{\sim} is slightly smaller.

Example: Matrix Code Equivalence

$$
X = \mathbb{F}_q^{k \times nm}, G = GL(\mathbb{F}_q^k) \times GL(\mathbb{F}_q^m) \times GL(\mathbb{F}_q^n)
$$

$$
\star : ((A, B, C), M) \mapsto AM(C^T \otimes B).
$$

It is known that finding one matrix among (A, B, C) leads to finding the remaining two. Hence, we can define

 $M_1 \sim M_2 \iff \exists A, B$ such that $AM_1 (I \otimes B) = M_2$.

Then, we can have the action $\left(\mathsf{GL}(\mathbb{F}_q^n)$, $X_\sim,\star_\sim\right)$ with respect to the above equivalence relation.

The Canonical Form for MEDS

Let $M = [M_1 | ... | M_n]$ be a $n \times n^2$ matrix. Then, the canonical form with respect to ∼ is given by the following procedure.

- 1. Put M in systematic form: $[I_k | \overline{M}_2 | ... | \overline{M}_n].$
- 2. Find V, the solution set of matrices B such that $B^{-1} \overline{M}_2 B$ is equal to circ(e_n) on the first $n - 1$ columns.
- 3. Find the unique \tilde{B} such that the first column of $\tilde{B}^{-1}\overline{M}_3\tilde{B}$ is the minimum among a fixed ordering.
- 4. The canonical form is given by $\text{CF}(M) = \left(M_1\tilde{B}\right)^{-1}M(I\otimes \tilde{B}).$

This canonical form is expected polynomial-time $O(qn^6)$ but it is impractical for a signature.

Designated Representative

We define a variant of the canonical form, with a **designated representative** in X_{\sim} .

In some sense, one can force the canonical form to go efficiently in a particular representative: choose the matrix \tilde{B} *randomly* in point 3.

In the sigma protocol, the verifier goes to the designated representative com.

In the signature, since we don't send com, we add the **first column of the third matrix** of com in resp.

We obtain a complexity of $O(n^6)$: we dropped the q term, which for practical parameters sets is $\sim 2^{12}$.

Some numbers on MEDS

signature sizes in bytes

We almost halve the signature length at the cost of introducing a computational overhead in the signing and verification procedure.

What's next?

- Find more efficient Canonical Forms.
- For MEDS, study new parameter sets taking into account the shorter representation of codes: $(n-1)n^2$ vs $(n-2)n^2$ entries in \mathbb{F}_q .
- Join with optimisations given in [CNRS24].
- ALTEQ?

Stay tuned for the preprint!

Thanks! Questions?