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Group actions in Cryptography

Let 𝑋 be a set, 𝐺 be a group and ⋆ ∶ 𝐺 × 𝑋 → 𝑋.

𝐺, 𝑋,⋆ is a group action if ⋆ is compatible with the group operation:

𝑒 ⋆ 𝑥 = 𝑥 and 𝑔ℎ ⋆ 𝑥 = 𝑔 ⋆ ℎ ⋆ 𝑥 .

Effective

PPT algorithms
for 𝐺, 𝑋 and ⋆.

Many constructions from GAs!
We will focus on digital signatures (via Fiat-Shamir).

Alamati, De Feo, Montgomery, Patranabis. "Cryptographic group actions and applications." Asiacrypt 2020.
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Sigma protocol for group actions
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Let 𝑥0 be in 𝑋 and 𝑔 in 𝐺. Set 𝑥1 = 𝑔 ⋆ 𝑥0.

Prover(𝑥0, 𝑥1, 𝑔) Verifier(𝑥0, 𝑥1)

com ← ℎ ⋆ 𝑥0
ch ←$ {0,1}

resp ← ℎ𝑔−ch Accept if
resp ⋆ 𝑥ch = com

Digital signatures
Repeat 𝜆 times in parallel, apply
Fiat-Shamir and send (ch,resp).

com

ch

resp

𝑥0 𝑥1

com

𝑔

resp1resp0

ℎ ←$ 𝐺

ℎ



Standard Optimisations
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Seeds: for every ch = 0 the response is random => send a seed.

Unbalanced challenges: ch = 0 has smaller responses => take 𝑀 −𝑤 0s and 𝑤 1s 
(with 𝑀 −𝑤 > 𝑤).

Multiple public keys: set 𝑥𝑖 = 𝑔𝑖 ⋆ 𝑥0 and enlarge the challenge space to {0, … , 𝐶}.

Bit length of the signature:
𝑀 + 𝑀 −𝑤 𝜆 + 𝑤 𝑙𝑒𝑛 𝐺

Dominated by 𝑙𝑒𝑛 𝐺 ! Can 
we lower this quantity?



Linear Code Equivalence
Code Equivalence Problem: given two 𝑘 × 𝑛 matrices 𝐶1 and 𝐶2 with entries in 𝔽𝑞
such that 𝐶1 = 𝑆𝐶2𝑄 with 𝑆 in GL(𝔽𝑞

𝑘) and 𝑄 monomial, find 𝑆 and 𝑄.

𝑋 = 𝔽𝑞
𝑘×𝑛, 𝐺 = GL(𝔽𝑞

𝑘) × Mon(𝔽𝑞
𝑛)

⋆ ∶ 𝑆, 𝑄 , 𝐶 ↦ 𝑆𝐶𝑄.
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𝑙𝑒𝑛 𝐺 = 𝑙𝑒𝑛(GL(𝔽𝑞
𝑘)) + 𝑙𝑒𝑛 Mon(𝔽𝑞

𝑛) = 𝑘2 log2 𝑞 + 𝑛(log2 𝑛 + log2 𝑞).

In coding theory, it is common to represent codes in systematic form

SF(𝐶) = [𝐼𝑘| 𝑀] = 𝑆𝐶𝐶.

In this case, we have the following action

𝑄, 𝐶 ↦ SF 𝐶𝑄 .



Can this approach be generalised?
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Ok, but at what cost?

Yes! Up to semidirect product of groups 𝐺 = 𝐺1⋊ 𝐺2.

No need for new assumptions: everthing works as before.

Smaller objects, shorter signatures. One can use the old parametrisations.

One needs to find a canonical form for the relation induced by 𝐺1.

Computational overhead due to this canonical form.



Equivalence from Group Factorisation
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It can be seen that ∼ is an equivalence relation over 𝑋 and we can define a 
new group action 𝐺2, 𝑋∼,⋆∼ as

𝑔2, 𝑥 ∼ ↦ 𝑒, 𝑔2 ⋆ 𝑥 ∼.

Suppose that 𝐺 = 𝐺1 × 𝐺2 and it is efficient to decompose 𝑔 = 𝑔1, 𝑔2 for 
every 𝑔 in 𝐺.

Define the following relation on 𝑋:
𝑥 ∼ 𝑦 ⟺ ∃𝑔1 ∈ 𝐺1 such that 𝑔1, 𝑒 ⋆ 𝑥 = 𝑦.

Remark. This action is well defined when 𝐺1 is normal in 
𝐺. This leads to a generalisation to semidirect products.



Canonical Forms
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Canonical Form. A canonical form with failures for a relation ∼ over 𝑋 × 𝑋 is
a map CF ∶ 𝑋 → 𝑋 ∪ ⊥ such that, for any 𝑥, 𝑦 ∈ 𝑋

1. if 𝑥 ∼ 𝑦 then CF 𝑥 = CF 𝑦 ;

2. if CF 𝑥 ≠ ⊥, then 𝑥 ∼ CF 𝑥 .

The action 𝑔2, 𝑥 ∼ ↦ 𝑒, 𝑔2 ⋆ 𝑥 ∼ has all the properties to be effective, 
but one: finding a unique string representation for 𝑋∼ could be hard.

Example. The systematic form is a canonical form for
𝑀1 ∼ 𝑀2 ⟺ ∃𝑆 ∈ GL(𝔽𝑞

𝑘) such that 𝑆𝑀1 = 𝑀2.



The Effective Action
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Having access to an efficient canonical form for ∼, we can define the effective
action 𝐺2, 𝑋∼,⋆∼ as

𝑔2, 𝑥 ↦ CF 𝑒, 𝑔2 ⋆ 𝑥 .

Theorem. If we assume that the canonical form also
returns 𝑔1 such that 𝑔1, 𝑒 ⋆ 𝑥 = CF 𝑥 , then
inverting ⋆ is equivalent to invert ⋆∼.

𝒍𝒆𝒏 𝑮𝟐 < 𝒍𝒆𝒏 𝑮 and 𝒍𝒆𝒏 𝑿∼ ≤ 𝒍𝒆𝒏 𝑿 : shorter signatures without new 
assumptions!

From the theorem, cryptanalysing ⋆ can be done cryptanalysing ⋆∼.

Downside: we need to compute CF.



Application: Linear Code Equivalence
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𝑋 = 𝔽𝑞
𝑘×𝑛, 𝐺 = Mon(𝔽𝑞

𝑛)

⋆ ∶ 𝑆, 𝐶 ↦ CF(𝐶𝑄).

Since Mon 𝔽𝑞
𝑛 = 𝔽𝑞

× 𝑛
⋊ 𝑆𝑛, we can quotienting again on 𝔽𝑞

× 𝑛
, defining a 

canonical form and the effective action 𝑆𝑛, 𝑋∼,⋆∼ . Unfortunately, this is 
worse than the state of the art on LESS:

Still, there are some advantages:
1. differently from [PS23] and [CPS23], we still have a group action.
2. The bit length of elements in 𝑋∼ is slightly smaller.

Parameter Set Sec. Level LEP IS-LEP [PS23] CF-LEP [CPS23] Our Work

LESS-1b I 15726 8646 2496 9096

LESS-3b III 30408 17208 5658 18858

LESS-5b V 53896 30616 10056 34696

Persichetti and Santini. “A New Formulation of the Linear Equivalence Problem and Shorter LESS Signatures”. Asiacrypt 2023
Chou, Persichetti, and Santini. “On Linear Equivalence, Canonical Forms, and Digital Signatures”. 2023

signature sizes in bytes



Example: Matrix Code Equivalence
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𝑋 = 𝔽𝑞
𝑘×𝑛𝑚, 𝐺 = GL(𝔽𝑞

𝑘) × GL(𝔽𝑞
𝑚) × GL(𝔽𝑞

𝑛)

⋆ ∶ 𝐴, 𝐵, 𝐶 ,𝑀 ↦ 𝐴𝑀(𝐶𝑇 ⊗𝐵).

It is known that finding one matrix among 𝐴, 𝐵, 𝐶 leads to finding the 
remaining two. Hence, we can define

𝑀1 ∼ 𝑀2 ⟺ ∃𝐴,𝐵 such that 𝐴𝑀1 𝐼 ⊗ 𝐵 = 𝑀2.

Then, we can have the action GL(𝔽𝑞
𝑛) , 𝑋∼,⋆∼ with respect to the above

equivalence relation.



The Canonical Form for MEDS
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Let 𝑀 = 𝑀1| … | 𝑀𝑛 be a 𝑛 × 𝑛2 matrix. Then, the canonical form with 
respect to ∼ is given by the following procedure.

1. Put 𝑀 in systematic form: [𝐼𝑘| 𝑀2| … | 𝑀𝑛].

2. Find 𝑉, the solution set of matrices 𝐵 such that 𝐵−1𝑀2𝐵 is equal to circ(𝑒𝑛) 
on the first 𝑛 − 1 columns.

3. Find the unique ෨𝐵 such that the first column of ෨𝐵−1𝑀3
෨𝐵 is the minimum 

among a fixed ordering.

4. The canonical form is given by CF(𝑀) = 𝑀1
෨𝐵

−1
𝑀(𝐼 ⊗ ෨𝐵).

This canonical form is expected polynomial-time 
𝑂(𝑞𝑛6) but it is impractical for a signature.



Designated Representative
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We define a variant of the canonical form, with a designated representative
in 𝑋∼.

In some sense, one can force the canonical form to go efficiently in a 
particular representative: choose the matrix ෨𝐵 randomly in point 3.

𝑥0 𝑥1

CF(ℎ ⋆ 𝑥0)

𝑔

resp1resp0

In the sigma protocol, the verifier goes to the 
designated representative com.
In the signature, since we don’t send com, we 
add the first column of the third matrix of com
in resp.

We obtain a complexity of 𝑂(𝑛6): we dropped the 𝑞
term, which for practical parameters sets is ∼ 212.



Some numbers on MEDS
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We almost halve the signature length at the cost of introducing a 
computational overhead in the signing and verification procedure.

Parameter Set Sec. Level Specs [Cho+23] Our Work Gain

MEDS-9923 I 9896 6074 38.6%

MEDS-13220 I 12976 7516 42.1%

MEDS-41711 III 41080 23062 43.9%

MEDS-69497 III 54736 29788 45.6%

MEDS-134180 V 132424 70284 46.9%

MEDS-167717 V 165332 86462 47.7%

Chou et al. “Matrix Equivalence Digital Signature”. 2023.

signature sizes in bytes



What’s next?

• Find more efficient Canonical Forms.

• For MEDS, study new parameter sets taking into
account the shorter representation of codes: 
𝑛 − 1 𝑛2 vs 𝑛 − 2 𝑛2 entries in 𝔽𝑞.

• Join with optimisations given in [CNRS24].

• ALTEQ?

Thanks!
Questions?

17Chou, Niederhagen, Ran, Samardjiska. “Reducing Signature Size of Matrix-code-based Signature Schemes”. 2024.

Stay tuned for the preprint!
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