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CODE-BASED CRYPTOGRAPHY

Code-Based Cryptography:
Building cryptographic primitives whose security relies on

hardness of decoding a random code

But how to ensure the hardness of decoding a random code?

» Test of time,

» Reduction: prove that decoding is harder than another hard problem.

— We will focus on reductions



ROADMAP

1. Decoding Random Codes: an Average Case
2. Worst-to-Average-Case Reduction: Framework

3. Smoothing Parameter

4. Packing Bounds




THE AVERAGE DECODING PROBLEM



LINEAR CODES AND HAMMING WEIGHT

Linear Codes: Primal Representation
A linear code C is a subspace of FJ.
Basis/Generator matrix representation: rows of A € ]ngn form a basis,

C={sA: scFL}

The vector/matrix multiplication sA is the collection of inner-products

def

(s,a1),...,(s,an) where a;columnofA and (x,y) = Z,-L Xiyi € |

def

vx e F), x| =

Hamming Weight:
{ie{1,...,n}:xi;éo} J




BERNOULLI RANDOM VARIABLE

1—p ifx=0

> e <« Ber(p)®": the e/'s are independent and P(e; = x) = { . ifx £ 0

Chernoff’s Bound: Ber(p)®" concentrates over words of Hamming weight ~ np

Given e < Ber(p)®",

E(le])=np and IP’(’|e| - np‘ > sn) <2 een’

First approximation: Ber(p)®" is a uniform vector of Hamming weight np



AVERAGE DECODING PROBLEM

A-DP(n,k,t): Average Decoding Problem

e Input: (A,sA+t) where A e ]FSX”, s € F% are uniform and t < Ber(t/n)®"

e Output: recovering s

Algorithm A solving A-DP in time T and probability e means

e ArunsintimeT,

e Given A, s uniform and t + Ber(p)®",

PA,s,t (.A (A, SA + t) = S) =€



YOU SAID AVERAGE CASE?

> Given (A,s) € FFX" x F% uniform and t « Ber(p)®",

Past(A(ASA+1t)=s)=¢

Law of total probability:

c=gm X X > P(A(A,S0+t0) =50) pi(1—p)" "
Py(t=ty)
(=%

— : average success probability of A over all possible inputs

e small = A fails for almost all instances

Assumption in Code-Based Cryptography:
A-DP is hard, i.e, for any algorithm, T/« is large J




TEST OF TIME, WHAT ELSE?

To ensure hardness of decoding a random code (average hardness):

1. Test of time,

2. Reductions: solving the decoding problem on average implies an algorithm
which
(i) computes (quantumly) short vectors in the dual code,

(if) solves all instances of another decoding problem (worst-case).




WORST-TO-AVERAGE CASE REDUCTION



OUR GOAL

Given a fixed instance

(G, xG + r) where Hamming weight of r is w J

we want to recover r
But, we only have an algorithm A solving A-DP with probability e

Past(AASA+t)=s)=¢



THE APPROACH

Key-idea:
From (G, xG + r) build a “uniform decoding” instance being fed to A J

1. e; < D (distribution)

2. Compute,

<y7 el) = <XG,€‘,> + <I’, E,> = <\X/7 e/GT> + <r7 E/>

secret noise

Packing Instances Together:
e Build the matrix A = (a;) whose columns are the e,GT

e Try to decode (A, ((y,€/)i)) = (A, XA +t) where t = ((r, e))),
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THE ISSUE

From the fixed decoding instance G, xG + r, we build

<y’ e/> = <XG7 e) + <r7 e> = <\X/’ eiGT> + <r’ e/>

secret noise

Packing Instances Together:

e Build the matrix A = (a;) whose columns are the e,GT

e Try to decode (A, ((y,€/);)) = (A,xA +t) where t = ((r,e)));

— Feed (A, ({y, e;);)) to the average decoding algorithm \A. But what happens?

» Columns of A, i.e, e;GT, are not uniform
> Noise (r,e;) and e;GT are correlated

» How does (r, e;) behave?

Our Goal:
Estimate success probability of .4 being fed with the biased instance (A, ({y, €;);)) J
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CLOSENESS: STATISTICAL DISTANCE

Statistical Distance:

Given two random variables X, Y,

AXY) = A(f,9) = 5 [P = 0) ~ (Y = a)

— It captures the differences between two random variables

e Data processing inequality: for any function/algorithm h
A(h(X),h(Y)) < A(X,Y)

e Foranyeventé,
PXe &) —P(Y € &) < A(X,Y)

If an algorithm succeeds with inputs X and probability €, then it succeeds given Y with

probability e + A(X,Y)



OUR AIM

True average decoding instance

1. We want the following to be small: /

a d:E‘CA((e,GT,(x,e,vGU-|—<r, e,)),(\a/,(x,a)-f— & ))

uniform same distrib as (r, e;)
2. We feed (e,GT,(x,e,GT) + (r,e;)) to the decoding-solver A with succ prob.

3. If we give n samples to A, it will recover x with probability e + na

Simplification:

Target: A (e,vGT, \a/) small when G is fixed but e; random variable.

uniform
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A GEOMETRICAL INTERPRETATION: PRIMAL REPRESENTATION
Aim: A <eGT, a ) small

Which object is eG ' ?

Take the code C C FJ point of view
€= {c DGl = 0} J

— eG " defines a coset of C

Primal representation:

eGT uniform <= uniform in F§/C, i.e. uniform modulo C

eGT uniform for e «— D <= c + e uniform in F) where c& cande+— D




POTATOES

unif

¢ + e uniform in FJ where c+—C and e +— D J

Starting from codewords and adding noise

o0 ceC

after adding noise
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POTATOES

unif

¢ + e uniform in FJ where c+—C and e +— D J

Starting from codewords and adding noise

o0 ceC

after adding noise

— To be uniform: necessary to cover the whole space after adding noise!
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COMBINATORICS POINT OF VIEW: GILBERT-VARSHAMOV RADIUS

¢ + e uniform in FJ where c&" cande+— D

If e concentrates over words of Hamming weight < t, it is necessary that

tis such that: #C - (7) > 2" J




COMBINATORICS POINT OF VIEW: GILBERT-VARSHAMOV RADIUS

¢ + e uniform in FJ where c&" cande+— D

If e concentrates over words of Hamming weight < t, it is necessary that

tis such that: #C - (7) > 2" J
Gilbert-Varshamov Radius of C:
tey: smallest radius to such that #C - (t';) >2" J

If one targets ¢ + e uniform with e concentrating over words of Hamming weight t,

then one wants t as small as possible which is tgy

But why?



THE REDUCTION IN A NUTSHELL

An algorithm solving the average decoding problem with noise
ej=(r,ej) wheree;j«—D

implies an algorithm solving the fixed decoding problem (G, XG + r)



THE REDUCTION IN A NUTSHELL

The average decoding problem with noise
ej=(r,ej) wheree;j«—D

is harder than solving the fixed decoding problem (G, xG +r)



THE REDUCTION IN A NUTSHELL

The average decoding problem with noise
ej=(r,ej) wheree;j«—D

is harder than solving the fixed decoding problem (G, xG +r)

Ideal Situation:

The reduction works with P ((r, ;) = 1) is small

Because in cryptography we use the assumption that average decoding is hard
for a noise e with P(e = 1) small

— To ensure P ({r,e;) = 1) is small we need to choose e; concentrating over words

of small Hamming weight



ABOUT THE NOISE DISTRIBUTION



THE NOISE: OUR BEST FRIEND TO UNIFORMIZE

Our aim:
To find e +— D such that ¢ + e is close (stat. distance) to uniform when e J
A first approach:
Choose each bit of e with probability 1/2, then ¢ + e is uniform J
But, doing this is useless: (r, e) will be a uniform noise. ..
Therefore, impossible to solve (eGT, (x,eGT) + (r,e))
\‘/-/
— We need to carefully choose e! )
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OUR GOAL

Given a linear code C C FJ: we want

¢ + e to be uniform where ¢ <"~ ¢ and e « D (free choice in the reduction) J

St be the Hamming-sphere with radius t
If D concentrates over S,
e () 22" = t>toy

A lower-bound on the amount of noise:

If noise concentrates on sphere with radius t: necessarily t > tgy J
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SOME NOTATION

Notation:

e unif: uniform distribution of FJ

e Ic: indicator function of C

e Convolution, f* g(x) o Zye]}‘g f)g(x—y)

If X< fand Y < g are independent, then X+ Y < fxg

Smoothing parameter:

If f concentrates over words of weight t. Smoothing parameter is the smallest t s.t,

A (]Tg *fi, unif) - %Xgn H% *fi(x) — unif(x)| is negligible
2

Our Dream:

A (;—2 * ft, unif) is negligible as soon as t = tgy(1+ 0(1)),
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CAUCHY-SCHWHARZ: PARSEVAL'S WORLD

We want: 3 x f; close to uniform

SO, X H—‘é * fr(x) — unif(x)) will be roughly constant!

A Good Idea: Cauchy-Schwarz

P

xeF”

tTC * ft(x) — unif(x)

> (LTC * fr(X) — unn‘(x))2

xng

sﬁ\J

— The upper-bound: L,-distance!

A natural approach: Parseval’s identity

23



FOURIER TRANSFORM IN THE HAMMING CUBE

e Scalar product and associated norms:

def 1 def
f.9) = 5 3 fwey) and ifle € VR
yEF)
e An orthonormal basis, characters:
xx(y) & (=)
Fourier Transform: given f: F, — C,
00 = = = Ayxxy) = V27 {f x0 J
yEF]
e Convolution: - R
fxg=v2"f.3
Parseval Identity: Fourier Transform Isometry for L,
If = gllz = Iif = 9ll2 J
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DUALITY

— We need to compute ¢

Dual Code:
Given C C FJ,

cld:ef{xenrg: vy € FY, Zx,-y,-:o}:{xenrg: VyerX(y):1}
i

Fourier Transform of the Code Indicator:
~ Hc
= —
A /2")

TeL

25



SMOOTHING PARAMETER: AN UPPER-BOUND

1c : VI
Al —= f 20 || = — fll =v2n ||—1 - f
(ﬁc*ft,um) <V2n ﬁc*ft uni 2 Vo % e fi — uni 2
\F 1
C - 1
s v |
=21 Z |ft (cb)]
clect\{o}

Upper-Bound:
A(Efuunif) <V [ ¥ JR(eh)P
ctect\{o0}
If fi(x) depends only on |x| (radial),

A (36 *fisunif) < V2T |52 Na(c) (@)

Na(CL) L g {ct ect: |ct|=a}

where,

26



AN OPTIMAL UPPER-BOUND: THE RANDOM CASE

We need to upper-bound Nq (C1), but how?

27



AN OPTIMAL UPPER-BOUND: THE RANDOM CASE

We need to upper-bound Nq (C1), but how?

— To understand first if our approach is meaningful, use random codes of fixed size!

E.. (A (;—g*ft,unif)) <E. <\/27 /go No(CL) |’ﬁ(a)|2>

VT[S Eeu (Na(CL) [(a)P)

a>0

:ﬁ?Z%WW

a>0

Bernoulli: our dream comes false
Choosing fy(x) = p/XI(1 — p)"~I*I concentrating over words of Hamming weight t = pn

with random codes C of dimension k leads to:

np > g (1 - \/W)
To ensure E, (A (;% «f, umf)) negligible while

g (1 — V2RI Z 1) > toy
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UNIFORM DISTRIBUTION OVER A SPHERE

Using Bernoulli seems to be non-optimal. Which other distribution concentrating over
Spn could be chosen? J

28



UNIFORM DISTRIBUTION OVER A SPHERE

Using Bernoulli seems to be non-optimal. Which other distribution concentrating over
Spn could be chosen? J

— 1s,/(}) be the uniform distribution over &;
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CONCLUSION

15[

Using f = <—

S

~—

s (2 (o)) <

— Our dream comes true: t > tgy to ensure a negligible statistical distance

But our bound only holds on average, not for a fixed code C. .. )
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NON-RANDOM CASE

iC

n
To get our upper-bound we used: E..1 (f {ct €Ct: |ct|=a}) = (4
— What happens for a fixed code, as aimed in the reduction?

We will use

Linear Programming Bounds:
Ng (C1) < F(d,a)

where d minimum distance of ¢+

30



PACKING BOUNDS



SOME SIMPLIFICATION

What we need: to bound Nq(C) when the minimum distance of C is fixed

Simplification: Packing Bound

We will instead bound #C as function of its minimum distance

max {§C : € C FJ and minimum distance d}

The most fruitful approach to get the best (asymptotic) packing bounds:

theory of association schemes

32



ASSOCIATION SCHEMES: ADJACENCY MATRIX

Metric Space and Adjacency Matrix:
(X, 7,n) be a finite metric space with 7 : X x X = {0,...,n}.

It associated adjacency matrices D; € CXIXIXI are,

1if =)
oy ex, Difoy) T =]
0 otherwise

> Typical cases: X = F Hamming scheme or X = S; (Hamming sphere with radius t)

Johnson scheme for the Hamming distance
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ASSOCIATION SCHEMES: A TRIANGLE CONDITION

Association Scheme:
(X, 7, n) is a (metric) association scheme if there exists an integer pf}. st
_ ko . = f = f
Vx,z € X st 7(x,2) =R, B = g{yeX: 7(x,y) =iand r(y,z) =j}
and pfl £ 0.

The number of y only depends of i,j and R

Crucial Consequences:

> pf=pf

> D;-D;=37_oPf;- Dk

; because T symmetric as distance

— Vect(D; : 0 < i< n)formsacommutative algebra C CXI*IXI »



A WORLD OF ORTHOGONAL PROJECTORS

Vect(D;: 0 < i< n)formsacommutative algebra C CXI*IXI and the D; are
symmetric

— The D; share common orthogonal eigenspaces!

The matrices E;:

There exists orthogonal projectors E; € CXI*IXI such that,

Vie{ow'wn}r Dl:Zjn:ODI(j)EJ

— Matrices D; and E; generate the same space!

g-numbers:
Vje {0,...,(7}, EI' = ﬁz;ﬂ:o q,(/)D, J
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FOURIER TRANSFORM

Di =3 Pi(DE and  E = 5 3L, q()D; ]
Fourier Transform and Its Inverse: given f: {0,...,n} — C
F00 € o fpy(x) and Fx) € 5200 fy)ay() J

def def
D E S f)Dx ; B9 = SN o g(x)Ex

From the decomposition of the D; and E; in each basis

O =¢ and Ef =D
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CODE, DIRAC NOTATION AND WEIGHT DISTRIBUTION

Our aim is to upper-bound the size of a code with minimum distance d )

» Code: given (X, 7, n) an association scheme, a code C is a subset of X.

dd:efmin(T(c,c’) s ¢, eCandc#c)

Dirac/Bra-ket Notation

X = {xi1,...,xy}. For any x;, the vector |x;) is zero except at the ith entry where it is 1.
V1
N — R
M=1]:[=Xvl) and (V=W ... W)
i=1
VN :

Given a code C C X,
def 4

[Ype) = Wc%:clq )
> Weight Distribution: a(t) = g - # ((c,c') € C?: 7(c,¢) =t) = (c|Dt vhc)
=5 a(t), a(0)=1 and a(t)=o0ifte,...,d—1} .
t=0



DUAL DISTRIBUTION AND MACWILLIAMS IDENTITY

def 4

a(t) = (vl Dt |¢pe) where [¢oe) = —=3 ¢ [0)

def

Dual Code Distribution:
a(i) = J

(el Elte) = (wel gy 2 a(0Dx ) = 3= a9’ (0)

If Cis linear, then
a(i)y=t((ct,dt)ect: r(ct,dt) =)
Otherwise, if C is not linear maybe even not integers. .. But in any case:

MacWilliams identity:
Vie{0,...,n}, a'(i)>0 J

Proof: the E; are projectors, i.e, E; = >, ’v§[)><v§’)‘ and,

a/(i) = (el S vON O iy = S (e ) (WO ) = S| (e[ > 0
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DELSARTE’'S LINEAR PROGRAM

Delsarte’s Linear Program:
DLP(n,d) £ 37 u(t)
te[o,n]
u(0) =1
u(t)y=0forte {1,...,d -1}
u(t)y >0 forte{d,...,n}

> u(t)ai(t) > 0 for i € {0,...,n}.

te[o,n]
V.
Given a code C with minimum distance d, its weight distribution a(t) is a solution of
Delsarte’s linear program,
fC < A(n,d) < DLP(n, d) )

— MacWilliams identity shows that the weight distribution verifies the last condition

of Delsarte’s Linear Program
39



DUAL DELSARTE'S LINEAR PROGRAM

Dual Delsarte Linear Program:

Letd € {0,...,n}and f: {0,...,n} — R be a function such that,
f>0 , f0)>0 , vx>d, f(x)<o.

Then,

max {C : C C F§ and minimum distance d} < DLP(n,d) < |X| %

Obtained bounds via the choice of a function f with X = 7,
» Plotkin,
> Hamming,
> Elias-Bassalygo,

> MRRW1&2 (McEliece, Rodemich, Rumsay, Welch) best bounds from '77.
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CONCLUSION

» Framework for a worst-to-average-case reduction in coding theory: smoothing

parameter

— It reduces to upper-bound the weight distribution of a fixed code

» To derive upper-bounds for the weight distribution of a fixed code: use Delsarte’s

Linear Program approach as for packing bounds
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