FROM CODE-BASED CRYPTOGRAPHY TO PACKING BOUNDS

WCC 2024

André Chailloux, **Thomas Debris-Alazard**, Léo Ducas, Nicolas Resch and Jean-Pierre Tillich

June 17, 2024

Inria, École Polytechnique

Code-Based Cryptography:

Building cryptographic primitives whose security relies on

hardness of decoding a random code

But how to ensure the hardness of decoding a random code?

- ▶ Test of time,
- Reduction: prove that decoding is harder than another hard problem.

 \longrightarrow We will focus on reductions

- 1. Decoding Random Codes: an Average Case
- 2. Worst-to-Average-Case Reduction: Framework
- 3. Smoothing Parameter
- 4. Packing Bounds

THE AVERAGE DECODING PROBLEM

Linear Codes: Primal Representation A linear code C is a subspace of \mathbb{F}_2^n . Basis/Generator matrix representation: rows of $\mathbf{A} \in \mathbb{F}_2^{k \times n}$ form a basis, $C = \{ \mathbf{sA} : \mathbf{s} \in \mathbb{F}_2^k \}$

The vector/matrix multiplication sA is the collection of inner-products

 $\langle \mathbf{s}, \mathbf{a}_1 \rangle, \dots, \langle \mathbf{s}, \mathbf{a}_n \rangle$ where \mathbf{a}_i column of \mathbf{A} and $\langle \mathbf{x}, \mathbf{y} \rangle \stackrel{\text{def}}{=} \sum_{i=1}^n x_i y_i \in \mathbb{F}_2$

Hamming Weight:

$$\forall \mathbf{x} \in \mathbb{F}_2^n, \quad |\mathbf{x}| \stackrel{\text{def}}{=} \left\{ i \in \{1, \dots, n\} : \ x_i \neq 0 \right\}$$

•
$$\mathbf{e} \leftarrow \operatorname{Ber}(p)^{\otimes n}$$
: the e_i 's are independent and $\mathbb{P}(e_i = x) = \begin{cases} 1-p & \text{if } x = 0 \\ p & \text{if } x \neq 0 \end{cases}$

Chernoff's Bound: Ber $(p)^{\otimes n}$ concentrates over words of Hamming weight $\approx np$ Given $\mathbf{e} \leftarrow Ber(p)^{\otimes n}$, $\mathbb{E}(|\mathbf{e}|) = np$ and $\mathbb{P}(||\mathbf{e}| - np| \ge \varepsilon n) \le 2 e^{-\varepsilon n^2}$

First approximation: $Ber(p)^{\otimes n}$ is a uniform vector of Hamming weight np

A-DP(n,k,t): Average Decoding Problem

- Input: (A, sA + t) where $A \in \mathbb{F}_2^{k \times n}$, $s \in \mathbb{F}_2^k$ are uniform and $t \leftarrow \text{Ber}(t/n)^{\otimes n}$
- Output: recovering s

Algorithm $\mathcal A$ solving A-DP in time T and probability ε means

- A runs in time T,
- Given A, s uniform and t \leftarrow Ber $(p)^{\otimes n}$,

 $\mathbb{P}_{A,s,t}\left(\mathcal{A}\left(A,sA+t\right)=s
ight)=arepsilon$

YOU SAID AVERAGE CASE?

• Given $(\mathbf{A}, \mathbf{s}) \in \mathbb{F}_2^{k \times n} \times \mathbb{F}_2^k$ uniform and $\mathbf{t} \leftarrow \text{Ber}(p)^{\otimes n}$,

 $\mathbb{P}_{A,s,t}\left(\mathcal{A}\left(A,sA+t\right)=s\right)=\varepsilon$

 $\longrightarrow \varepsilon$: average success probability of \mathcal{A} over all possible inputs

 ε small $\Longrightarrow \mathcal{A}$ fails for almost all instances

Assumption in Code-Based Cryptography:

A-DP is hard, *i.e.*, for any algorithm, T/ε is large

To ensure hardness of decoding a random code (average hardness):

- 1. Test of time,
- 2. Reductions: solving the decoding problem on average implies an algorithm which
 - (i) computes (quantumly) short vectors in the dual code,
 - (ii) solves all instances of another decoding problem (worst-case).

WORST-TO-AVERAGE CASE REDUCTION

Given a fixed instance

(G, xG + r) where Hamming weight of r is w

we want to recover ${\bf r}$

But, we only have an algorithm $\mathcal A$ solving A-DP with probability arepsilon

 $\mathbb{P}_{A,s,t}\left(\mathcal{A}(A,sA+t)=s\right)=\varepsilon$

Key-idea:

From (G, xG + r) build a "uniform decoding" instance being fed to A

- 1. $\mathbf{e}_i \leftarrow \mathcal{D}$ (distribution)
- 2. Compute,

$$\langle y, e_i \rangle = \langle xG, e_i \rangle + \langle r, e_i \rangle = \langle \underbrace{x}_{\text{secret}}, e_i G^\top \rangle + \underbrace{\langle r, e_i \rangle}_{\text{noise}}$$

Packing Instances Together:

- Build the matrix $A = (a_i)$ whose columns are the $e_i G^{\top}$
- Try to decode $(A, (\langle y, e_i \rangle_i)) = (A, xA + t)$ where $t = (\langle r, e_i \rangle_i)$

THE ISSUE

From the fixed decoding instance G, xG + r, we build

$$\langle y, e_i \rangle = \langle xG, e \rangle + \langle r, e \rangle = \langle \underbrace{x}_{\text{secret}}, e_i G^\top \rangle + \underbrace{\langle r, e_i \rangle}_{\text{noise}}$$

Packing Instances Together:

- Build the matrix $A = (a_i)$ whose columns are the $e_i G^{\top}$
- Try to decode $(A, (\langle y, e_i \rangle_i)) = (A, xA + t)$ where $t = (\langle r, e_i \rangle)_i$

 \longrightarrow Feed (A, ($\langle y, e_i \rangle_i$)) to the average decoding algorithm \mathcal{A} . But what happens?

- Columns of A, *i.e.*, $\mathbf{e}_i \mathbf{G}^{\top}$, are **not** uniform
- ▶ Noise $\langle \mathbf{r}, \mathbf{e}_i \rangle$ and $\mathbf{e}_i \mathbf{G}^\top$ are correlated
- How does $\langle \mathbf{r}, \mathbf{e}_i \rangle$ behave?

Our Goal:

Estimate success probability of A being fed with the biased instance (A, ($\langle y, e_i \rangle_i$))

Statistical Distance:

Given two random variables X, Y,

$$\Delta(\mathsf{X},\mathsf{Y}) = \Delta(f,g) = \frac{1}{2} \sum_{a} |\mathbb{P}(\mathsf{X}=a) - \mathbb{P}(\mathsf{Y}=a)|$$

 \longrightarrow It captures the differences between two random variables

• Data processing inequality: for any function/algorithm h

 $\Delta(h(X),h(Y)) \leq \Delta(X,Y)$

• For any event \mathcal{E} ,

$$|\mathbb{P}(\mathsf{X}\in\mathcal{E})-\mathbb{P}(\mathsf{Y}\in\mathcal{E})|\leq\Delta(\mathsf{X},\mathsf{Y})$$

If an algorithm succeeds with inputs **X** and probability ε , then it succeeds given **Y** with probability $\varepsilon + \Delta(X, Y)$

- 2. We feed $(\mathbf{e}_{i}\mathbf{G}^{\top}, \langle \mathbf{x}, \mathbf{e}_{i}\mathbf{G}^{\top} \rangle + \langle \mathbf{r}, \mathbf{e}_{i} \rangle)$ to the decoding-solver \mathcal{A} with succ prob. ε
- 3. If we give *n* samples to A, it will recover **x** with probability $\varepsilon + n\alpha$

Aim:
$$\Delta \left(eG^{\top}, \underbrace{a}_{uniform} \right)$$
 small

Which object is eG^{\top} ?

Take the code $\mathcal{C} \subseteq \mathbb{F}_2^n$ point of view $\mathcal{C} = \Big\{ c: \ cG^\top = 0 \Big\}$

 $\longrightarrow eG^{\top}$ defines a coset of ${\mathcal C}$

Primal representation:

 \mathbf{eG}^{\top} uniform \iff uniform in $\mathbb{F}_{2}^{n}/\mathcal{C}$, *i.e.* uniform modulo \mathcal{C}

 eG^{\top} uniform for $e \leftarrow \mathcal{D} \iff c + e$ uniform in \mathbb{F}_2^n where $c \xleftarrow{unif}{\mathcal{C}} and e \leftarrow \mathcal{D}$

 \longrightarrow To be uniform: necessary to cover the whole space after adding noise!

c+e uniform in \mathbb{F}_2^n where $c\xleftarrow{}{}^{unif}\mathcal{C}$ and $e\longleftarrow\mathcal{D}$

If **e** concentrates over words of Hamming weight $\leq t$, it is necessary that

t is such that: $\#C \cdot \binom{n}{t} \ge 2^n$

 $\mathbf{c} + \mathbf{e}$ uniform in \mathbb{F}_2^n where $\mathbf{c} \xleftarrow{unif}{\mathcal{C}}$ and $\mathbf{e} \longleftarrow \mathcal{D}$

If **e** concentrates over words of Hamming weight $\leq t$, it is necessary that

t is such that: $\#C \cdot \binom{n}{t} \ge 2^n$

Gilbert-Varshamov Radius of C:

 t_{GV} : smallest radius t_0 such that $\sharp C \cdot {n \choose t_0} \ge 2^n$

If one targets $\mathbf{c} + \mathbf{e}$ uniform with \mathbf{e} concentrating over words of Hamming weight t,

then one wants t as small as possible which is t_{GV}

But why?

THE REDUCTION IN A NUTSHELL

An algorithm solving the average decoding problem with noise

 $e_i = \langle \mathbf{r}, \mathbf{e}_i \rangle$ where $\mathbf{e}_i \leftarrow \mathcal{D}$

implies an algorithm solving the fixed decoding problem (G, xG + r)

The average decoding problem with noise

 $e_i = \langle \mathbf{r}, \mathbf{e}_i \rangle$ where $\mathbf{e}_i \leftarrow \mathcal{D}$

is harder than solving the fixed decoding problem (G, xG + r)

The average decoding problem with noise

 $e_i = \langle \mathbf{r}, \mathbf{e}_i \rangle$ where $\mathbf{e}_i \leftarrow \mathcal{D}$

is harder than solving the fixed decoding problem (G, xG + r)

Ideal Situation:

The reduction works with $\mathbb{P}(\langle \mathbf{r}, \mathbf{e}_i \rangle = 1)$ is small

Because in cryptography we use the assumption that average decoding is hard for a noise e with $\mathbb{P}(e = 1)$ small

 \rightarrow To ensure $\mathbb{P}(\langle \mathbf{r}, \mathbf{e}_i \rangle = 1)$ is small we need to choose \mathbf{e}_i concentrating over words

of small Hamming weight

ABOUT THE NOISE DISTRIBUTION

Our aim:

To find $\mathbf{e} \leftarrow \mathcal{D}$ such that $\mathbf{c} + \mathbf{e}$ is close (stat. distance) to uniform when $\mathbf{c} \xleftarrow{unif} \mathcal{C}$

A first approach:

Choose each bit of ${\bf e}$ with probability 1/2, then ${\bf c}+{\bf e}$ is uniform

But, doing this is useless: $\langle \mathbf{r}, \mathbf{e} \rangle$ will be a uniform noise...

Therefore, impossible to solve $(eG^{\top}, \langle x, eG^{\top} \rangle + \underbrace{\langle r, e \rangle}_{noise})$

 \longrightarrow We need to carefully choose **e**!

Given a linear code $\mathcal{C} \subseteq \mathbb{F}_2^n$: we want

 $c+e \ to \ be \ uniform$ where $c \xleftarrow{unif} \mathcal{C}$ and $e \leftarrow \mathcal{D}$ (free choice in the reduction)

 \mathcal{S}_t be the Hamming-sphere with radius t

If \mathcal{D} concentrates over \mathcal{S}_{t} ,

$$\# \mathcal{C} \cdot \binom{n}{t} \ge 2^n \iff t \ge t_{\mathsf{GV}}$$

A lower-bound on the amount of noise:

If noise concentrates on sphere with radius t: necessarily $t \ge t_{GV}$

SOME NOTATION

Notation:

- unif: uniform distribution of \mathbb{F}_2^n
- $1_{\mathcal{C}}$: indicator function of \mathcal{C}

• Convolution,
$$f \star g(\mathbf{x}) \stackrel{\text{def}}{=} \sum_{\mathbf{y} \in \mathbb{F}_2^n} f(\mathbf{y}) g(\mathbf{x} - \mathbf{y})$$

If $X \leftarrow f$ and $Y \leftarrow g$ are independent, then $X + Y \leftarrow f \star g$

Smoothing parameter:

If f_t concentrates over words of weight t. Smoothing parameter is the smallest t s.t,

$$\Delta\left(\frac{1_{\mathcal{C}}}{\sharp_{\mathcal{C}}}\star f_{t}, \mathsf{unif}\right) = \frac{1}{2}\sum_{\mathbf{x}\in\mathbb{F}_{2}^{n}}\left|\frac{1_{\mathcal{C}}}{\sharp_{\mathcal{C}}}\star f_{t}(\mathbf{x}) - \mathsf{unif}(\mathbf{x})\right| \quad \text{is negligible}$$

Our Dream:

$$\Delta\left(rac{1_{\mathcal{C}}}{\sharp_{\mathcal{C}}}\star f_t, \mathsf{unif}
ight)$$
 is negligible as soon as $t=t_{\mathrm{GV}}(1+o(1)),$

We want: $\frac{1_C}{\#C} \star f_t$ close to uniform

So,
$$\mathbf{x} \mapsto \left| \frac{1_{\mathcal{C}}}{\sharp \mathcal{C}} \star f_t(\mathbf{x}) - \text{unif}(\mathbf{x}) \right|$$
 will be roughly constant!

A Good Idea: Cauchy-Schwarz

$$\sum_{\mathbf{x}\in\mathbb{F}_{2}^{n}}\left|\frac{1_{\mathcal{C}}}{\sharp\mathcal{C}}\star f_{t}(\mathbf{x})-\mathsf{unif}(\mathbf{x})\right|\leq\sqrt{2^{n}}\sqrt{\sum_{\mathbf{x}\in\mathbb{F}_{2}^{n}}\left(\frac{1_{\mathcal{C}}}{\sharp\mathcal{C}}\star f_{t}(\mathbf{x})-\mathsf{unif}(\mathbf{x})\right)^{2}}$$

 \longrightarrow The upper-bound: L_2 -distance!

A natural approach: Parseval's identity

FOURIER TRANSFORM IN THE HAMMING CUBE

• Scalar product and associated norms:

$$\langle f,g \rangle \stackrel{\text{def}}{=} \frac{1}{2^n} \sum_{\mathbf{y} \in \mathbb{F}_2^n} f(\mathbf{y}) g(\mathbf{y}) \text{ and } ||f||_2 \stackrel{\text{def}}{=} \sqrt{\langle f,f \rangle}$$

• An orthonormal basis, characters:

$$\chi_{\mathbf{x}}(\mathbf{y}) \stackrel{\text{def}}{=} (-1)^{\langle \mathbf{x}, \mathbf{y} \rangle}$$

Fourier Transform: given $f : \mathbb{F}_2 \to \mathbb{C}$,

$$\widehat{f}(\mathbf{x}) = \frac{1}{\sqrt{2^n}} \sum_{\mathbf{y} \in \mathbb{F}_2^n} f(\mathbf{y}) \chi_{\mathbf{x}}(\mathbf{y}) = \sqrt{2^n} \langle f, \chi_{\mathbf{x}} \rangle$$

• Convolution:

$$\widehat{f \star g} = \sqrt{2^n} \ \widehat{f} \cdot \widehat{g}$$

Parseval Identity: Fourier Transform Isometry for L2

$$||f - g||_2 = ||\widehat{f} - \widehat{g}||_2$$

 \longrightarrow We need to compute $\widehat{1_{\mathcal{C}}}$

Dual Code:
Given
$$C \subseteq \mathbb{F}_2^n$$
,
 $C^{\perp} \stackrel{\text{def}}{=} \left\{ \mathbf{x} \in \mathbb{F}_2^n : \forall \mathbf{y} \in \mathbb{F}_2^n, \sum_i x_i y_i = 0 \right\} = \left\{ \mathbf{x} \in \mathbb{F}_2^n : \forall \mathbf{y} \in C \ \chi_{\mathbf{x}}(\mathbf{y}) = 1 \right\}$

Fourier Transform of the Code Indicator:

$$\widehat{1}_{\mathcal{C}} = \frac{\sharp \mathcal{C}}{\sqrt{2^n}} \ 1_{\mathcal{C}^{\perp}}$$

$$\begin{split} \Delta \left(\frac{1_{\mathcal{C}}}{\sharp \mathcal{C}} \star f_t, \mathsf{unif} \right) &\leq \sqrt{2^n} \, \left\| \frac{1_{\mathcal{C}}}{\sharp \mathcal{C}} \star f_t - \mathsf{unif} \right\|_2 = \sqrt{2^n} \, \left\| \frac{\sqrt{2^n}}{\sharp \mathcal{C}} \, \widehat{1_{\mathcal{C}}} \cdot \widehat{f_t} - \widehat{\mathsf{unif}} \right\|_2 \\ &= \sqrt{2^n} \, \left\| \frac{\sqrt{2^n}}{\sqrt{2^n} \cdot \sharp \mathcal{C}} \cdot \sharp \mathcal{C} \cdot \mathbf{1}_{\mathcal{C}\perp} \cdot \widehat{f_t} - \frac{1}{\sqrt{2^n}} \delta_0 \right\|_2 \\ &= \sqrt{2^n} \, \sqrt{\sum_{\mathbf{c}^\perp \in \mathcal{C}^\perp \setminus \{0\}} |\widehat{f_t}(\mathbf{c}^\perp)|^2} \end{split}$$

Upper-Bound:

If $f_t(\mathbf{x})$ depends only on $|\mathbf{x}|$ (radial),

$$\Delta\left(\frac{1_{\mathcal{C}}}{\sharp_{\mathcal{C}}}\star f_t, \mathsf{unif}\right) \leq \sqrt{2^n} \sqrt{\sum_{a>0} N_a(\mathcal{C}^{\perp}) |\widehat{f}_t(a)|^2}$$

where,

$$N_a(\mathcal{C}^{\perp}) \stackrel{\text{def}}{=} \sharp \left\{ \mathbf{c}^{\perp} \in \mathcal{C}^{\perp} : |\mathbf{c}^{\perp}| = a \right\}$$

AN OPTIMAL UPPER-BOUND: THE RANDOM CASE

We need to upper-bound N_a (C^{\perp}), but how?

AN OPTIMAL UPPER-BOUND: THE RANDOM CASE

We need to upper-bound $N_a(\mathcal{C}^{\perp})$, but how?

 \longrightarrow To understand first if our approach is meaningful, use random codes of fixed size!

$$\mathbb{E}_{\mathcal{C}^{\perp}}\left(\Delta\left(\frac{1_{\mathcal{C}}}{\sharp\mathcal{C}}\star f_{t}, \mathsf{unif}\right)\right) \leq \mathbb{E}_{\mathcal{C}^{\perp}}\left(\sqrt{2^{n}}\sqrt{\sum_{a>0}N_{a}(\mathcal{C}^{\perp})|\widehat{f}_{t}(a)|^{2}}\right)$$
$$\leq \sqrt{2^{n}}\sqrt{\sum_{a>0}\mathbb{E}_{\mathcal{C}^{\perp}}\left(N_{a}(\mathcal{C}^{\perp})|\widehat{f}_{t}(a)|^{2}\right)}$$
$$= \sqrt{2^{n}}\sqrt{\sum_{a>0}\frac{\binom{n}{a}}{\sharp\mathcal{C}}|\widehat{f}_{t}(a)|^{2}}$$

Bernoulli: our dream comes false

Choosing $f_t(\mathbf{x}) = p^{|\mathbf{x}|} (1-p)^{n-|\mathbf{x}|}$ concentrating over words of Hamming weight t = pn with random codes C of dimension k leads to:

$$np \ge \frac{n}{2} \left(1 - \sqrt{2^{k/n} - 1} \right)$$

To ensure $\mathbb{E}_{\mathcal{C}^{\perp}}\left(\Delta\left(\frac{1_{\mathcal{C}}}{\sharp_{\mathcal{C}}}\star f, \mathsf{unif}\right)\right)$ negligible while $\frac{n}{2}\left(1-\sqrt{2^{k/n}-1}\right)\gg t_{\mathsf{GV}}$

Using Bernoulli seems to be non-optimal. Which other distribution concentrating over \mathcal{S}_{pn} could be chosen?

Using Bernoulli seems to be non-optimal. Which other distribution concentrating over \mathcal{S}_{pn} could be chosen?

 $\longrightarrow 1_{\mathcal{S}_t} / {n \choose t}$ be the uniform distribution over \mathcal{S}_t

Using
$$f = \frac{1_{\mathcal{S}_{t}}}{\binom{n}{t}}$$
,
 $\mathbb{E}_{\mathcal{C}^{\perp}}\left(\Delta\left(\frac{2^{n}}{\sharp\mathcal{C}}\mathbf{1}_{\mathcal{C}}\star f, \text{unif}\right)\right) \leq \sqrt{\frac{2^{n}}{\sharp\mathcal{C}\cdot\binom{n}{t}}}$

 \rightarrow Our dream comes true: $t \ge t_{GV}$ to ensure a negligible statistical distance

But our bound only holds on average, not for a fixed code $\mathcal{C}\dots$

To get our upper-bound we used: $\mathbb{E}_{\mathcal{C}^{\perp}} \left(\sharp \left\{ \mathbf{c}^{\perp} \in \mathcal{C}^{\perp} : |\mathbf{c}^{\perp}| = a \right\} \right) = \frac{\binom{n}{t}}{\sharp \mathcal{C}}$

 \longrightarrow What happens for a fixed code, as aimed in the reduction?

We will use

Linear Programming Bounds:

 $N_a\left(\mathcal{C}^{\perp}
ight)\leq F(d,a)$

where d minimum distance of \mathcal{C}^\perp

PACKING BOUNDS

What we need: to bound $N_a(\mathcal{C})$ when the minimum distance of \mathcal{C} is fixed

Simplification: Packing Bound

We will instead bound $\sharp C$ as function of its minimum distance

 $\max \left\{ \# \mathcal{C} : \mathcal{C} \subseteq \mathbb{F}_2^n \text{ and minimum distance } d \right\}$

The most fruitful approach to get the best (asymptotic) packing bounds:

theory of association schemes

Metric Space and Adjacency Matrix:

 (X, τ, \mathbf{n}) be a finite metric space with $\tau : X \times X \rightarrow \{0, \dots, \mathbf{n}\}$.

It associated adjacency matrices $\mathbf{D}_i \in \mathbb{C}^{|X| \times |X|}$ are,

$$\forall x, y \in X, \quad \mathbf{D}_{i}(x, y) \stackrel{\text{def}}{=} \begin{cases} 1 \text{ if } \tau(x, y) = i \\ 0 \text{ otherwise} \end{cases}$$

► Typical cases: $X = \mathbb{F}_2^n$ Hamming scheme or $X = S_t$ (Hamming sphere with radius *t*) Johnson scheme for the Hamming distance

Association Scheme:

 (X, τ, n) is a (metric) association scheme if there exists an integer $p_{i,i}^k$ s.t,

$$\forall x, z \in X \text{ s.t } \tau(x, z) = k, \quad p_{i,j}^k = \sharp \{y \in X : \tau(x, y) = i \text{ and } \tau(y, z) = j\}$$

and $p_{1,k}^{k+1} \neq 0.$

Crucial Consequences:

•
$$p_{i,i}^k = p_{i,i}^k$$
 because τ symmetric as distance

$$\blacktriangleright \mathbf{D}_i \cdot \mathbf{D}_j = \sum_{k=0}^n p_{i,j}^k \cdot \mathbf{D}_k$$

 \longrightarrow Vect (\mathbf{D}_i : $0 \le i \le n$) forms a commutative algebra $\subseteq \mathbb{C}^{|X| \times |X|}$

Vect (\mathbf{D}_i : $0 \le i \le n$) forms a commutative algebra $\subseteq \mathbb{C}^{|X| \times |X|}$ and the \mathbf{D}_i are symmetric

 \longrightarrow The **D**_{*i*} share common orthogonal eigenspaces!

The matrices E_i:

There exists orthogonal projectors $\mathbf{E}_i \in \mathbb{C}^{|X| \times |X|}$ such that,

 $\forall i \in \{0,\ldots,n\}, \quad \mathbf{D}_i = \sum_{j=0}^n p_i(j)\mathbf{E}_j$

 \longrightarrow Matrices **D**_{*i*} and **E**_{*i*} generate the same space!

q-numbers:

$$\forall j \in \{0,\ldots,n\}, \quad \mathbf{E}_j = \frac{1}{|\mathbf{X}|} \sum_{i=0}^n q_j(i) \mathbf{D}_i$$

$$\mathbf{D}_i = \sum_{j=0}^n p_i(j)\mathbf{E}_j$$
 and $\mathbf{E}_j = \frac{1}{|\mathbf{X}|} \sum_{i=0}^n q_j(i)\mathbf{D}_i$

Fourier Transform and Its Inverse: given $f : \{0, \ldots, n\} \rightarrow \mathbb{C}$

$$\widehat{f}(x) \stackrel{\text{def}}{=} \sum_{y=0}^{n} f(y) p_y(x) \text{ and } \widetilde{f}(x) \stackrel{\text{def}}{=} \sum_{y=0}^{n} f(y) q_y(x)$$

$$\mathbf{D}^{f} \stackrel{\text{def}}{=} \sum_{x=0}^{n} f(x) \mathbf{D}_{x}$$
; $\mathbf{E}^{g} \stackrel{\text{def}}{=} \sum_{x=0}^{n} g(x) \mathbf{E}_{x}$

From the decomposition of the \mathbf{D}_i and \mathbf{E}_i in each basis

$$\mathbf{D}^f = \mathbf{E}^{\widehat{f}}$$
 and $\mathbf{E}^f = \mathbf{D}^{\widetilde{f}}$

CODE, DIRAC NOTATION AND WEIGHT DISTRIBUTION

Our aim is to upper-bound the size of a code with minimum distance d

► Code: given (X, τ, n) an association scheme, a code C is a subset of X. $d \stackrel{\text{def}}{=} \min (\tau(c, c') : c, c' \in C \text{ and } c \neq c')$

Dirac/Bra-ket Notation

 $X = \{x_1, \ldots, x_N\}$. For any x_i , the vector $|x_i\rangle$ is zero except at the ith entry where it is 1.

$$|v\rangle = \begin{pmatrix} v_1 \\ \vdots \\ v_N \end{pmatrix} = \sum_{i=1}^N v_i |x_i\rangle$$
 and $\langle v| = (\overline{v_1} \dots \overline{v_N})$

Given a code $\mathcal{C} \subseteq X$,

$$|\psi_{\mathcal{C}}\rangle \stackrel{\text{def}}{=} \frac{1}{\sqrt{\sharp \mathcal{C}}} \sum_{c \in \mathcal{C}} |c\rangle$$

• Weight Distribution: $a(t) = \frac{1}{\sharp C} \cdot \sharp ((c, c') \in C^2 : \tau(c, c') = t) = \langle \psi_C | D_t | \psi_C \rangle$

$$\sharp C = \sum_{t=0}^{n} a(t), \quad a(0) = 1 \text{ and } a(t) = 0 \text{ if } t \in \{1, \dots, d-1\}$$

$$a(t) = \langle \psi_{\mathcal{C}} | \mathbf{D}_t | \psi_{\mathcal{C}} \rangle$$
 where $| \psi_{\mathcal{C}} \rangle \stackrel{\text{def}}{=} \frac{1}{\sqrt{\mathcal{C}}} \sum_{c \in \mathcal{C}} | c \rangle$

Dual Code Distribution:

$$a'(i) \stackrel{\text{def}}{=} \langle \psi_{\mathcal{C}} | \mathsf{E}_i | \psi_{\mathcal{C}} \rangle = \langle \psi_{\mathcal{C}} | \frac{1}{|\mathsf{X}|} \sum_{t=0}^n q_i(t) \mathsf{D}_t | \psi_{\mathcal{C}} \rangle = \sum_{t=0}^n q_i(t) a'(t)$$

If $\ensuremath{\mathcal{C}}$ is linear, then

$$a'(i) = \sharp \left((c^{\perp}, d^{\perp}) \in \mathcal{C}^{\perp} : \tau(c^{\perp}, d^{\perp}) = i \right)$$

Otherwise, if C is not linear maybe even not integers... But in any case:

MacWilliams identity:

 $\forall i \in \{0, \ldots, n\}, \ a'(i) \ge 0$

Proof: the \mathbf{E}_i are projectors, i.e., $\mathbf{E}_i = \sum_t \left| \mathbf{v}_t^{(i)} \right\rangle \! \left\langle \mathbf{v}_t^{(i)} \right|$ and,

$$a'(i) = \langle \psi_{\mathcal{C}} | \sum_{t} \left| \mathsf{v}_{i}^{(t)} \right\rangle \! \left\langle \mathsf{v}_{i}^{(t)} \right| \left| \psi_{\mathcal{C}} \right\rangle = \sum_{t} \left\langle \psi_{\mathcal{C}} \left| \mathsf{v}_{i}^{(t)} \right\rangle \left\langle \mathsf{v}_{i}^{(t)} \right| \psi_{\mathcal{C}} \right\rangle = \sum_{t} \left| \left\langle \psi_{\mathcal{C}} \left| \mathsf{v}_{i}^{(t)} \right\rangle \right|^{2} \ge 0$$

Delsarte's Linear Program:

$$DLP(n, d) \stackrel{\text{def}}{=} \sum_{t \in \llbracket 0, n \rrbracket} u(t)$$
$$u(0) = 1$$
$$u(t) = 0 \text{ for } t \in \{1, \dots, d-1\}$$
$$u(t) \ge 0 \text{ for } t \in \{d, \dots, n\}$$
$$\sum_{t \in \llbracket 0, n \rrbracket} u(t)q_i(t) \ge 0 \text{ for } i \in \{0, \dots, n\}.$$

Given a code C with minimum distance d, its weight distribution a(t) is a solution of Delsarte's linear program,

 $\sharp \mathcal{C} \leq \mathsf{A}(n,d) \leq \mathsf{DLP}(n,d)$

 \longrightarrow MacWilliams identity shows that the weight distribution verifies the last condition

of Delsarte's Linear Program

Dual Delsarte Linear Program:

Let $d \in \{0, \dots, n\}$ and $f : \{0, \dots, n\} \longrightarrow \mathbb{R}$ be a function such that,

$$\widehat{f} \ge 0$$
 , $\widehat{f}(0) > 0$, $\forall x \ge d, f(x) \le 0$.

Then,

 $\max \left\{ \sharp \mathcal{C} : \mathcal{C} \subseteq \mathbb{F}_2^n \text{ and minimum distance } d \right\} \leq \mathsf{DLP}(n, d) \leq |\mathsf{X}| \cdot \frac{f(0)}{\widehat{f}(0)}.$

Obtained bounds via the choice of a function f with $X = \mathbb{F}_{2}^{n}$,

- Plotkin,
- Hamming,
- Elias-Bassalygo,
- MRRW1&2 (McEliece, Rodemich, Rumsay, Welch) best bounds from '77.

 Framework for a worst-to-average-case reduction in coding theory: smoothing parameter

 \longrightarrow It reduces to upper-bound the weight distribution of a fixed code

To derive upper-bounds for the weight distribution of a fixed code: use Delsarte's Linear Program approach as for packing bounds