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CODE-BASED CRYPTOGRAPHY

Code-Based Cryptography:
Building cryptographic primitives whose security relies on

hardness of decoding a random code

But how to ensure the hardness of decoding a random code?

▶ Test of time,

▶ Reduction: prove that decoding is harder than another hard problem.

−→ We will focus on reductions
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ROADMAP

1. Decoding Random Codes: an Average Case

2. Worst-to-Average-Case Reduction: Framework

3. Smoothing Parameter

4. Packing Bounds
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THE AVERAGE DECODING PROBLEM



LINEAR CODES AND HAMMING WEIGHT

Linear Codes: Primal Representation
A linear code C is a subspace of Fn2 .

Basis/Generator matrix representation: rows of A ∈ Fk×n
2 form a basis,

C =
{
sA : s ∈ Fk2

}

The vector/matrix multiplication sA is the collection of inner-products

〈s, a1〉, . . . , 〈s, an〉 where ai column of A and 〈x, y〉 def=
∑n

i=1 xiyi ∈ F2

Hamming Weight:

∀x ∈ Fn2 , |x|
def
=

{
i ∈ {1, . . . , n} : xi 6= 0

}

4



BERNOULLI RANDOM VARIABLE

▶ e← Ber(p)⊗n : the ei’s are independent and P(ei = x) =
{

1− p if x = 0
p if x 6= 0

Chernoff’s Bound: Ber(p)⊗n concentrates over words of Hamming weight ≈ np

Given e← Ber(p)⊗n ,
E (|e|) = np and P

(∣∣∣|e| − np∣∣∣ ≥ εn) ≤ 2 e−εn2

First approximation: Ber(p)⊗n is a uniform vector of Hamming weight np
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AVERAGE DECODING PROBLEM

A-DP(n,k,t): Average Decoding Problem

• Input: (A, sA+ t) where A ∈ Fk×n
2 , s ∈ Fk2 are uniform and t← Ber(t/n)⊗n

• Output: recovering s

Algorithm A solving A-DP in time T and probability ε means

• A runs in time T,

• Given A, s uniform and t← Ber(p)⊗n ,

PA,s,t (A (A, sA+ t) = s) = ε
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YOU SAID AVERAGE CASE?

▶ Given (A, s) ∈ Fk×n
2 × Fk2 uniform and t← Ber(p)⊗n ,

PA,s,t (A (A, sA+ t) = s) = ε

Law of total probability:

ε = 1
2k×n

∑
s0,A0

∑
t

∑
t0: |t0|=t

P (A (A0, s0 + t0) = s0) pt(1− p)n−t︸ ︷︷ ︸
Pt(t=t0)

−→ ε: average success probability of A over all possible inputs

ε small =⇒A fails for almost all instances

Assumption in Code-Based Cryptography:
A-DP is hard, i.e., for any algorithm, T/ε is large 
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TEST OF TIME, WHAT ELSE?

To ensure hardness of decoding a random code (average hardness):

1. Test of time,

2. Reductions: solving the decoding problem on average implies an algorithm

which

(i) computes (quantumly) short vectors in the dual code,

(ii) solves all instances of another decoding problem (worst-case).
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WORST-TO-AVERAGE CASE REDUCTION



OUR GOAL

Given a fixed instance

(G, xG+ r) where Hamming weight of r is w

we want to recover r

But, we only have an algorithm A solving A-DP with probability ε

PA,s,t (A(A, sA+ t) = s) = ε
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THE APPROACH

Key-idea:
From (G, xG+ r) build a “uniform decoding” instance being fed to A

1. ei ← D (distribution)

2. Compute,

〈y, ei〉 = 〈xG, ei〉+ 〈r, ei〉 = 〈 x︸︷︷︸
secret

, eiG⊤〉+ 〈r, ei〉︸ ︷︷ ︸
noise

Packing Instances Together:

• Build the matrix A = (ai) whose columns are the eiG⊤

• Try to decode (A, (〈y, ei〉i)) = (A, xA+ t) where t = (〈r, ei〉)i

11



THE ISSUE

From the fixed decoding instance G, xG+ r, we build

〈y, ei〉 = 〈xG, e〉+ 〈r, e〉 = 〈 x︸︷︷︸
secret

, eiG⊤〉+ 〈r, ei〉︸ ︷︷ ︸
noise

Packing Instances Together:

• Build the matrix A = (ai) whose columns are the eiG⊤

• Try to decode (A, (〈y, ei〉i)) = (A, xA+ t) where t = (〈r, ei〉)i

−→ Feed (A, (〈y, ei〉i)) to the average decoding algorithm A. But what happens?

▶ Columns of A, i.e., eiG⊤ , are not uniform

▶ Noise 〈r, ei〉 and eiG⊤ are correlated

▶ How does 〈r, ei〉 behave?

Our Goal:
Estimate success probability of A being fed with the biased instance (A, (〈y, ei〉i))
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CLOSENESS: STATISTICAL DISTANCE

Statistical Distance:
Given two random variables X, Y,

∆(X, Y) = ∆(f, g) = 1
2
∑
a
|P(X = a)− P(Y = a)|

−→ It captures the differences between two random variables

• Data processing inequality: for any function/algorithm h

∆(h(X), h(Y)) ≤ ∆(X, Y)

• For any event E ,
|P(X ∈ E)− P(Y ∈ E)| ≤ ∆(X, Y)

If an algorithm succeeds with inputs X and probability ε, then it succeeds given Y with

probability ε+∆(X, Y)
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OUR AIM

True average decoding instance

1. We want the following to be small:

α
def
= ∆

(
(eiG⊤, 〈x, eiG⊤〉+ 〈r, ei〉), ( a︸︷︷︸

uniform

, 〈x, a〉+ e︸︷︷︸
same distrib as ⟨r, ei⟩

)
)

2. We feed
(
eiG⊤, 〈x, eiG⊤〉+ 〈r, ei〉

)
to the decoding-solver A with succ prob. ε

3. If we give n samples to A, it will recover x with probability ε+ nα

Simplification:

Target: ∆

eiG⊤, a︸︷︷︸
uniform

 small when G is fixed but ei random variable.
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A GEOMETRICAL INTERPRETATION: PRIMAL REPRESENTATION

Aim: ∆

eG⊤, a︸︷︷︸
uniform

 small

Which object is eG⊤?

Take the code C ⊆ Fn2 point of view

C =
{
c : cG⊤ = 0

}

−→ eG⊤ defines a coset of C

Primal representation:

eG⊤ uniform⇐⇒ uniform in Fn2/C, i.e. uniform modulo C

eG⊤ uniform for e←− D ⇐⇒ c+ e uniform in Fn2 where c
unif←−C and e←− D
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POTATOES

c+ e uniform in Fn2 where c
unif←−C and e←− D

c ∈ C

after adding noise

Fn2

Starting from codewords and adding noise
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POTATOES

c+ e uniform in Fn2 where c
unif←−C and e←− D

c ∈ C

after adding noise

Fn2

Starting from codewords and adding noise

−→ To be uniform: necessary to cover the whole space after adding noise!

16



COMBINATORICS POINT OF VIEW: GILBERT-VARSHAMOV RADIUS

c+ e uniform in Fn2 where c
unif←−C and e←− D

If e concentrates over words of Hamming weight ≤ t, it is necessary that

t is such that: ♯C ·
(n
t
)
≥ 2n

Gilbert-Varshamov Radius of C:

tGV : smallest radius t0 such that ♯C ·
(n
t0

)
≥ 2n

If one targets c+ e uniform with e concentrating over words of Hamming weight t,

then one wants t as small as possible which is tGV

But why?
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THE REDUCTION IN A NUTSHELL

An algorithm solving the average decoding problem with noise

ei = 〈r, ei〉 where ei ←− D

implies an algorithm solving the fixed decoding problem (G, xG+ r)

Ideal Situation:
The reduction works with P (〈r, ei〉 = 1) is small

Because in cryptography we use the assumption that average decoding is hard
for a noise e with P(e = 1) small

−→ To ensure P (〈r, ei〉 = 1) is small we need to choose ei concentrating over words

of small Hamming weight
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ABOUT THE NOISE DISTRIBUTION



THE NOISE: OUR BEST FRIEND TO UNIFORMIZE

Our aim:

To find e←− D such that c+ e is close (stat. distance) to uniform when c unif←−C

A first approach:
Choose each bit of e with probability 1/2, then c+ e is uniform

But, doing this is useless: 〈r, e〉 will be a uniform noise. . .

Therefore, impossible to solve (eG⊤, 〈x, eG⊤〉+ 〈r, e〉︸ ︷︷ ︸
noise

)

−→ We need to carefully choose e!
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OUR GOAL

Given a linear code C ⊆ Fn2 : we want

c+ e to be uniform where c unif←−C and e← D (free choice in the reduction)

St be the Hamming-sphere with radius t

If D concentrates over St ,

♯C ·
(n
t
)
≥ 2n ⇐⇒ t ≥ tGV

A lower-bound on the amount of noise:
If noise concentrates on sphere with radius t: necessarily t ≥ tGV
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SOME NOTATION

Notation:

• unif: uniform distribution of Fn2

• 1C : indicator function of C

• Convolution, f ⋆ g(x) def=
∑

y∈Fn2
f(y)g(x− y)

If X← f and Y← g are independent, then X+ Y← f ⋆ g

Smoothing parameter:
If ft concentrates over words of weight t. Smoothing parameter is the smallest t s.t,

∆
(
1C
♯C ⋆ ft, unif

)
= 1

2
∑
x∈Fn2

∣∣∣ 1C♯C ⋆ ft(x)− unif(x)∣∣∣ is negligible

Our Dream:

∆
(
1C
♯C ⋆ ft, unif

)
is negligible as soon as t = tGV(1+ o(1)),
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CAUCHY-SCHWHARZ: PARSEVAL’S WORLD

We want: 1C
♯C ⋆ ft close to uniform

So, x 7→
∣∣∣ 1C♯C ⋆ ft(x)− unif(x)∣∣∣ will be roughly constant!

A Good Idea: Cauchy-Schwarz

∑
x∈Fn2

∣∣∣∣ 1C♯C ⋆ ft(x)− unif(x)
∣∣∣∣ ≤ √2n

√√√√∑
x∈Fn2

(
1C
♯C

⋆ ft(x)− unif(x)
)2

−→ The upper-bound: L2-distance!

A natural approach: Parseval’s identity
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FOURIER TRANSFORM IN THE HAMMING CUBE

• Scalar product and associated norms:

〈f, g〉 def= 1
2n

∑
y∈Fn2

f(y)g(y) and ‖f‖2
def
=

√
〈f, f〉

• An orthonormal basis, characters:

χx(y) def= (−1)⟨x,y⟩

Fourier Transform: given f : F2 → C,

f̂(x) = 1√
2n

∑
y∈Fn2

f(y)χx(y) =
√
2n 〈f, χx〉

• Convolution:
f̂ ⋆ g =

√
2n f̂ · ĝ

Parseval Identity: Fourier Transform Isometry for L2

‖f− g‖2 = ‖̂f− ĝ‖2
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DUALITY

−→ We need to compute 1̂C

Dual Code:
Given C ⊆ Fn2 ,

C⊥ def
=

{
x ∈ Fn2 : ∀y ∈ Fn2 ,

∑
i
xiyi = 0

}
=

{
x ∈ Fn2 : ∀y ∈ C χx(y) = 1

}

Fourier Transform of the Code Indicator:

1̂C =
♯C
√
2n

1C⊥
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SMOOTHING PARAMETER: AN UPPER-BOUND

∆

(
1C
♯C

⋆ ft, unif
)
≤
√
2n

∥∥∥∥ 1C♯C ⋆ ft − unif
∥∥∥∥
2
=
√
2n

∥∥∥∥∥
√
2n
♯C

1̂C · f̂t − ûnif
∥∥∥∥∥
2

=
√
2n

∥∥∥∥∥
√
2n

√
2n · ♯C

· ♯C · 1C⊥ · f̂t −
1
√
2n
δ0

∥∥∥∥∥
2

=
√
2n

√ ∑
c⊥∈C⊥\{0}

|f̂t(c⊥)|2

Upper-Bound:

∆
(
1C
♯C ⋆ ft, unif

)
≤
√
2n

√ ∑
c⊥∈C⊥\{0}

|f̂t(c⊥)|2

If ft(x) depends only on |x| (radial),

∆
(
1C
♯C ⋆ ft, unif

)
≤
√
2n

√∑
a>0

Na(C⊥) |f̂t(a)|2

where,
Na(C⊥)

def
= ♯

{
c⊥ ∈ C⊥ : |c⊥| = a

}
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AN OPTIMAL UPPER-BOUND: THE RANDOM CASE
We need to upper-bound Na

(
C⊥

)
, but how?

−→ To understand first if our approach is meaningful, use random codes of fixed size!

EC⊥

(
∆

(
1C
♯C

⋆ ft, unif
))
≤ EC⊥

√2n √∑
a>0

Na(C⊥) |̂ft(a)|2


≤
√
2n

√∑
a>0

EC⊥

(
Na(C⊥) |f̂t(a)|2

)

=
√
2n

√√√√∑
a>0

(n
a
)

♯C
|̂ft(a)|2

Bernoulli: our dream comes false

Choosing ft(x) = p|x|(1− p)n−|x| concentrating over words of Hamming weight t = pn
with random codes C of dimension k leads to:

np ≥ n
2

(
1−

√
2k/n − 1

)
To ensure EC⊥

(
∆

(
1C
♯C ⋆ f, unif

))
negligible while

n
2

(
1−

√
2k/n − 1

)
� tGV
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UNIFORM DISTRIBUTION OVER A SPHERE

Using Bernoulli seems to be non-optimal. Which other distribution concentrating over
Spn could be chosen?

 

−→ 1St/
(n
t
)
be the uniform distribution over St

28



UNIFORM DISTRIBUTION OVER A SPHERE

Using Bernoulli seems to be non-optimal. Which other distribution concentrating over
Spn could be chosen?

 
−→ 1St/

(n
t
)
be the uniform distribution over St

28



CONCLUSION

Using f = 1St(
n
t

) ,
EC⊥

(
∆

(
2n

♯C
1C ⋆ f, unif

))
≤

√
2n

♯C ·
(n
t
)

−→ Our dream comes true: t ≥ tGV to ensure a negligible statistical distance

But our bound only holds on average, not for a fixed code C . . .
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NON-RANDOM CASE

To get our upper-bound we used: EC⊥
(
♯
{
c⊥ ∈ C⊥ : |c⊥| = a

})
=

(
n
t

)
♯C

−→ What happens for a fixed code, as aimed in the reduction?

We will use

Linear Programming Bounds:

Na
(
C⊥

)
≤ F(d, a)

where d minimum distance of C⊥
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PACKING BOUNDS



SOME SIMPLIFICATION

What we need: to bound Na(C) when the minimum distance of C is fixed

Simplification: Packing Bound
We will instead bound ♯C as function of its minimum distance

max
{
♯C : C ⊆ Fn2  and minimum distance d

}

The most fruitful approach to get the best (asymptotic) packing bounds:

theory of association schemes
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ASSOCIATION SCHEMES: ADJACENCY MATRIX

Metric Space and Adjacency Matrix:
(X, τ, n) be a finite metric space with τ : X× X→ {0, . . . , n}.

It associated adjacency matrices Di ∈ C|X|×|X| are,

∀x, y ∈ X, Di(x, y)
def
=

{
1 if τ(x, y) = i
0 otherwise

▶ Typical cases: X = Fn2 Hamming scheme or X = St (Hamming sphere with radius t)

Johnson scheme for the Hamming distance
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ASSOCIATION SCHEMES: A TRIANGLE CONDITION

Association Scheme:

(X, τ, n) is a (metric) association scheme if there exists an integer pki,j s.t,

∀x, z ∈ X  s.t τ(x, z) = k, pki,j = ♯ {y ∈ X : τ(x, y) = i and τ(y, z) = j}

and pk+11,k 6= 0.

x z
k

y
ii j

The number of y only depends of i, j and k

Crucial Consequences:

▶ pki,j = pkj,i because τ symmetric as distance

▶ Di · Dj =
∑n

k=0 pki,j · Dk

−→ Vect (Di : 0 ≤ i ≤ n) forms a commutative algebra ⊆ C|X|×|X|
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A WORLD OF ORTHOGONAL PROJECTORS

Vect (Di : 0 ≤ i ≤ n) forms a commutative algebra ⊆ C|X|×|X| and the Di are

symmetric

−→ The Di share common orthogonal eigenspaces!

The matrices Ei:

There exists orthogonal projectors Ej ∈ C|X|×|X| such that,

∀i ∈ {0, . . . , n}, Di =
∑n

j=0 pi(j)Ej

−→ Matrices Di and Ej generate the same space!

q-numbers:

∀j ∈ {0, . . . , n}, Ej = 1
|X|

∑n
i=0 qj(i)Di
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FOURIER TRANSFORM

Di =
∑n

j=0 pi(j)Ej and Ej = 1
|X|

∑n
i=0 qj(i)Di

Fourier Transform and Its Inverse: given f : {0, . . . , n} → C

f̂(x) def=
∑n

y=0 f(y)py(x) and f̃(x) def=
∑n

y=0 f(y)qy(x)

Df def=
∑n

x=0 f(x)Dx ; Eg def
=

∑n
x=0 g(x)Ex

From the decomposition of the Di and Ej in each basis

Df = Êf and Ef = D̃f
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CODE, DIRAC NOTATION AND WEIGHT DISTRIBUTION

Our aim is to upper-bound the size of a code with minimum distance d

▶ Code: given (X, τ, n) an association scheme, a code C is a subset of X.

d def
= min (τ(c, c′) : c, c′ ∈ C and c 6= c′)

Dirac/Bra-ket Notation
X = {x1, . . . , xN}. For any xi , the vector |xi〉 is zero except at the ith entry where it is 1.

|v〉 =


v1
...
vN

 =
N∑
i=1
vi |xi〉 and 〈v| =

(
v1 . . . vN

)

Given a code C ⊆ X,
|ψC〉

def
= 1√

♯C
∑
c∈C
|c〉

▶ Weight Distribution: a(t) = 1
♯C · ♯

(
(c, c′) ∈ C2 : τ(c, c′) = t

)
= 〈ψC |Dt |ψC〉

♯C =
n∑
t=0

a(t), a(0) = 1 and a(t) = 0 if t ∈ {1, . . . , d− 1}
37



DUAL DISTRIBUTION AND MACWILLIAMS IDENTITY

a(t) = 〈ψC |Dt |ψC〉 where |ψC〉
def
= 1√

C
∑

c∈C |c〉

Dual Code Distribution:

a′(i) def= 〈ψC | Ei |ψC〉 = 〈ψC | 1
|X|

n∑
t=0

qi(t)Dt |ψC〉 =
n∑
t=0

qi(t)a′(t)

If C is linear, then

a′(i) = ♯
(
(c⊥, d⊥) ∈ C⊥ : τ(c⊥, d⊥) = i

)
Otherwise, if C is not linear maybe even not integers. . . But in any case:

MacWilliams identity:
∀i ∈ {0, . . . , n}, a′(i) ≥ 0

Proof: the Ei are projectors, i.e., Ei =
∑

t

∣∣∣v(i)t 〉〈
v(i)t

∣∣∣ and,
a′(i) = 〈ψC |

∑
t

∣∣∣v(t)i 〉〈
v(t)i

∣∣∣ |ψC〉 =
∑

t

〈
ψC

∣∣∣v(t)i 〉 〈
v(t)i

∣∣∣ψC
〉
=

∑
t

∣∣∣〈ψC

∣∣∣v(t)i 〉∣∣∣2 ≥ 0
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DELSARTE’S LINEAR PROGRAM

Delsarte’s Linear Program:

DLP(n, d) def=
∑

t∈J0,nK u(t)
u(0) = 1
u(t) = 0 for t ∈ {1, . . . , d− 1}
u(t) ≥ 0 for t ∈ {d, . . . , n}∑

t∈J0,nK u(t)qi(t) ≥ 0 for i ∈ {0, . . . , n}.

Given a code C with minimum distance d, its weight distribution a(t) is a solution of
Delsarte’s linear program,

♯C ≤ A(n, d) ≤ DLP(n, d)

−→ MacWilliams identity shows that the weight distribution verifies the last condition

of Delsarte’s Linear Program
39



DUAL DELSARTE’S LINEAR PROGRAM

Dual Delsarte Linear Program:
Let d ∈ {0, . . . , n} and f : {0, . . . , n} −→ R be a function such that,

f̂ ≥ 0 , f̂(0) > 0 , ∀x ≥ d, f(x) ≤ 0.

Then,

max
{
♯C : C ⊆ Fn2  and minimum distance d

}
≤ DLP(n, d) ≤ |X| · f(0)

f̂(0)
.

Obtained bounds via the choice of a function f with X = Fn2 ,

▶ Plotkin,

▶ Hamming,

▶ Elias-Bassalygo,

▶ MRRW1&2 (McEliece, Rodemich, Rumsay, Welch) best bounds from ’77.
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CONCLUSION

▶ Framework for a worst-to-average-case reduction in coding theory: smoothing

parameter

−→ It reduces to upper-bound the weight distribution of a fixed code

▶ To derive upper-bounds for the weight distribution of a fixed code: use Delsarte’s

Linear Program approach as for packing bounds
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