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Introduction

X projective, absolutely irreducible, non-singular, algebraic
curve defined over the finite field Fq2

Studied since 1980s

⋄ Coding Theory

⋄ Cryptography

⋄ Finite geometry

⋄ Shift register sequences

⋄ . . .

−→ Maximal Curves
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Maximal Curves

Hasse-Weil upper bound : N(X ) ≤ 1 + q2 + 2qg

X defined over Fq2 is Fq2-maximal if it attains the Hasse-Weil
upper bound

N(X ) number of Fq2-rational points
g genus of the curve X

Examples

1-dimensional Deligne-Lusztig Varieties

⋄ Hermitian curve - characteristic p ≥ 2
⋄ Suzuki curve - characteristic 2
⋄ Ree curve - characteristic 3
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Galois covering

X algebraic curve over Fq2

Let G ≤ Aut(X )

Fixed field of G: X G = {x ∈ X | g(x) = x ∀g ∈ G} ≤ X

Y model of X G

Quotient curve : Y = X/G covered by X

Y 7→ X

[X : X G] =| G |
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Galois covering

Kleiman-Serre
If X is Fq2-maximal and Y is Fq2-covered by X then Y is
Fq2-maximal

Lachaud, Sommes d’eisenstein et nombre de points de
certaines courbes algebriques sur les corps finis, C.R. Acad.
Sci. Paris Ser., 1987.

Is every Fq2-maximal curve (Galois-)covered by the Hermitian
curve Hq?

Giulietti-Korchmáros curve (2009)
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Fq2-automorphism group of Hq

Quotient curve of the Hermitian curve Hq

Theorem
Aut(Fq2(Hq)) ∼= PGU(3, q) (over the finite field Fq2)

PGU(3, q) rich of subgroups!
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Main questions

I. Determination of the possible genera of maximal
curves over a given finite field

II. Determination of explicit equations for maximal
curves

III. Classification of maximal curves over a finite field
which have the same genus
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I. Determination of the possible genera of maximal curves over a
given finite field

A. Garcı́a, H. Stichtenoth, and C.P. Xing, On Subfields of
the Hermitian Function Field, Comp. Math 120 (2000),
137-170.

q ≡ 1 mod(4)

Montanucci, Zini, 2018-2020.

q ≡ 3 mod(4)

Work in progress
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Our contributions

II. Determination of explicit equations for maximal
curves

III. Classification of maximal curves over a finite field
which have the same genus
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II. Determination of explicit equations for maximal curves

Curves defined by explicit equations
Hirschfeld, Korchmáros, Torres, Algebraic Curves over a

Finite Field, Princeton Series in Applied Mathematics,
Princeton University Press, Princeton, NJ, 2008. xx+696 pp.

Subgroup of order p, p prime
A. Cossidente, G. Korchmáros and F. Torres, Curves of

large genus covered by the Hermitian curve, Comm. Algebra
28 (2000), 4707–4728.

Subgroup of order p2, p prime
B. Gatti, G. Korchmáros, Galois subcovers of the Hermitian

curve in characteristic p with respect to subgroups of order p2,
http://arxiv.org/abs/2307.15192, to appear in Finite Fields
and Their Applications
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Subgroup of order p, p prime

A :
h

∑
i=1

Yq/pi
+ ωXq+1 = 0, ωq−1 = −1, h ≥ 2

B : Yq + Y − (
h

∑
i=1

Xq/pi
)2 = 0, h ≥ 2

A. Cossidente, G. Korchmáros and F. Torres, Curves of
large genus covered by the Hermitian curve, Comm. Algebra
28 (2000), 4707–4728.
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Hermitian curve

Hq: Yq + Y − Xq+1

Function field: Fq2(x, y) with yq + y − xq+1 = 0

Hq: Yq − Y + ωXq+1

Function field: Fq2(x, y) with yq − y + ωxq+1 = 0

ω ∈ Fq2 , ωq−1 = −1
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Background

Sp Sylow p-subgroup of Aut(Fq2(Hq))

Y∞ Unique fixed point of Sp

ψa,b,λ : (x, y) 7→ (λx + a, aqλx + λq+1y + b)

a ∈ Fq2 , λ ∈ F∗
q2 , bq + b = aq+1

or

φa,b,λ : (x, y) 7→ (λx + a, aqλωx + λq+1y + b)

a ∈ Fq2 , λ ∈ F∗
q2 , bq − b = −ωaq+1

⇒ Sp is the Sylow p-subgroup of the stabilizer of Y∞
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Subgroups of order dp

p, d prime p ̸= d p, d > 3

I. G = Σp × Σd
Σp = ⟨φ0,1,1⟩ and Σd = ⟨φ0,0,λ⟩
λd = 1, d|(q + 1)

II. G = Σp ⋊ Σd
Σp = ⟨φ0,1,1⟩ and Σd = ⟨φ0,0,λ⟩
λd = 1, d|(p − 1)

III. G = Σp ⋊ Σd
Σp = ⟨φ1,ω/2,1⟩ and Σd = ⟨φ0,0,λ⟩
λd = 1, d|(p − 1)
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Quotient curves with respect to a subgroup of order dp

Quotient curve H = Hq/G

q = ph

p, d prime p ̸= d p, d > 3

p > d
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Quotient curves with respect to a subgroup of order dp

I. (The nice case)

If G = Σp × Σd then H has genus

g =
1

2d
(q − d + 1)

(
q
p
− 1

)
≃ q2

2dp

and equation
h−1

∑
i=0

Ypi
+ ωX(q+1)/d = 0

with ωq−1 = −1 and d | (q + 1)
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Quotient curves with respect to a subgroup of order dp

II.
If G = Σp ⋊ Σd and Σp is in the center in a Sylow p-subgroup of
G, then H has genus

g =
1
2

q
d

(
q
p
− 1

)
≃ q2

2dp

and equation
ωX(q−1)/d − A(X, Y) = 0

with ωq−1 = −1 and d | (p − 1) where

A(X, Y) = Y + X2(p−1)/dYp + · · ·+ X2(ph−1−1)/dYq/p
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Quotient curves with respect to a subgroup of order dp

III.
If G = Σp ⋊ Σd but Σp is not in the center in a Sylow
p-subgroup of G, then H has genus

g =
q

2dp
(q − 1) ≃ q2

2dp

and equation (
Y2

Xd

)(q−1)/d

+ 1 − A(X, Y) = 0

with d | (p − 1) where

A(X, Y) =
h−1

∑
i=0

h−1

∑
j=0

(
Y2

Xd

)(pi−1)/2d (Y2

Xd

)(pj−1)/2d

X(pi+pj)/2
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Weierstrass semigroup

X projective, absolutely irreducible, non-singular, algebraic
curve defined over the finite field Fq2

Let P ∈ X . An integer n ≥ 0 is called a pole number of P if
there is a function f ∈ Fq2(X ) with ( f )∞ = nP. Otherwise n is
called a gap number of P

The set H(P) of pole numbers of a point P is a semigroup,
called the Weierstrass semigroup at P
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Weierstrass semigroup

By the Weierstrass Gap Theorem, if g(X ) > 0, then for each
rational P ∈ X :

▶ there are exactly g(X ) gaps
▶ 1 is always a gap
▶ the largest gap is ≤ 2g(X )− 1

Main ingredient to construct Algebraic-Geometry codes
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Weierstrass semigroup

Let P∞ be the unique point at infinity of the following two
curves

A :
h

∑
i=1

Yq/pi
+ ωXq+1 = 0, ωq−1 = −1, h ≥ 2

Nice :
h

∑
i=1

Yq/pi
+ ωX(q+1)/d = 0, ωq−1 = −1, d | (q + 1)

Then the Weierstrass semigroup at P∞ is generated by

▶ q
p and q + 1

▶ q
p and q+1

d
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Weierstrass semigroup

Let P∞ be the unique point at infinity of the following curve

B : Yq + Y − (
h

∑
i=1

Xq/pi
)2 = 0

{
q
p ; q + 1

}
is a telescopic semigroup

⇒ The Weierstrass semigroup at P∞ is H(P∞) = ⟨ q
p , q + 1⟩
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Non-Gaps

Eq.I I. ωX(q−1)/d − A(X, Y) = 0

with ωq−1 = −1 and d | (p − 1) where

A(X, Y) = Y + X2(p−1)/dYp + · · ·+ X2(ph−1−1)/dYq/p

⇒ q
p , q−1

d ∈ H(P∞)

Eq.I I I.
(

Y2

Xd

)(q−1)/d

+ 1 − A(X, Y) = 0

with d | (p − 1) where

A(X, Y) =
h−1

∑
i=0

h−1

∑
j=0

(
Y2

Xd

)(pi−1)/2d ( Y2

Xd

)(pj−1)/2d

X(pi+pj )/2

⇒ 2(q−1)
d , q − 1 ∈ H(P∞)

Barbara Gatti Galois Subcovers 22



Applications

X : Algebraic curves over Fq2 → C: Algebraic Geometry codes

D, G divisors on X
D = P1 + · · ·+ Pr, Pi Fq2-rational points of X

Designed minimum distance

d ≥ n − deg(G)
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Applications

Taking G = mP → then knowledge of the gaps at P∞ may allow
one to show that the minimum distance d∗ of the code C may
be better than the designed minimum distance d.

A. Garcia, S. J. Kim, R. F. Lax, Consecutive Weierstrass gaps
and minimum distance of Goppa codes, J. Pure Appl. Algebra 84
(1993), 199-207.

H. Janwa, On the parameters of algebraic geometric codes, in
Applied algebra, algebraic algorithms and error-correcting codes (New
Orleans, LA, 1991), 19–28, Lecture Notes in Comput. Sci., 539,
Springer, Berlin, 1991.
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Applications

t consecutive gaps at P∞ gives a minimum distance d∗ of the
code at least t greater than the designed minimum distance d.

A. Garcia, S. J. Kim, R. F. Lax, Consecutive Weierstrass gaps
and minimum distance of Goppa codes, J. Pure Appl. Algebra 84
(1993), 199-207.

To do
Investigate large intervals of gaps at the point P∞ of the
Fq2-maximal curves considered in the present paper
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Example: The nice curve

X :
h−1

∑
i=0

Ypi
+ ωX(q+1)/d = 0

p = 7; d = 5

h = 2 ⇒ q = ph = 49 ⇒ d | (q + 1) g = 27

Non gaps at P∞:
q
p
= 7 and

q + 1
d

= 10

Gap sequence at P∞:

1, 2, 3, 4, 5, 6, 8, 9, 11, 12, 13, 15, 16, 18, 19, 22, 23, 25, 26, 29, 32,
33, 36, 39, 43, 46, 53.
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Example

For γ = 13 and t = 2

γ: the greater gap at P∞ of the gaps sequence interval
t + 1: the lenght of the gaps sequence interval considered

d∗ =| D | −γ + t + 1 = 5037

d =| D | −γ = 5034
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