KU LEUVEN # **Optimal S-boxes against alternative operations** (with M. Calderini and R. Civino) Riccardo Invernizzi WCC 2024 - Perugia June 17th ## **Block ciphers** #### Ingredients - ▶ n > 0 such that performing 2^n operations is unfeasible - $ightharpoonup V=\mathbb{F}_2^n$ the message space #### Definition A block cipher is a set of encryption functions indexed by parameters called keys $$\mathcal{C} = \{ E_k \mid k \in V \} \subseteq \operatorname{Sym}(V).$$ - $ightharpoonup E_k(m)$ is the encryption of a message m with the key k - \blacktriangleright there exists an efficient algorithm to compute E_k # Substitution-permutation networks (SPN) ► Structure of AES, PRESENT, ... ## Differential Cryptanalysis - Introduced by Biham and Shamir (1991) - Analyze how input differences effect output differences: $$\mathbb{P}[E_k(x) + E_k(x + \Delta_x) = \Delta_y]$$ - in SPN: diffusion and key addition do not alter the difference distribution - $\lambda(x) + \lambda(x + \Delta_x) = \lambda(\Delta_x)$, with prob. 1 - $(x+k)+(x+k+\Delta_x)=\Delta_x$, with prob. 1 - we can reduce the analysis to S-boxes ## **Differential Cryptanalysis** #### Definition (Differential uniformity) The differential uniformity of a function γ is $$\delta(\gamma) := \max_{a,b \neq 0} |\{x \mid \gamma(x) + \gamma(x+a) = b\}|$$ In order to contrast differential cryptanalysis we need: - $ightharpoonup \gamma$ with low differential uniformity, in order to reduce the probabilities of certain differences - $ightharpoonup \lambda$ with "good" diffusion properties, in order to involve as many S-boxes as possible in the analysis ## **Alternative Operations** We maximize non-linearity w.r.t "classic" + induced by $$T_{+} = \{ \sigma_k \mid \sigma_k : x \mapsto x + k \} < \operatorname{Sym}(V)$$ Consider another (elementary abelian regular) group $$T_{\circ} = \{ \tau_k \mid \tau_k(0) = k \} < \operatorname{Sym}(V)$$ Then - $\bullet a \circ b := \tau_b(a)$ - $lackbox(V,\circ)\cong(V,+)$ is a \mathbb{F}_2 -vector space - ▶ Condition 1: $T_{\circ} < AGL(V, +)$ (computational) - ▶ Condition 2: $T_+ < AGL(V, \circ)$ (cryptanalytic) ## **Alternative Operations** #### Important properties: - Conditions 1 and 2 characterized by [CCS21] - the weak key space is defined as $$W_{\circ} = \{ w \in V \mid \sigma_w = \tau_w \}$$ ▶ define $a \cdot b := a + b + a \circ b$; the error space is $$U_{\circ} = V \cdot V = \langle a \cdot b \mid a, b \in V \rangle \subset W_{\circ}$$ ▶ $1 \le \dim W_{\circ} \le n - 2$ ([CDVS06, CCS21]) ## **Alternative cryptanalysis** Question: if \mathcal{C} is a secure block ciphers w.r.t. (classical) differential cryptanalysis, what about \circ operations? ## Advantages: - ightharpoonup S-boxes γ are chosen with low (minimal) differential uniformity w.r.t. the classical sum + - ▶ higher o-differential uniformity gives us better trails #### Disadvantages: - lacktriangle mixing layer and key addition may not be affine maps w.r.t \circ - they may impact on the trails # Alternative cryptanalysis - Key addition - ► Classically: $(x+k) + (x+k+\Delta) = \Delta$ - ▶ in our setting, using condition 2: $$(x+k)\circ((x\circ\Delta)+k)=\Delta+\underbrace{\Delta\cdot k}_{\in U_\circ}$$ - if $\dim(W_\circ) = n 2$, then $\dim(U_\circ) = 1!$ - then $$(x+k)\circ((x\circ\Delta)+k) = \begin{cases} \Delta & \text{with pr. } 1/2\\ \Delta+u & \text{with pr. } 1/2 \end{cases}$$ ## Alternative cryptanalysis - Mixing layer - ► Classically: $x\lambda + (x + \Delta)\lambda = \Delta\lambda$ by linearity - in our setting: $$x\lambda \circ (x \circ \Delta)\lambda = \Delta\lambda + (x \cdot \Delta)\lambda + x\lambda \cdot \Delta\lambda + x\lambda \cdot (x \cdot \Delta)\lambda$$ - ightharpoonup in general depends on x - ▶ define $H_{\circ} := \operatorname{GL}(V, +) \cap \operatorname{GL}(V, \circ)$ - ▶ require $\lambda \in H_{\circ}$ (compatible maps) # Structure of the mixing layer - ▶ can assume $W_{\circ} = \langle e_3,...,e_n \rangle$ and $U_{\circ} = \{0,(0,0,\mathbf{b})\}$ with $\mathbf{b} \in \mathbb{F}_2^{n-2} \setminus \{0\}$ ([CCS21]) ## Theorem (CBS19) $\lambda \in \operatorname{GL}(V,+) \cap \operatorname{GL}(V,\circ)$ if and only if $$\lambda = \begin{pmatrix} A & B \\ 0_{n-2,2} & D \end{pmatrix}$$ for some $A\in GL((\mathbb{F}_2)^2,+)$, $B\in (\mathbb{F}_2)^{2\times n-2}$, and $D\in GL((\mathbb{F}_2)^{n-2},+)$, with $\mathbf{b}D=\mathbf{b}$ #### A first attack [CBS19] gave the first example of cipher which is: - resistant to classical diff. cryptanalysis (APN S-box) - weak w.r.t. differential attack - ▶ parameters of the cipher: n = 15, s = 3 - ightharpoonup o s.t. $\dim(W_\circ) = n-2$ acts on the first block - possible to mount a distinguishing attack on 5 rounds ## Parallel alternative operation - Problem: [CBS19] targets only the first S-box - \triangleright this requires a "slow" diffusion by λ Idea: introduce a parallel alternative operation $\circ = (\circ_1, ..., \circ_r)$ - can target each S-box separately - ▶ if $\dim(W_{\circ_s}) = s 2$, we can assume $\circ_1 = ... = \circ_r$ up to conj. by an element $q \in GL(V, +)$ First step: determine the structure of H_{\circ} #### Structure of H_{\circ} - Staring point: characterization of [CBS19] for the case $\dim(W_{\circ}) = n-2$ - ▶ all \circ_i have $\dim(W_{\circ_i}) = n-2$ and $U_{\circ_i} = \{0, (0, 0, \mathbf{b})\}$ - ▶ Consider $\lambda \in GL(V, +)$ and write it as $$\lambda = \begin{pmatrix} A_{11} & B_{11} & \dots & A_{1r} & B_{1r} \\ C_{11} & D_{11} & \dots & C_{1r} & D_{1r} \\ \vdots & \ddots & \vdots & \vdots \\ A_{r1} & B_{r1} & \dots & A_{rr} & B_{rr} \\ C_{r1} & D_{r1} & \dots & C_{rr} & D_{rr} \end{pmatrix}$$ #### Structure of H_{\circ} ## Theorem (Calderini, Civino, I.) $\lambda \in \operatorname{GL}(V,+) \cap \operatorname{GL}(V,\circ)$ if and only if - 1 $C_{ij} = 0_{(s-2)\times 2}$ and $B_{ij} \in (\mathbb{F}_2)^{2\times (s-2)}$; - 2 $A_{ij} \in (\mathbb{F}_2)^{2 \times 2}$ such that for each row and each column of blocks there is one and only one non-zero $A_{ij} \in \mathrm{GL}(\mathbb{F}_2,2)$; - 3 $D_{ij} \in (\mathbb{F}_2)^{(s-2)\times (s-2)}$ such that if A_{ij} is zero $\mathbf{b}D_{ij} = 0$, and if A_{ij} is invertible $\mathbf{b}D_{ij} = \mathbf{b}$. Moreover, the matrix D defined by $$D = \begin{pmatrix} D_{11} & \cdots & D_{1r} \\ \vdots & \ddots & \vdots \\ D_{r1} & \cdots & D_{rr} \end{pmatrix}$$ must be invertible. ## **Optimal S-boxes** Second step: study the o-differential uniformity of optimal functions - we consider 4-bit S-boxes - in [LP07] all 4-bit permutations up to affine equivalence (multiplication by maps in AGL(V, +)) are classified - ▶ affine equivalence preserves (among others) differential uniformity - 302 classes of which 16 are "optimal" - ▶ among the properties of optimal functions we have 4-differential uniformity (best possible for 4-bit permutations) # **Optimal S-boxes** | | 0 _x | 1 _x | 2 _x | 3 _x | 4 _× | 5 _x | 6 _x | 7 _× | 8 _x | 9 _x | A_{\times} | B _x | C_{\times} | D_{x} | E_{x} | F_{\times} | |------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------| | $\overline{G_0}$ | 0 | 1 | 2 | D _× | 4 _× | 7 _× | F× | 6 _x | 8 _x | B _x | C _× | 9 _× | 3 _× | Ex | A× | 5 | | G_1 | 0 | 1 | 2 | D _× | 4 _× | 7 _× | F_{\times} | 6 _× | 8 _x | B _× | E_{\times} | 3 _x | 5 _× | 9 _× | A_{\times} | 12 | | G_2 | 0 | 1 | 2 | D _× | 4 _× | 7 _× | F_{\times} | 6 _× | 8 _x | B _× | E_{\times} | 3 _x | A_{\times} | C_{\times} | 5 _× | 9 | | G_3 | 0 | 1 | 2 | D _× | 4 _× | 7 _× | F_{\times} | 6 _× | 8 _x | C _× | 5 _× | 3 _x | A_{\times} | Ex | B_{x} | 9 | | G_4 | 0 | 1 | 2 | D _× | 4 _× | 7 _× | F_{\times} | 6 _× | 8 _x | C _× | 9 _× | B _× | A_{\times} | Ex | 5 _× | 3 _× | | G_5 | 0 | 1 | 2 | D _× | 4 _× | 7 _× | F_{\times} | 6 _× | 8 _x | C _× | B_{x} | 9 _× | A_{\times} | Ex | 3 _× | 5 | | G_6 | 0 | 1 | 2 | D_{x} | 4 _× | 7 _× | F_{\times} | 6 _× | 8 _x | C _× | B_x | 9 _x | A_{\times} | E_{\times} | 5 _× | 3 _× | | G_7 | 0 | 1 | 2 | D_{x} | 4 _× | 7 _× | F_{\times} | 6 _× | 8 _x | C _× | E_{\times} | B _x | A_{\times} | 9 _× | 3 _× | 5 | | G_8 | 0 | 1 | 2 | D_{x} | 4 _× | 7 _× | F_{\times} | 6 _× | 8 _x | E _× | 9 _× | 5 _× | A_{\times} | B_x | 3 _× | 12 | | G_9 | 0 | 1 | 2 | D_{x} | 4 _× | 7 _× | F_{\times} | 6 _× | 8 _x | E _× | B_x | 3 _x | 5 _× | 9 _× | A_{\times} | 12 | | G_{10} | 0 | 1 | 2 | D _× | 4 _× | 7 _× | F_{\times} | 6 _× | 8 _x | E _× | B_x | 5 _× | A_{\times} | 9 _× | 3_{x} | 12 | | G_{11} | 0 | 1 | 2 | D _× | 4 _× | 7 _× | F_{\times} | 6 _× | 8 _x | E _× | B_x | A_{\times} | 5 _× | 9 _× | C_{\times} | 3 _× | | G_{12} | 0 | 1 | 2 | D _× | 4 _× | 7 _× | F_{\times} | 6 _× | 8 _x | Ex | B_{x} | A× | 9 _× | 3 _× | C_{\times} | 5 | | G_{13} | 0 | 1 | 2 | D_{\times} | 4 _× | 7 _× | F_{\times} | 6 _× | 8 _x | Ex | C_{\times} | 9 _× | 5 _× | B_{x} | A_{\times} | 3 _x | | G_{14} | 0 | 1 | 2 | D_{\times} | 4 _× | 7 _× | F_{\times} | 6 _× | 8 _x | Ex | C_{\times} | B _× | 3 _× | 9 _× | 5 _× | 10 | | G_{15} | 0 | 1 | 2 | D _× | 4_{\times} | 7_{\times} | F_{\times} | 6 _× | 8 _x | Ex | C_{\times} | B _× | 9 _× | 3 _× | A_{\times} | 5 _x | ## o-differential uniformity of optimal S-boxes - o-differential uniformity is not preserved by affine equivalence - can have different uniformity inside the same class - \blacktriangleright # functions in a single aff. class $\sim 2^{36}$ - \blacktriangleright # of alternative sums $\circ = 105$ ## Proposition For any $$g_1, g_2 \in H_\circ$$, $\delta_\circ(f) = \circ(g_1 \cdot f \cdot g_2)$. For any $\sigma_c \in T_+$, $\delta_\circ(f) = \delta_\circ(\sigma_c \cdot f) = \delta_\circ(f \cdot \sigma_c)$ (under cond. 2). Consequence: we can restrict to inspect the elements $g_1G_ig_2$, for $g_1,g_2\in GL(V,+)\backslash H_{\circ}$, for each possible sum \circ . # Avg. # functions with given o-differential uniformity | | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | |------------------|---|------|-------|------|-----|----|----|----| | $\overline{G_0}$ | 0 | 914 | 7842 | 3463 | 420 | 19 | 0 | 14 | | G_1 | 0 | 1019 | 10352 | 4226 | 560 | 0 | 0 | 18 | | G_2 | 0 | 1003 | 8604 | 3805 | 462 | 21 | 0 | 16 | | G_3 | 0 | 1103 | 7769 | 1824 | 177 | 0 | 0 | 0 | | G_4 | 0 | 1101 | 9295 | 2715 | 179 | 0 | 0 | 0 | | G_5 | 0 | 2479 | 24135 | 5402 | 639 | 0 | 0 | 0 | | G_6 | 0 | 1632 | 10842 | 3071 | 218 | 0 | 0 | 0 | | G_7 | 0 | 1257 | 10679 | 2994 | 186 | 28 | 0 | 0 | | G_8 | 0 | 1691 | 12821 | 6113 | 583 | 93 | 0 | 24 | | G_9 | 0 | 1228 | 7734 | 2693 | 154 | 39 | 0 | 0 | | G_{10} | 0 | 1228 | 8063 | 2763 | 166 | 41 | 0 | 0 | | G_{11} | 0 | 1637 | 9940 | 2941 | 214 | 0 | 0 | 0 | | G_{12} | 0 | 2541 | 16832 | 5308 | 352 | 0 | 0 | 0 | | G_{13} | 0 | 1124 | 9520 | 2416 | 217 | 15 | 0 | 0 | | G_{14} | 0 | 1207 | 7641 | 2584 | 160 | 51 | 0 | 0 | | G_{15} | 0 | 1227 | 7776 | 2630 | 163 | 52 | 0 | 0 | ## **Experimental results** We tested our attack on some toy ciphers: - $ightharpoonup V=\mathbb{F}_2^{16}$, with 4 S-boxes of 4 bits each - fix \circ to be the parallel sum defined by $\mathbf{b} = (0,1)$ - fix the S-box γ to be optimal w.r.t. + - random keys (no key-schedule) Different choices for the mixing layer: - first experiment: fixed mixing layer with good diffusion properties - lacktriangle second experiment: random mixing layers sampled from $H_{ m o}$ #### The sum o | 0 | 0 _× | 1_{\times} | 2_{x} | 3_{x} | 4_{\times} | 5 _x | 6 _× | 7_{\times} | 8 _x | 9_{x} | \mathtt{A}_{\times} | \mathtt{B}_{x} | C_x | \mathtt{D}_{x} | E_{\times} | F_{x} | |-----------------------|----------------|-----------------------|-----------------------|-----------------------|------------------|-----------------------|--------------------|--------------------|-----------------------|-----------------------|-----------------------|-----------------------|--------------------|--------------------|--------------------|----------------| | 0 _x | 0 _× | 1 _× | 2 _x | 3 _x | 4 _× | 5 _× | 6 _x | 7 _× | 8 _x | 9 _x | A_{\times} | B _x | C _× | D_{x} | E _× | F_{\times} | | 1_{\times} | 1 _× | 0_{x} | 3_{x} | 2_{x} | 5_x | 4_{\times} | 7_{x} | 6_{x} | 9_{x} | 8 _x | B_{x} | \mathtt{A}_{\times} | D_{x} | C_{\times} | F_{\times} | E_{\times} | | 2_{x} | 2_{x} | 3_x | 0_{x} | 1_{\times} | 6_{x} | 7_{\times} | 4_{\times} | 5_x | \mathtt{A}_{\times} | B_{x} | 8 _x | 9_{x} | E_{x} | F_{\times} | C_x | D_{x} | | 3_{x} | 3 _× | 2_{x} | 1_{\times} | 0_{x} | 7_{x} | 6_{x} | 5_x | 4_{\times} | B_{x} | \mathtt{A}_{\times} | 9_{x} | 8 _x | F_{\times} | E_{\times} | D_{x} | C_{\times} | | 4_{\times} | 4_{\times} | 5_x | 6_{x} | 7_{x} | 0_{x} | 1_{\times} | 2_{x} | 3_{x} | D_{\times} | C_{x} | F_{\times} | \mathbf{E}_{x} | 9_x | 8 _x | B_{x} | A_{\times} | | 5_{x} | 5 _× | 4_{\times} | 7_{x} | 6 _× | 1_{\times} | 0_{x} | 3_{\times} | 2_{x} | C_{\times} | \mathtt{D}_{x} | \mathbf{E}_{x} | F_{x} | 8 _x | 9_x | ${\tt A}_{\times}$ | B_{x} | | 6 _× | 6 _× | 7_{\times} | 4_{\times} | 5_{x} | 2_{x} | 3_{x} | 0_{x} | 1_{\times} | F_{\times} | E_{\times} | D_{x} | C_x | \mathtt{B}_{x} | ${\tt A}_{\times}$ | 9_{x} | 8 _x | | 7_{\times} | 7_{\times} | 6 _× | 5_{x} | 4_{\times} | 3_{x} | 2_{x} | 1_{\times} | 0_{x} | E_{\times} | F_{\times} | C_{\times} | D_{x} | ${\tt A}_{\times}$ | B_{x} | 8 _x | 9_x | | 8 _x | 8 _x | 9_{x} | \mathtt{A}_{\times} | B_{x} | D_{x} | C_{\times} | F_{\times} | E_{\times} | 0_{x} | 1_{\times} | 2_{x} | 3_{x} | 5_{x} | 4_{\times} | 7_{x} | 6 _x | | 9_{x} | 9 _× | 8 _x | \mathtt{B}_{x} | \mathtt{A}_{\times} | C_x | D_{x} | E_{\times} | F_{\times} | 1_{\times} | 0_{x} | 3_{x} | 2_{x} | 4_{\times} | 5_{x} | 6_{x} | 7_{x} | | \mathtt{A}_{\times} | A_{\times} | B_{x} | 8 _x | 9_{x} | F_{\times} | E_{\times} | \mathtt{D}_{x} | C_x | 2_{x} | 3_{x} | 0_{\times} | 1_{\times} | 7_{x} | 6_{x} | 5_{x} | 4_{x} | | B_{x} | B_{x} | \mathtt{A}_{\times} | 9_{x} | 8 _x | \mathbf{E}_{x} | F_{\times} | C_{\times} | D_{x} | 3_{x} | 2_{x} | 1_{\times} | 0_{x} | 6_{x} | 7_{x} | 4_{\times} | 5_x | | C_{x} | C_{\times} | D_{x} | E_{\times} | F_{\times} | 9_x | 8 _x | B_{x} | ${\tt A}_{\times}$ | 5_x | 4_{\times} | 7_{x} | 6_{x} | 0_{x} | 1_{\times} | 2_{x} | 3_x | | D_{\times} | D_{\times} | C_{\times} | F_{\times} | E_{\times} | 8 _x | 9_{x} | ${\tt A}_{\times}$ | B_{x} | 4_{\times} | 5_x | 6_{x} | 7_{x} | 1_{\times} | 0_{x} | 3_{x} | 2_x | | ${\tt E}_{\times}$ | E_{\times} | F_{\times} | C_x | D_{x} | B_{x} | \mathtt{A}_{\times} | 9_x | 8 _x | 7_{x} | 6_x | 5_x | 4_{\times} | 2_{x} | 3_x | 0_{x} | 1_{\times} | | F_{\times} | F_{\times} | ${\tt E}_{\times}$ | D_{x} | C_{\times} | A_{\times} | B_{x} | 8 _x | 9_x | 6_{x} | 7_{x} | 4_{\times} | 5_x | 3_x | 2_x | 1_{\times} | 0_{x} | #### The S-box γ - $ightharpoonup \gamma$ is an optimal permutation affine equivalent to G_0 (the class of SERPENT's S1) - \blacktriangleright $\delta_+(\gamma) = 4$ (optimal), but $\delta_{\circ}(\gamma) = 16$ | x | 0 _x | 1 _× | 2 _× | 3 _× | 4 _× | 5 _x | 6 _x | 7 _× | 8 _x | 9 _× | A_{\times} | B _× | C_{\times} | D_{\times} | E _× | F _× | |-----------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|--------------|----------------|--------------|----------------|-----------------------|----------------| | $x\gamma$ | 0 _x | E_{\times} | B_{x} | 1_{\times} | 7_{\times} | C_{\times} | 9_{x} | 6 _× | D_{\times} | 3_{x} | 4_{\times} | F_{\times} | 2_{x} | 8 _x | \mathtt{A}_{\times} | 5_x | ## The S-box γ ## First experiment - ▶ $\lambda \in H_{\circ}$ with good diffusion properties - reminescent of PRESENT's mixing layer #### First experiment Figure: Best +-differential probability vs best o-differential probability ## **Second experiment** - lacktriangle Sample random mixing layers in H_{\circ} - compare trails for different number of rounds Figure: Best +-differential probability vs best o-differential probability # **Concluding remarks** - characterization of parallel H_{\circ} for d=n-2 (and n-3) - ▶ optimal S-boxes are can have high o-differentials - ▶ when $\lambda \in H_{\circ}$ \circ -diff. cryptanalysis can give better results - can purposely create hidden weakness #### Some open problems: - ightharpoonup characterization of H_{\circ} for any d - ightharpoonup cryptanalysis for d=n-3 - can we target key addition and / or key schedule? #### References - [CCS21] Calderini, Civino, Sala On properties of translation groups in the affine general linear group with applications to cryptography - ► [CDVS06] Caranti, Dalla Volta, Sala Abelian regular subgroups of the affine group and radical rings - ► [CBS19] Civino, Blondeau, Sala Differential Attacks: Using Alternative Operations - ► [LP07] Leander, Poschmann On the Classification of 4 Bit S-Boxes