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The first code-based cryptosystem [McEliece, 1978]

Public key gen. mat. Gp,€ IF’(‘,X" of an [n, k]q-code €

Private key structured gen. mat. G, of €

Encryption m — mG,,,+e where e & Fa, le| =t

Decryption | Performed by a decoding algorithm using the hidden structure of G,
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Public key gen. mat. Gp,€ IF’(‘,X" of an [n, k]q-code €

Private key structured gen. mat. G, of €

Encryption m — mG,,,+e where e & Fa, le| =t

Decryption | Performed by a decoding algorithm using the hidden structure of G,

Figure: Generic McEliece cryptosystem

e Recovering G,iy from G, must be hard;
e — Distinguishing G,,;, from a random G € IFSX” must be hard.
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First example: GRS codes

Definition 2 (GRS codes)
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First example: GRS codes

Definition 2 (GRS codes)
GRS, (x,y) def {(yif(x1),...,ynf(xn)) | f € Fq[X]<,}. A generator matrix of GRS, (x,y) is

n Y2 . Yn
y1iXx1 YaXo cee YnXn
G = . .
ylxlr_1 y2x2’_1 R

° Gpriv <~ G;

e G,u, — P- G for some P & GL,(Fy).
Does McEliece security hypothesis hold ?
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Definition 3 (Schur's product)

Given a,be Fy, axb o (a1by, ..., anbn).
If €, 2 < F] are two codes, ¢ x 7 ' Spang {c+d | (c,d) € % x 7}.
2L g
dime. €2 = min {n, ("31)} if € is a random [n, r]q-code;
7 min{n,2r — 1} if ¥ = GRS,(x, y).

Indeed: GRS, (x,y)**> = GRS,,_1(x,y*?).

Explanation 4 (Nontrivial relations)

o V= {vi,...,vk} basis of random ¢ = {v;*v; | i <j} basis of ¢*2.
e V={yx*xy,...xtxyl = (x'xy)x(xXxy)=(xKxy)*(x xy) each timei+j=k+ I
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Quadratic forms
Let € be an [n, k]4-code of basis V = {v1,..., v}

k+1)

FS, 2 — ¢*2

P

i<j
v/ € not random <= dimg, €*? < (k;rl) <= ker P # {0}.

Definition 5 (Code of relations)

def (%)
cgre|(V) = kerP=<c= (C"J)"gj S Fq s ZC,‘JV,' * V= 0.
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Quadratic forms
Let € be an [n, k]4-code of basis V = {v1,..., v}

k+1)

IFS, 2 — ¢*2

P
i<j

v/ € not random <= dimg, €*? < (k;rl) <= ker P # {0}.

Definition 5 (Code of relations)

k+1

cfre|(1))d_6fkerP {C—(C,J,QGFZ Zc,lv,*vJ—O}

i<j

cC = (C,',j),'gj [ Z CijVi*Vj.

—2r—1
2 2 r
(S
dim G,y

dimp, GRS, (x,y)*?> = min{ n, (r - 1) — w
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,(x,y) = (GRS, (x,y)*) nF7.

Dimension > n— rm (= n— rm generically).
Minimum distance =r
Efficient decoding algorithm v
Indistinguishability 7

Figure: Proporties of alternant codes

Proposition 6

Assume r < q + 1. Generically,

dimg, ((x,y)*)™ = min {n, (””; 1)-';(r _1)(r— 2)} .
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Matrix code of relations

Definition 7

Matrix of a relation ¢ = (¢; )i<j € Grel:

2C1,1 C1,2 000 C1,k

C1,2 2C22 000 2. k
A4c = o o .

C1,k (&N 000 2Ck,k
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Matrix code of relations

Definition 7

Matrix of a relation ¢ = (¢; )i<j € Grel:

2C1,1 C1,2 000 C1,k

C1,2 2C2,2 000 €2 k
Mc = o o .

C1,k (&N 000 2Ck,k

Definition 8 (Matrix code of relations)
%mat(v) = {Mr:a ce Cgrel(v)}'
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What does it mean to be short 7
Back to our GRS codes: if V = {vg,...,v, 1} = {y,x*y,...,x" "1 x y}, the relation
Vo * Vo — v’l'2 =0

has matrix

which has rank 3 in characteristic # 2 and rank 2 in characteristic 2.
A relation ¢ € e (V) is short if its matrix M¢ € €mat(V) has a low rank.

Consequence 9

Even if GRS, (x,y)*? = [Fg, short relations might still be detectable...
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Finding short relations in characteristic 2

Let M be the generic skew-symmetric matrix of size r in characteristic 2, i.e

0 X1,2 X13 ... X1r—1  Xir
X1,2 0 X23 ... Xo,1  Xo
X1,3 X2,3 0 cee X3,-1 X3
def ’ ’ 5 >
M = . . . .
Xl,r—1 X2,r—1 X3,r—1 --- 0 Xr—1,r
X1,r X2r X3,r cee Xr—1yr 0
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Finding short relations in characteristic 2

Let M be the generic skew-symmetric matrix of size r in characteristic 2, i.e

0 X1,2 X13 ... X1r—1  Xir
X1,2 0 X23 ... Xo,1  Xo
X1,3 X2,3 0 cee X3,-1 X3
def , , , ,
M = . . . .
Xl,r—1 X2,r—1 X3,r—1 --- 0 X1,
X1,r X2r X3,r cee Xr—1yr 0

Fact 10
M has rank < 2 if, and only if

Vi<i<j<k<I<r, Xi jXk, 1 + XikXj, 1 + Xi, 1 Xj.k = 0.
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Algebraic modeling

Modeling 11 (M € %pnat, Tk(M) < 2)
° rk(M) <2 —= Vli<i<j<k<lI<r, Xi jXk, 1 + Xi kX1 + Xi1Xjk = 0,
o Me % — Li({xij}) = ... = L«({xij}) = 0 where the L;’s are linear forms.
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° I‘k(M) <2 —= Vli<i<j<k<lI<r, Xi j Xk, + Xi kXj, 1+ Xi 1 Xk = 0;
o Me % — Li({xij}) = ... = L«({xij}) = 0 where the L;’s are linear forms.

These polynomials generate an ideal Z < Fq[{x; ;}].
Subspace 7Z,: generated by the (2) quadratic equations plus the equations of the form x; ;Ls.

<> Hilbert function at degree 2: HF(2) <" dimF,[{x}]/Z>.
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The Hilbert function at degree 2 as a distinguisher

Goal. Distinguish 7, (x, y)* from a random [n, rm],-code assuming (7 (x,y)*)*? = Fg.

Proposition 12 (Random case)

If € is a non-square-distinguishable random [n, rm],-code, then

- () (") (Dm e ()

What happens for generic alternant codes ?
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Lemma 13 (Bardet, Mora, Tillich)
It holds that

( (%, ¥) e = . GRS, (x7, y).
j=0

With the usual assumption dimg, .27,(x,y) = n — rm, the sum becomes direct.

14 /17



L
First step: GRS codes

Lemma 13 (Bardet, Mora, Tillich)
It holds that

( (%, ¥) e = . GRS, (x7, y).
j=0

With the usual assumption dimg, .27,(x,y) = n — rm, the sum becomes direct.

Conjecture 14 (HF(2) for square-distinguishable Reed-Solomon codes)

If 2r — 1 < n, then the Hilbert function at degree 2 associated with a GRS code of dimension r is given

b
' weers2) = (2] 1) = (7) = gy -1 -2 -3 49),

14 /17



From GRS codes to alternant codes

Theorem 15 (This work)

Assume Conjecture 14 holds. The Hilbert function at degree 2 of the algebraic modeling associated with
a generic square-distinguishable alternant code <7,(x,y) is given by

HF ./(2) = mHFggs(2) = 12(r—1)( —2)(r* = 3r +6).
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From GRS codes to alternant codes

Theorem 15 (This work)

Assume Conjecture 14 holds. The Hilbert function at degree 2 of the algebraic modeling associated with
a generic square-distinguishable alternant code <7,(x,y) is given by

HF ./(2) = mHFggs(2) = 12(r—1)( —2)(r* = 3r +6).

But what happens if <, (x,y) is not square-distinguishable 7
Corollary 16

It holds that

HF /(2) = —(r —1)(r —2)(r> = 3r +6).

SIE
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A new regime for the distinguisher
Distinguishability condition: HFg(2) < %(r —1)(r—2)(r* = 3r +6).

Natural asymptotic regime: r — +00 and m = O (log r).

Corollary 17

Assume r < q + 1. The asymptotic lowest dimension ko for which alternant codes of degree r and
extension degree m are 2-distinguishable satisfies

1— L
Jrzmz ~ 0.21r°m?.

ko ~
0 2

Original square distinguisher from [FGOPT10] when r < g + 1:

rm+1 r—1)(r—2 1 r—1)(r—2
n>( 2+ )—m( )2( ) ie k>k0=(""2+)—rm—m7( )2( )

r2 m2

which leads to kg ~
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Conclusion and future work

Conclusions.
e Understanding of the new distinguisher at degree 2 for large field size (r < g + 1).

e A proof for a regime of parameters which are 2-distinguishable for sure.
= much wider regime than [FGOPT10] !

Future work.
e Find a formula for r > g + 1;
e Find another algebraic interpretation of the distinguisher;
e See if it can be turned into and attack.

Thank you for your attention.
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Change of basis

What does really depend on the basis ?

Proposition 18
Let A, B be two bases of the same code €. There exists P € GL(F,) such that

Gmat(A) = PTG mar(B) P.

== The number of rank r matrices does not depend on the basis !
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Explicit algebraic modeling

Idea: compute a basis (My, ..., My) of @mar and write
N
M= XM,
i=1
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Explicit algebraic modeling

Idea: compute a basis (My, ..., My) of @mar and write

M= > XiM,.

N
i=1

1

— write quadratic equations ensuring that rk(M) < 2.
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Explicit modeling for square-distinguishable Reed-Solomon codes

For r = 5, we have

o
o
X
&

o o at
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Explicit modeling for square-distinguishable Reed-Solomon codes

For r = 6, we have

X1
Xa
X4

X2
X3
Xs

X
X3
X5 + Xg

Xa
Xs

Xo
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Explicit modeling for square-distinguishable Reed-Solomon codes

For r = 8, we have

0

0
X1
X
Xg
Xo
Xo
X12

X3

X>

X3

X5 + X6

0

X10 + X11 + X2

Xy

Xs

X7

Xio + X11 + X12
0

Xi6 + X17

X1s

X20

X12
X1s
X7
X19
X20
Xo1

0
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And the equations

For r = 6, the Pfaffians of M of size 4 are

Pf(M,2) = {X2 + X1X3, Xo X3 + X1 X5, Xo X5 + X1 Xg, X3 X4 + Xo X5,
X3Xo + XoXg, X5 X6 + XaXg, XaXs + XaXs + XoX7 + X1 Xo,
XsXo + X2 + XoXo + X1X10, X6 X7 + XaXo, X6 Xo + X4 Xi0,
X2 + XsXo + X3 X7 + XoXo, Xs Xg + XX + X3Xo + XoXi0,
X7 Xg + X5Xg, Xg Xo + X5 X10, X5 + X7X10}.
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Actual McEliece specs

Goub = S+ Gy - Py where S € GLi(F andP(,.d=mc 0; o(i))i.j for some o € &,,.
P P q ,o() )iz
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Actual McEliece specs

Gpub = S+ Gpriv - P, where S € GL(Fq) and P, def (0i,0())ij for some o € &,,.

Proposition 19

Let € Fa be a code. Then
(€ - Po)t = (€F) - Por,

where € - P, = {w° d:Ef(wz,(l), oy, Wo(my)}. If G is a generator matrix of €, then GP is a generator
matrix of € - P.
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Actual McEliece specs

Gpub = S+ Gpriv - P, where S € GL(Fq) and P, def (0i,0())ij for some o € &,,.

Proposition 19

Let € Fa be a code. Then
(€ - Po)t = (€F) - Por,

where € - P, = {w° d:Ef(wg(l), oy, Wo(my)}. If G is a generator matrix of €, then GP is a generator

matrix of € - P.

Corollary 20

A(x,y) - Py = p(x7 " y" ).
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Actual McEliece specs

By Proposition 19,
((x,y) - Po)t = r(x,y)" - Poa.

Delstarte’s theorem: <7, (x,y)* = Trg, . /r, (GRS (x,y)) has generator matrix

n yY . yib

- Y1(:m) yz(i’") y,S:'">
(ylxl':‘l)(l) (yzxg;l)(1> . (ynxr’;:*l)(l)
(Y1X1ri1)(m) (Y2X2ri1)(m) . (ynxﬁz_l)(m)

—1

Therefore, G - P,—1 is a generator matrix of ’I‘rqu/Fq(GRS,(x‘fl’y"

))-
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