The new distinguisher of alternant codes at degree 2

Axel Lemoine¹, Rocco Mora², Jean-Pierre Tillich¹

Inria Paris, France

CISPA, Germany

June 19, 2024

The first code-based cryptosystem [McEliece, 1978]

Public key	gen. mat. $oldsymbol{G}_{ ext{pub}} \in \mathbb{F}_q^{k imes n}$ of an $[n,k]_q$ -code $\mathscr C$	
Private key	structured gen. mat. $oldsymbol{G}_{\mathrm{priv}}$ of $\operatorname{\mathscr{C}}$	
Encryption	$m{m} \longmapsto m{m} m{G}_{\mathrm{pub}} + m{e}$ where $m{e} \overset{\$}{\leftarrow} \mathbb{F}_q^n, \; m{e} = t$	
Decryption	Performed by a decoding algorithm using the hidden structure of G_{priv}	

Figure: Generic McEliece cryptosystem

The first code-based cryptosystem [McEliece, 1978]

Public key	gen. mat. $oldsymbol{G}_{ ext{pub}} \in \mathbb{F}_q^{k imes n}$ of an $[n,k]_q$ -code $\mathscr C$	
Private key	structured gen. mat. $oldsymbol{G}_{\mathrm{priv}}$ of $\operatorname{\mathscr{C}}$	
Encryption	$m{m} \longmapsto m{m} m{G}_{\mathrm{pub}} + m{e}$ where $m{e} \overset{\$}{\leftarrow} \mathbb{F}_q^n, \; m{e} = t$	
Decryption	Performed by a decoding algorithm using the hidden structure of G_{priv}	

Figure: Generic McEliece cryptosystem

• Recovering G_{priv} from G_{pub} must be **hard**;

The first code-based cryptosystem [McEliece, 1978]

Public key	gen. mat. $oldsymbol{G}_{ ext{pub}} \in \mathbb{F}_q^{k imes n}$ of an $[n,k]_q$ -code $\mathscr C$	
Private key	structured gen. mat. $oldsymbol{G}_{ ext{priv}}$ of $\mathscr C$	
Encryption	$m{m} \longmapsto m{m} m{G}_{ m pub} + m{e}$ where $m{e} \stackrel{\$}{\leftarrow} \mathbb{F}_q^n, \; m{e} = t$	
Decryption	Performed by a decoding algorithm using the hidden structure of G_{priv}	

Figure: Generic McEliece cryptosystem

- Recovering G_{priv} from G_{pub} must be hard;
- $\bullet \implies \mathsf{Distinguishing} \ \textbf{\textit{G}}_{\mathrm{pub}} \ \mathsf{from a random} \ \textbf{\textit{G}} \in \mathbb{F}_q^{k \times n} \ \mathsf{must be hard}.$

Strongly relies on the hardness of the distinguishing problem.

Strongly relies on the hardness of the distinguishing problem.

Problem 1 (Distinguishing problem)

$$\textit{\textbf{Data.}} \ b \xleftarrow{\$} \{0,1\}. \ \textit{If} \ b = 0, \ \textit{\textbf{G}} \leftarrow \mathbb{F}_q^{k \times n}. \ \textit{If} \ b = 1, \ \textit{\textbf{G}} \leftarrow \textit{\textbf{G}}_{\text{pub}}.$$

Strongly relies on the hardness of the distinguishing problem.

Problem 1 (Distinguishing problem)

Data.
$$b \leftarrow \{0,1\}$$
. If $b=0$, $\mathbf{G} \leftarrow \mathbb{F}_q^{k \times n}$. If $b=1$, $\mathbf{G} \leftarrow \mathbf{G}_{\mathrm{pub}}$. **Goal.** Given \mathbf{G} , find b .

Strongly relies on the hardness of the distinguishing problem.

Problem 1 (Distinguishing problem)

Data.
$$b \leftarrow \{0,1\}$$
. If $b=0$, $\mathbf{G} \leftarrow \mathbb{F}_q^{k \times n}$. If $b=1$, $\mathbf{G} \leftarrow \mathbf{G}_{\mathrm{pub}}$. **Goal.** Given \mathbf{G} , find b .

In practise, $\mathscr{C} = \mathscr{A}_r(\mathbf{x}, \mathbf{y})$ (degree r, extension degree m).

Strongly relies on the hardness of the **distinguishing problem**.

Problem 1 (Distinguishing problem)

Data.
$$b \leftarrow \{0,1\}$$
. If $b=0$, $\mathbf{G} \leftarrow \mathbb{F}_q^{k \times n}$. If $b=1$, $\mathbf{G} \leftarrow \mathbf{G}_{\mathrm{pub}}$. **Goal.** Given \mathbf{G} , find b .

In practise, $\mathscr{C} = \mathscr{A}_r(\mathbf{x}, \mathbf{y})$ (degree r, extension degree m).

	FGOPT10	CMT23
Lowest dist. dim	$k_0 \sim \frac{r^2 m^2}{2}$?

Figure: Existing distinguishers for alternant codes of degree r and extension degree m.

Strongly relies on the hardness of the **distinguishing problem**.

Problem 1 (Distinguishing problem)

Data.
$$b \leftarrow \{0,1\}$$
. If $b=0$, $\mathbf{G} \leftarrow \mathbb{F}_q^{k \times n}$. If $b=1$, $\mathbf{G} \leftarrow \mathbf{G}_{\mathrm{pub}}$.

In practise, $\mathscr{C} = \mathscr{A}_r(\mathbf{x}, \mathbf{y})$ (degree r, extension degree m).

	FGOPT10	CMT23
Lowest dist. dim	$k_0 \sim \frac{r^2 m^2}{2}$	$k_0 \sim 0.21 r^2 m^2$ (This work !)

Figure: Existing distinguishers for alternant codes of degree r and extension degree m.

Plan

- 1 Distinguisher [FGOPT10]: nontrivial relations in a code
- ② Distinguisher [CMT23]: **short** relations
- Conclusion

Plan of this Section

- 1 Distinguisher [FGOPT10]: nontrivial relations in a code
- ② Distinguisher [CMT23]: **short** relations
- Conclusion

Definition 2 (GRS codes)

$$\mathsf{GRS}_r(\boldsymbol{x},\boldsymbol{y}) \stackrel{\mathsf{def}}{=} \{ (y_1 f(x_1), \dots, y_n f(x_n)) \mid f \in \mathbb{F}_q[X]_{< r} \}.$$

Definition 2 (GRS codes)

 $\mathsf{GRS}_r(\pmb{x}, \pmb{y}) \stackrel{\mathsf{def}}{=} \{(y_1 f(x_1), \dots, y_n f(x_n)) \mid f \in \mathbb{F}_q[X]_{< r}\}.$ A generator matrix of $\mathsf{GRS}_r(\pmb{x}, \pmb{y})$ is

$$\mathbf{G} = \begin{pmatrix} y_1 & y_2 & \dots & y_n \\ y_1 x_1 & y_2 x_2 & \dots & y_n x_n \\ \vdots & \vdots & \ddots & \vdots \\ y_1 x_1^{r-1} & y_2 x_2^{r-1} & \dots & y_n x_n^{r-1} \end{pmatrix}.$$

Definition 2 (GRS codes)

 $\mathsf{GRS}_r(\pmb{x},\pmb{y}) \stackrel{\mathsf{def}}{=} \{(y_1f(x_1),\ldots,y_nf(x_n)) \mid f \in \mathbb{F}_q[X]_{< r}\}. \text{ A generator matrix of } \mathsf{GRS}_r(\pmb{x},\pmb{y}) \text{ is }$

$$G = \begin{pmatrix} y_1 & y_2 & \dots & y_n \\ y_1 x_1 & y_2 x_2 & \dots & y_n x_n \\ \vdots & \vdots & \ddots & \vdots \\ y_1 x_1^{r-1} & y_2 x_2^{r-1} & \dots & y_n x_n^{r-1} \end{pmatrix}.$$

• $G_{\text{priv}} \leftarrow G$;

Definition 2 (GRS codes)

 $\mathsf{GRS}_r(\pmb{x}, \pmb{y}) \stackrel{\mathsf{def}}{=} \{ (y_1 f(x_1), \dots, y_n f(x_n)) \mid f \in \mathbb{F}_q[X]_{< r} \}.$ A generator matrix of $\mathsf{GRS}_r(\pmb{x}, \pmb{y})$ is

$$G = \begin{pmatrix} y_1 & y_2 & \dots & y_n \\ y_1 x_1 & y_2 x_2 & \dots & y_n x_n \\ \vdots & \vdots & \ddots & \vdots \\ y_1 x_1^{r-1} & y_2 x_2^{r-1} & \dots & y_n x_n^{r-1} \end{pmatrix}.$$

- $\boldsymbol{G}_{\text{priv}} \leftarrow \boldsymbol{G}$;
- $G_{\text{pub}} \leftarrow P \cdot G$ for some $P \stackrel{\$}{\leftarrow} GL_r(\mathbb{F}_q)$.

Definition 2 (GRS codes)

 $\mathsf{GRS}_r(\pmb{x}, \pmb{y}) \stackrel{\mathsf{def}}{=} \{(y_1 f(x_1), \dots, y_n f(x_n)) \mid f \in \mathbb{F}_q[X]_{< r}\}.$ A generator matrix of $\mathsf{GRS}_r(\pmb{x}, \pmb{y})$ is

$$G = \begin{pmatrix} y_1 & y_2 & \dots & y_n \\ y_1 x_1 & y_2 x_2 & \dots & y_n x_n \\ \vdots & \vdots & \ddots & \vdots \\ y_1 x_1^{r-1} & y_2 x_2^{r-1} & \dots & y_n x_n^{r-1} \end{pmatrix}.$$

- $\boldsymbol{G}_{\text{priv}} \leftarrow \boldsymbol{G}$;
- $G_{\mathrm{pub}} \leftarrow P \cdot G$ for some $P \stackrel{\$}{\leftarrow} \mathrm{GL}_r(\mathbb{F}_q)$.

Does McEliece security hypothesis hold?

Definition 3 (Schur's product)

Given $\boldsymbol{a}, \boldsymbol{b} \in \mathbb{F}_q^n$, $\boldsymbol{a} \star \boldsymbol{b} \stackrel{\text{def}}{=} (a_1 b_1, \dots, a_n b_n)$.

Definition 3 (Schur's product)

Given $\boldsymbol{a}, \boldsymbol{b} \in \mathbb{F}_q^n$, $\boldsymbol{a} \star \boldsymbol{b} \stackrel{\text{def}}{=} (a_1 b_1, \dots, a_n b_n)$.

 $\mathsf{lf} \; \mathscr{C}, \mathscr{D} \subset \mathbb{F}_q^n \; \mathsf{are} \; \mathsf{two} \; \mathsf{codes}, \; \mathscr{C} \star \mathscr{D} \stackrel{\mathsf{def}}{=} \mathrm{Span}_{\mathbb{F}_q} \{ \boldsymbol{c} \star \boldsymbol{d} \; | \; (\boldsymbol{c}, \boldsymbol{d}) \in \mathscr{C} \times \mathscr{D} \}.$

Definition 3 (Schur's product)

Given $\mathbf{a}, \mathbf{b} \in \mathbb{F}_q^n$, $\mathbf{a} \star \mathbf{b} \stackrel{\text{def}}{=} (a_1 b_1, \dots, a_n b_n)$.

 $\mathsf{lf}\ \mathscr{C},\mathscr{D} \subset \mathbb{F}_q^n \ \mathsf{are} \ \mathsf{two} \ \mathsf{codes}, \ \mathscr{C} \star \mathscr{D} \stackrel{\mathsf{def}}{=} \mathrm{Span}_{\mathbb{F}_q} \{ \boldsymbol{c} \star \boldsymbol{d} \mid (\boldsymbol{c}, \boldsymbol{d}) \in \mathscr{C} \times \mathscr{D} \}.$

$$\mathscr{C}^{\star 2} \stackrel{\mathsf{def}}{=} \mathscr{C} \star \mathscr{C}.$$

Definition 3 (Schur's product)

Given
$$\boldsymbol{a}, \boldsymbol{b} \in \mathbb{F}_q^n$$
, $\boldsymbol{a} \star \boldsymbol{b} \stackrel{\text{def}}{=} (a_1 b_1, \dots, a_n b_n)$.
If $\mathscr{C}, \mathscr{D} \subset \mathbb{F}_q^n$ are two codes, $\mathscr{C} \star \mathscr{D} \stackrel{\text{def}}{=} \operatorname{Span}_{\mathbb{F}_q} \{ \boldsymbol{c} \star \boldsymbol{d} \mid (\boldsymbol{c}, \boldsymbol{d}) \in \mathscr{C} \times \mathscr{D} \}$.
 $\mathscr{C}^{\star 2} \stackrel{\text{def}}{=} \mathscr{C} \star \mathscr{C}$

$$\dim_{\mathbb{F}_q} \mathscr{C}^{\star 2} = \left\{ \min \left\{ {n,\binom{r+1}{2}} \right\} \quad \text{if } \mathscr{C} \text{ is a random } [n,r]_q\text{-code}; \right.$$

Definition 3 (Schur's product)

Given
$$\mathbf{a}, \mathbf{b} \in \mathbb{F}_q^n$$
, $\mathbf{a} \star \mathbf{b} \stackrel{\text{def}}{=} (a_1 b_1, \dots, a_n b_n)$.
If $\mathscr{C}, \mathscr{D} \subset \mathbb{F}_q^n$ are two codes, $\mathscr{C} \star \mathscr{D} \stackrel{\text{def}}{=} \operatorname{Span}_{\mathbb{F}_q} \{ \mathbf{c} \star \mathbf{d} \mid (\mathbf{c}, \mathbf{d}) \in \mathscr{C} \times \mathscr{D} \}$.
 $\mathscr{C}^{\star 2} \stackrel{\text{def}}{=} \mathscr{C} \star \mathscr{C}$.

$$\dim_{\mathbb{F}_q} \mathscr{C}^{\star 2} = \begin{cases} \min \left\{ \frac{n}{r}, \binom{r+1}{2} \right\} & \text{if } \mathscr{C} \text{ is a random } [n, r]_q\text{-code}; \\ \min \left\{ \frac{n}{r}, 2r - 1 \right\} & \text{if } \mathscr{C} = \mathsf{GRS}_r(\mathbf{x}, \mathbf{y}). \end{cases}$$

Definition 3 (Schur's product)

Given
$$\mathbf{a}, \mathbf{b} \in \mathbb{F}_q^n$$
, $\mathbf{a} \star \mathbf{b} \stackrel{\text{def}}{=} (a_1 b_1, \dots, a_n b_n)$.
If $\mathscr{C}, \mathscr{D} \subset \mathbb{F}_q^n$ are two codes, $\mathscr{C} \star \mathscr{D} \stackrel{\text{def}}{=} \operatorname{Span}_{\mathbb{F}_q} \{ \mathbf{c} \star \mathbf{d} \mid (\mathbf{c}, \mathbf{d}) \in \mathscr{C} \times \mathscr{D} \}$.
 $\mathscr{C}^{\star 2} \stackrel{\text{def}}{=} \mathscr{C} \star \mathscr{C}$.

$$\dim_{\mathbb{F}_q} \mathscr{C}^{\star 2} = \begin{cases} \min \left\{ \frac{n}{r}, \binom{r+1}{2} \right\} & \text{if } \mathscr{C} \text{ is a random } [n, r]_q\text{-code}; \\ \min \left\{ \frac{n}{r}, 2r - 1 \right\} & \text{if } \mathscr{C} = \mathsf{GRS}_r(\mathbf{x}, \mathbf{y}). \end{cases}$$

Indeed: $GRS_r(x, y)^{\star 2} = GRS_{2r-1}(x, y^{\star 2})$.

Definition 3 (Schur's product)

Given
$$\boldsymbol{a}, \boldsymbol{b} \in \mathbb{F}_q^n$$
, $\boldsymbol{a} \star \boldsymbol{b} \stackrel{\text{def}}{=} (a_1 b_1, \dots, a_n b_n)$.

$$\mathsf{lf} \; \mathscr{C}, \mathscr{D} \subset \mathbb{F}_q^n \; \mathsf{are} \; \mathsf{two} \; \mathsf{codes}, \; \mathscr{C} \star \mathscr{D} \stackrel{\mathsf{def}}{=} \mathrm{Span}_{\mathbb{F}_q} \{ \boldsymbol{c} \star \boldsymbol{d} \; | \; (\boldsymbol{c}, \boldsymbol{d}) \in \mathscr{C} \times \mathscr{D} \}.$$

$$\mathscr{C}^{\star 2} \stackrel{\mathsf{def}}{=} \mathscr{C} \star \mathscr{C}.$$

$$\dim_{\mathbb{F}_q} \mathscr{C}^{\star 2} = \begin{cases} \min \left\{ \frac{n}{r}, \binom{r+1}{2} \right\} & \text{if } \mathscr{C} \text{ is a random } [n, r]_q\text{-code}; \\ \min \left\{ \frac{n}{r}, 2r - 1 \right\} & \text{if } \mathscr{C} = \mathsf{GRS}_r(\mathbf{x}, \mathbf{y}). \end{cases}$$

Indeed:
$$GRS_r(x, y)^{*2} = GRS_{2r-1}(x, y^{*2}).$$

Explanation 4 (Nontrivial relations)

Definition 3 (Schur's product)

Given
$$\mathbf{a}, \mathbf{b} \in \mathbb{F}_q^n$$
, $\mathbf{a} \star \mathbf{b} \stackrel{\text{def}}{=} (a_1 b_1, \dots, a_n b_n)$.

$$\mathsf{lf}\,\,\mathscr{C},\mathscr{D} \subset \mathbb{F}_q^n \;\mathsf{are}\;\mathsf{two}\;\mathsf{codes},\;\mathscr{C}\star\mathscr{D} \stackrel{\mathsf{def}}{=} \mathrm{Span}_{\mathbb{F}_q}\{\boldsymbol{c}\star\boldsymbol{d}\;|\; (\boldsymbol{c},\boldsymbol{d})\in\mathscr{C}\times\mathscr{D}\}.$$

$$\mathscr{C}^{\star 2} \stackrel{\mathsf{def}}{=} \mathscr{C} \star \mathscr{C}.$$

$$\dim_{\mathbb{F}_q} \mathscr{C}^{\star 2} = \begin{cases} \min \left\{ \frac{n}{r}, \binom{r+1}{2} \right\} & \text{if } \mathscr{C} \text{ is a random } [n, r]_q\text{-code}; \\ \min \left\{ \frac{n}{r}, 2r - 1 \right\} & \text{if } \mathscr{C} = \mathsf{GRS}_r(x, y). \end{cases}$$

Indeed:
$$GRS_r(x, y)^{*2} = GRS_{2r-1}(x, y^{*2}).$$

Explanation 4 (Nontrivial relations)

•
$$\mathcal{V} = \{\mathbf{v}_1, \dots, \mathbf{v}_k\}$$
 basis of random $\mathscr{C} \implies \{\mathbf{v}_i \star \mathbf{v}_j \mid i \leq j\}$ basis of $\mathscr{C}^{\star 2}$.

Definition 3 (Schur's product)

Given
$$\mathbf{a}, \mathbf{b} \in \mathbb{F}_q^n$$
, $\mathbf{a} \star \mathbf{b} \stackrel{\text{def}}{=} (a_1 b_1, \dots, a_n b_n)$.

 $\mathsf{If}\ \mathscr{C},\mathscr{D} \subset \mathbb{F}_q^n \ \mathsf{are} \ \mathsf{two} \ \mathsf{codes}, \ \mathscr{C} \star \mathscr{D} \stackrel{\mathsf{def}}{=} \mathrm{Span}_{\mathbb{F}_q} \{ \boldsymbol{c} \star \boldsymbol{d} \mid (\boldsymbol{c}, \boldsymbol{d}) \in \mathscr{C} \times \mathscr{D} \}.$

$$\mathscr{C}^{\star 2} \stackrel{\mathsf{def}}{=} \mathscr{C} \star \mathscr{C}.$$

$$\dim_{\mathbb{F}_q} \mathscr{C}^{\star 2} = \begin{cases} \min \left\{ \frac{n}{r}, \binom{r+1}{2} \right\} & \text{if } \mathscr{C} \text{ is a random } [n, r]_q\text{-code}; \\ \min \left\{ \frac{n}{r}, 2r - 1 \right\} & \text{if } \mathscr{C} = \mathsf{GRS}_r(\mathbf{x}, \mathbf{y}). \end{cases}$$

Indeed: $GRS_r(x, y)^{*2} = GRS_{2r-1}(x, y^{*2}).$

Explanation 4 (Nontrivial relations)

•
$$\mathcal{V} = \{\mathbf{v}_1, \dots, \mathbf{v}_k\}$$
 basis of **random** $\mathscr{C} \implies \{\mathbf{v}_i \star \mathbf{v}_i \mid i \leq j\}$ basis of $\mathscr{C}^{\star 2}$.

•
$$\mathcal{V} = \{ \mathbf{y}, \mathbf{x} \star \mathbf{y}, \dots, \mathbf{x}^{r-1} \star \mathbf{y} \} \implies (\mathbf{x}^i \star \mathbf{y}) \star (\mathbf{x}^j \star \mathbf{y}) = (\mathbf{x}^k \star \mathbf{y}) \star (\mathbf{x}^l \star \mathbf{y}) \text{ each time } i + j = k + l.$$

$$P: \begin{cases} \mathbb{F}_q^{\binom{k+1}{2}} & \longrightarrow \mathscr{C}^{\star 2} \\ \boldsymbol{c} = (c_{i,j})_{i \leqslant j} & \longmapsto \sum_{i \leqslant j} c_{i,j} \boldsymbol{v}_i \star \boldsymbol{v}_j. \end{cases}$$

$$P: \begin{cases} \mathbb{F}_q^{\binom{k+1}{2}} & \longrightarrow \mathscr{C}^{\star 2} \\ \boldsymbol{c} = (c_{i,j})_{i \leqslant j} & \longmapsto \sum_{i \leqslant j} c_{i,j} \boldsymbol{v}_i \star \boldsymbol{v}_j. \end{cases}$$

$$\checkmark \ \mathscr{C} \ \text{not random} \ \Longleftrightarrow \ \dim_{\mathbb{F}_q} \mathscr{C}^{\star 2} < \tbinom{k+1}{2}$$

$$P: \begin{cases} \mathbb{F}_q^{\binom{k+1}{2}} & \longrightarrow \mathscr{C}^{\star 2} \\ \boldsymbol{c} = (c_{i,j})_{i \leqslant j} & \longmapsto \sum_{i \leqslant j} c_{i,j} \boldsymbol{v}_i \star \boldsymbol{v}_j. \end{cases}$$

✓
$$\mathscr{C}$$
 not random $\iff \dim_{\mathbb{F}_q} \mathscr{C}^{\star 2} < {k+1 \choose 2} \iff \ker P \neq \{0\}.$

Let \mathscr{C} be an $[n,k]_q$ -code of basis $\mathcal{V} = \{\mathbf{v}_1,\ldots,\mathbf{v}_k\}$.

$$P: \begin{cases} \mathbb{F}_q^{\binom{k+1}{2}} & \longrightarrow \mathscr{C}^{\star 2} \\ \boldsymbol{c} = (c_{i,j})_{i \leqslant j} & \longmapsto \sum_{i \leqslant j} c_{i,j} \boldsymbol{v}_i \star \boldsymbol{v}_j. \end{cases}$$

$$\checkmark \ \mathscr{C} \ \text{not random} \ \Longleftrightarrow \ \dim_{\mathbb{F}_q} \mathscr{C}^{\star 2} < {k+1 \choose 2} \ \Longleftrightarrow \ \ker P \neq \{0\}.$$

Definition 5 (Code of relations)

$$\mathscr{C}_{\mathsf{rel}}(\mathcal{V}) \stackrel{\mathsf{def}}{=} \ker P = \left\{ \boldsymbol{c} = (c_{i,j})_{i \leqslant j} \in \mathbb{F}_q^{\binom{k+1}{2}}, \ \sum_{i \leqslant j} c_{i,j} \boldsymbol{v}_i \star \boldsymbol{v}_j = 0 \right\}.$$

Let \mathscr{C} be an $[n, k]_q$ -code of basis $\mathcal{V} = \{\mathbf{v}_1, \dots, \mathbf{v}_k\}$.

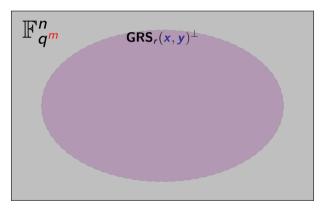
$$P: \begin{cases} \mathbb{F}_q^{\binom{k+1}{2}} & \longrightarrow \mathscr{C}^{\star 2} \\ \boldsymbol{c} = (c_{i,j})_{i \leqslant j} & \longmapsto \sum_{i \leqslant j} c_{i,j} \boldsymbol{v}_i \star \boldsymbol{v}_j. \end{cases}$$

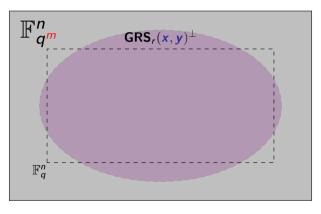
$$\checkmark \ \mathscr{C} \ \text{not random} \ \Longleftrightarrow \ \dim_{\mathbb{F}_q} \mathscr{C}^{\star 2} < {k+1 \choose 2} \ \Longleftrightarrow \ \ker P \neq \{0\}.$$

Definition 5 (Code of relations)

$$\mathscr{C}_{\mathsf{rel}}(\mathcal{V}) \overset{\mathsf{def}}{=} \ker P = \left\{ \boldsymbol{c} = (c_{i,j})_{i \leqslant j} \in \mathbb{F}_q^{\binom{k+1}{2}}, \ \sum_{i \leqslant j} c_{i,j} \boldsymbol{v}_i \star \boldsymbol{v}_j = 0 \right\}.$$

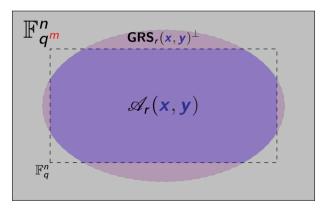
$$\dim_{\mathbb{F}_q} \mathbf{GRS}_r(\mathbf{x}, \mathbf{y})^{\star 2} = \min \left\{ n, \binom{r+1}{2} - \underbrace{\frac{(r-1)(r-2)}{2}}_{\dim \mathscr{C}_{rel}} = 2r - 1 \right\}$$





Real World McEliece: Alternant codes

Subfield subcodes of GRS codes.



Properties of alternant codes

$$\mathscr{A}_r(\mathbf{x}, \mathbf{y}) = \left(\mathsf{GRS}_r(\mathbf{x}, \mathbf{y})^{\perp}\right) \cap \mathbb{F}_q^n.$$

Properties of alternant codes

$$\mathscr{A}_r(\mathbf{x}, \mathbf{y}) = \left(\mathsf{GRS}_r(\mathbf{x}, \mathbf{y})^{\perp}\right) \cap \mathbb{F}_q^n.$$

Dimension	$\geqslant n - rm \ (= n - rm \ \text{generically}).$
Minimum distance	≥ r
Efficient decoding algorithm	✓
Indistinguishability	?

Figure: Proporties of alternant codes

Properties of alternant codes

$$\mathscr{A}_r(\boldsymbol{x}, \boldsymbol{y}) = \left(\mathsf{GRS}_r(\boldsymbol{x}, \boldsymbol{y})^{\perp}\right) \cap \mathbb{F}_q^n.$$

Dimension	$\geqslant n - rm \ (= n - rm \ \text{generically}).$
Minimum distance	≥ <i>r</i>
Efficient decoding algorithm	✓
Indistinguishability	?

Figure: Proporties of alternant codes

Proposition 6

Assume r < q + 1. Generically,

$$\dim_{\mathbb{F}_q} \left(\mathscr{A}_r(\boldsymbol{x}, \boldsymbol{y})^\perp \right)^{\star 2} = \min \left\{ n, \binom{rm+1}{2} - \frac{m}{2} (r-1)(r-2) \right\}.$$

Plan of this Section

- Distinguisher [FGOPT10]: nontrivial relations in a code
- ② Distinguisher [CMT23]: **short** relations
- Conclusion

Matrix code of relations

Definition 7

Matrix of a relation $\boldsymbol{c} = (c_{i,j})_{i \leq j} \in \mathscr{C}_{rel}$:

$$M_{\mathbf{c}} = \begin{pmatrix} 2c_{1,1} & c_{1,2} & \dots & c_{1,k} \\ c_{1,2} & 2c_{2,2} & \dots & c_{2,k} \\ \vdots & \vdots & \ddots & \vdots \\ c_{1,k} & c_{2,k} & \dots & 2c_{k,k} \end{pmatrix}.$$

Matrix code of relations

Definition 7

Matrix of a relation $\boldsymbol{c} = (c_{i,j})_{i \leq j} \in \mathscr{C}_{rel}$:

$$M_{\mathbf{c}} = \begin{pmatrix} 2c_{1,1} & c_{1,2} & \dots & c_{1,k} \\ c_{1,2} & 2c_{2,2} & \dots & c_{2,k} \\ \vdots & \vdots & \ddots & \vdots \\ c_{1,k} & c_{2,k} & \dots & 2c_{k,k} \end{pmatrix}.$$

Definition 8 (Matrix code of relations)

$$\mathscr{C}_{\mathsf{mat}}(\mathcal{V}) = \{ M_{\boldsymbol{c}}, \ \boldsymbol{c} \in \mathscr{C}_{\mathsf{rel}}(\mathcal{V}) \}.$$

Back to our GRS codes:

Back to our GRS codes: if
$$\mathcal{V} = \{ \mathbf{v}_0, \dots, \mathbf{v}_{r-1} \} = \{ \mathbf{y}, \mathbf{x} \star \mathbf{y}, \dots, \mathbf{x}^{r-1} \star \mathbf{y} \}$$
, the relation
$$\mathbf{v}_0 \star \mathbf{v}_2 - \mathbf{v}_1^{\star 2} = 0$$

has matrix

$$M = \begin{pmatrix} 0 & 0 & 1 & 0 & \dots \\ 0 & -2 & 0 & 0 & \dots \\ 1 & 0 & 0 & 0 & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

which has rank 3 in characteristic \neq 2 and rank 2 in characteristic 2.

Back to our GRS codes: if
$$\mathcal{V} = \{ \mathbf{v}_0, \dots, \mathbf{v}_{r-1} \} = \{ \mathbf{y}, \mathbf{x} \star \mathbf{y}, \dots, \mathbf{x}^{r-1} \star \mathbf{y} \}$$
, the relation

$$\mathbf{v}_0\star\mathbf{v}_2-\mathbf{v}_1^{\star 2}=0$$

has matrix

$$M = \begin{pmatrix} 0 & 0 & 1 & 0 & \dots \\ 0 & -2 & 0 & 0 & \dots \\ 1 & 0 & 0 & 0 & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

which has rank 3 in characteristic \neq 2 and rank 2 in characteristic 2.

A relation $c \in \mathscr{C}_{\mathsf{rel}}(\mathcal{V})$ is **short** if its matrix $M_c \in \mathscr{C}_{\mathsf{mat}}(\mathcal{V})$ has a low rank.

Back to our GRS codes: if
$$V = \{v_0, \dots, v_{r-1}\} = \{y, x \star y, \dots, x^{r-1} \star y\}$$
, the relation

$$\mathbf{v}_0 \star \mathbf{v}_2 - \mathbf{v}_1^{\star 2} = 0$$

has matrix

$$M = \begin{pmatrix} 0 & 0 & 1 & 0 & \dots \\ 0 & -2 & 0 & 0 & \dots \\ 1 & 0 & 0 & 0 & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

which has rank 3 in characteristic \neq 2 and rank 2 in characteristic 2.

A relation $c \in \mathscr{C}_{\mathsf{rel}}(\mathcal{V})$ is **short** if its matrix $M_c \in \mathscr{C}_{\mathsf{mat}}(\mathcal{V})$ has a low rank.

Consequence 9

Even if $GRS_r(x,y)^{*2} = \mathbb{F}_q^n$, short relations might still be detectable...

Finding short relations in characteristic 2

Let M be the generic skew-symmetric matrix of size r in characteristic 2, i.e

$$\mathbf{M} \stackrel{\text{def}}{=} \begin{pmatrix} 0 & x_{1,2} & x_{1,3} & \dots & x_{1,r-1} & x_{1,r} \\ x_{1,2} & 0 & x_{2,3} & \dots & x_{2,r-1} & x_{2,r} \\ x_{1,3} & x_{2,3} & 0 & \dots & x_{3,r-1} & x_{3,r} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ x_{1,r-1} & x_{2,r-1} & x_{3,r-1} & \dots & 0 & x_{r-1,r} \\ x_{1,r} & x_{2,r} & x_{3,r} & \dots & x_{r-1,r} & 0 \end{pmatrix}$$

Finding short relations in characteristic 2

Let M be the generic skew-symmetric matrix of size r in characteristic 2, i.e

$$\mathbf{M} \stackrel{\text{def}}{=} \begin{pmatrix} 0 & x_{1,2} & x_{1,3} & \dots & x_{1,r-1} & x_{1,r} \\ x_{1,2} & 0 & x_{2,3} & \dots & x_{2,r-1} & x_{2,r} \\ x_{1,3} & x_{2,3} & 0 & \dots & x_{3,r-1} & x_{3,r} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ x_{1,r-1} & x_{2,r-1} & x_{3,r-1} & \dots & 0 & x_{r-1,r} \\ x_{1,r} & x_{2,r} & x_{3,r} & \dots & x_{r-1,r} & 0 \end{pmatrix}$$

Fact 10

M has rank ≤ 2 if, and only if

$$\forall 1 \leq i < j < k < l \leq r, \ x_{i,j}x_{k,l} + x_{i,k}x_{i,l} + x_{i,l}x_{i,k} = 0.$$

Modeling 11 (
$$M \in \mathscr{C}_{mat}$$
, $rk(M) \leq 2$)

- $\operatorname{rk}(\mathbf{M}) \leq 2 \implies \forall 1 \leq i < j < k < l \leq r, \ x_{i,j}x_{k,l} + x_{i,k}x_{j,l} + x_{i,l}x_{j,k} = 0;$
- $M \in \mathscr{C}_{mat} \implies L_1(\{x_{i,j}\}) = \ldots = L_t(\{x_{i,j}\}) = 0$ where the L_i 's are linear forms.

Modeling 11 $(M \in \mathscr{C}_{mat}, \operatorname{rk}(M) \leq 2)$

- $\operatorname{rk}(\mathbf{M}) \leq 2 \implies \forall 1 \leq i < j < k < l \leq r, \ x_{i,j}x_{k,l} + x_{i,k}x_{j,l} + x_{i,l}x_{j,k} = 0;$
- $M \in \mathscr{C}_{mat} \implies L_1(\{x_{i,j}\}) = \ldots = L_t(\{x_{i,j}\}) = 0$ where the L_i 's are **linear forms**.

These polynomials generate an **ideal** $\mathcal{I} \subseteq \mathbb{F}_q[\{x_{i,j}\}]$.

Modeling 11 ($M \in \mathscr{C}_{mat}$, $rk(M) \leq 2$)

- $\operatorname{rk}(\mathbf{M}) \leqslant 2 \implies \forall 1 \leqslant i < j < k < l \leqslant r, \ x_{i,j}x_{k,l} + x_{i,k}x_{j,l} + x_{i,l}x_{j,k} = 0;$
- $M \in \mathscr{C}_{mat} \implies L_1(\{x_{i,j}\}) = \ldots = L_t(\{x_{i,j}\}) = 0$ where the L_i 's are **linear forms**.

These polynomials generate an **ideal** $\mathcal{I} \subseteq \mathbb{F}_q[\{x_{i,j}\}]$.

Subspace \mathcal{I}_2 : generated by the $\binom{r}{4}$ quadratic equations plus the equations of the form $x_{i,j}L_s$.

Modeling 11 $(M \in \mathscr{C}_{mat}, \operatorname{rk}(M) \leq 2)$

- $\operatorname{rk}(\mathbf{M}) \leqslant 2 \implies \forall 1 \leqslant i < j < k < l \leqslant r, \ x_{i,j}x_{k,l} + x_{i,k}x_{j,l} + x_{i,l}x_{j,k} = 0;$
- $M \in \mathscr{C}_{mat} \implies L_1(\{x_{i,j}\}) = \ldots = L_t(\{x_{i,j}\}) = 0$ where the L_i 's are **linear forms**.

These polynomials generate an **ideal** $\mathcal{I} \subseteq \mathbb{F}_q[\{x_{i,j}\}]$.

Subspace \mathcal{I}_2 : generated by the $\binom{r}{4}$ quadratic equations plus the equations of the form $x_{i,j}L_s$.

 \hookrightarrow Hilbert function at degree 2: $HF(2) \stackrel{\text{def}}{=} \dim \mathbb{F}_q[\{x_{i,j}\}]/\mathcal{I}_2$.

Goal. Distinguish $\mathscr{A}_r(x,y)^{\perp}$ from a random $[n,rm]_q$ -code

Goal. Distinguish $\mathscr{A}_r(\mathbf{x}, \mathbf{y})^{\perp}$ from a random $[n, rm]_q$ -code assuming $(\mathscr{A}_r(\mathbf{x}, \mathbf{y})^{\perp})^{\star 2} = \mathbb{F}_q^n$.

Goal. Distinguish $\mathscr{A}_r(\mathbf{x}, \mathbf{y})^{\perp}$ from a random $[n, rm]_q$ -code assuming $(\mathscr{A}_r(\mathbf{x}, \mathbf{y})^{\perp})^{\star 2} = \mathbb{F}_q^n$.

Proposition 12 (Random case)

If $\mathscr C$ is a **non**-square-distinguishable random $[n, rm]_q$ -code, then

$$\mathsf{HF}_{\$}(2) = \frac{1}{rm+1} \binom{rm+1}{3} \binom{rm+1}{2} - \binom{rm}{2} (n-rm) + \binom{n-rm}{2}.$$

Goal. Distinguish $\mathscr{A}_r(\mathbf{x}, \mathbf{y})^{\perp}$ from a random $[n, rm]_q$ -code assuming $(\mathscr{A}_r(\mathbf{x}, \mathbf{y})^{\perp})^{\star 2} = \mathbb{F}_q^n$.

Proposition 12 (Random case)

If $\mathscr C$ is a **non**-square-distinguishable random $[n, rm]_q$ -code, then

$$\mathsf{HF}_{\$}(2) = \frac{1}{rm+1} \binom{rm+1}{3} \binom{rm+1}{2} - \binom{rm}{2} (n-rm) + \binom{n-rm}{2}.$$

What happens for generic alternant codes?

First step: GRS codes

Lemma 13 (Bardet, Mora, Tillich)

It holds that

$$(\mathscr{A}_r(\boldsymbol{x},\boldsymbol{y})^{\perp})_{\mathbb{F}_{q^m}} = \sum_{i=0}^{m-1} \mathsf{GRS}_r(\boldsymbol{x}^{q^i},\boldsymbol{y}^{q^i}).$$

With the usual assumption $\dim_{\mathbb{F}_q} \mathscr{A}_r(\mathbf{x}, \mathbf{y}) = n - rm$, the sum becomes direct.

First step: GRS codes

Lemma 13 (Bardet, Mora, Tillich)

It holds that

$$(\mathscr{A}_r(\boldsymbol{x},\boldsymbol{y})^{\perp})_{\mathbb{F}_{q^m}} = \sum_{i=0}^{m-1} \mathsf{GRS}_r(\boldsymbol{x}^{q^i},\boldsymbol{y}^{q^i}).$$

With the usual assumption $\dim_{\mathbb{F}_q} \mathscr{A}_r(\mathbf{x}, \mathbf{y}) = n - rm$, the sum becomes direct.

Conjecture 14 (HF(2) for square-distinguishable Reed-Solomon codes)

If $2r-1 \leqslant n$, then the Hilbert function at degree 2 associated with a **GRS** code of dimension r is given by

$$\mathsf{HF}_{\textit{GRS}}(2) = \binom{\binom{r-1}{2}+1}{2} - \binom{r}{4} = \frac{1}{12}(r-1)(r-2)(r^2-3r+6).$$

From GRS codes to alternant codes

Theorem 15 (This work)

Assume Conjecture 14 holds. The Hilbert function at degree 2 of the algebraic modeling associated with a generic **square-distinguishable** alternant code $\mathscr{A}_r(\mathbf{x},\mathbf{y})$ is given by

$$\mathsf{HF}_{\mathscr{A}}(2) = \mathsf{m}\,\mathsf{HF}_{\mathsf{GRS}}(2) = \frac{\mathsf{m}}{12}(\mathsf{r}-1)(\mathsf{r}-2)(\mathsf{r}^2-3\mathsf{r}+6).$$

From GRS codes to alternant codes

Theorem 15 (This work)

Assume Conjecture 14 holds. The Hilbert function at degree 2 of the algebraic modeling associated with a generic **square-distinguishable** alternant code $\mathscr{A}_r(\mathbf{x}, \mathbf{y})$ is given by

$$\mathsf{HF}_{\mathscr{A}}(2) = \mathsf{m}\,\mathsf{HF}_{\mathsf{GRS}}(2) = \frac{\mathsf{m}}{12}(\mathsf{r}-1)(\mathsf{r}-2)(\mathsf{r}^2-3\mathsf{r}+6).$$

But what happens if $\mathscr{A}_r(x, y)$ is not square-distinguishable ?

From GRS codes to alternant codes

Theorem 15 (This work)

Assume Conjecture 14 holds. The Hilbert function at degree 2 of the algebraic modeling associated with a generic **square-distinguishable** alternant code $\mathscr{A}_r(\mathbf{x}, \mathbf{y})$ is given by

$$\mathsf{HF}_{\mathscr{A}}(2) = m \, \mathsf{HF}_{\mathit{GRS}}(2) = \frac{m}{12} (r-1)(r-2)(r^2-3r+6).$$

But what happens if $\mathscr{A}_r(\mathbf{x}, \mathbf{y})$ is not square-distinguishable ?

Corollary 16

It holds that

$$\mathsf{HF}_{\mathscr{A}}(2) \geqslant \frac{m}{12}(r-1)(r-2)(r^2-3r+6).$$

Distinguishability condition: $HF_{\$}(2) < \frac{m}{12}(r-1)(r-2)(r^2-3r+6)$.

Distinguishability condition: $HF_{\$}(2) < \frac{m}{12}(r-1)(r-2)(r^2-3r+6)$.

Natural asymptotic regime: $r \longrightarrow +\infty$ and $m = \mathcal{O}(\log r)$.

Distinguishability condition: $HF_{\$}(2) < \frac{m}{12}(r-1)(r-2)(r^2-3r+6)$.

Natural asymptotic regime: $r \longrightarrow +\infty$ and $m = \mathcal{O}(\log r)$.

Corollary 17

Assume r < q + 1. The asymptotic lowest dimension k_0 for which alternant codes of degree r and extension degree m are 2-distinguishable satisfies

$$k_0 \sim \frac{1 - \frac{1}{\sqrt{3}}}{2} r^2 m^2 \approx 0.21 r^2 m^2.$$

Distinguishability condition: $HF_{\$}(2) < \frac{m}{12}(r-1)(r-2)(r^2-3r+6)$.

Natural asymptotic regime: $r \longrightarrow +\infty$ and $m = \mathcal{O}(\log r)$.

Corollary 17

Assume r < q + 1. The asymptotic lowest dimension k_0 for which alternant codes of degree r and extension degree m are 2-distinguishable satisfies

$$k_0 \sim \frac{1 - \frac{1}{\sqrt{3}}}{2} r^2 m^2 \approx 0.21 r^2 m^2.$$

Original square distinguisher from [FGOPT10] when r < q + 1:

$$n > {rm+1 \choose 2} - m \frac{(r-1)(r-2)}{2}$$
 i.e $k > k_0 = {rm+1 \choose 2} - rm - m \frac{(r-1)(r-2)}{2}$

Distinguishability condition: $HF_{\$}(2) < \frac{m}{12}(r-1)(r-2)(r^2-3r+6)$.

Natural asymptotic regime: $r \longrightarrow +\infty$ and $m = \mathcal{O}(\log r)$.

Corollary 17

Assume r < q + 1. The asymptotic lowest dimension k_0 for which alternant codes of degree r and extension degree m are 2-distinguishable satisfies

$$k_0 \sim \frac{1 - \frac{1}{\sqrt{3}}}{2} r^2 m^2 \approx 0.21 r^2 m^2.$$

Original square distinguisher from [FGOPT10] when r < q + 1:

$$n > {rm+1 \choose 2} - m \frac{(r-1)(r-2)}{2}$$
 i.e $k > k_0 = {rm+1 \choose 2} - rm - m \frac{(r-1)(r-2)}{2}$

which leads to $k_0 \sim \frac{r^2 m^2}{2}$.

Plan of this Section

- Distinguisher [FGOPT10]: nontrivial relations in a code
- ② Distinguisher [CMT23]: short relations
- Conclusion

Conclusions.

Conclusions.

• Understanding of the **new** distinguisher at degree 2 for large field size (r < q + 1).

Conclusions.

- Understanding of the **new** distinguisher at degree 2 for large field size (r < q + 1).
- A proof for a regime of parameters which are 2-distinguishable for sure.

Conclusions.

- Understanding of the **new** distinguisher at degree 2 for large field size (r < q + 1).
- A proof for a regime of parameters which are 2-distinguishable for sure.
 - ⇒ much wider regime than [FGOPT10] !

Conclusions.

- Understanding of the **new** distinguisher at degree 2 for large field size (r < q + 1).
- A proof for a regime of parameters which are 2-distinguishable for sure.
 - ⇒ much wider regime than [FGOPT10] !

Future work.

Conclusions.

- Understanding of the **new** distinguisher at degree 2 for large field size (r < q + 1).
- A proof for a regime of parameters which are 2-distinguishable for sure.
 ⇒ much wider regime than [FGOPT10]!

Future work.

• Find a formula for $r \geqslant q + 1$;

Conclusions.

- Understanding of the **new** distinguisher at degree 2 for large field size (r < q + 1).
- A proof for a regime of parameters which are 2-distinguishable for sure.
 ⇒ much wider regime than [FGOPT10]!

Future work.

- Find a formula for $r \geqslant q + 1$;
- Find another algebraic interpretation of the distinguisher;

Conclusions.

- Understanding of the **new** distinguisher at degree 2 for large field size (r < q + 1).
- A proof for a regime of parameters which are 2-distinguishable for sure.
 ⇒ much wider regime than [FGOPT10]!

Future work.

- Find a formula for $r \geqslant q + 1$;
- Find another algebraic interpretation of the distinguisher;
- See if it can be turned into and attack.

Conclusions.

- Understanding of the **new** distinguisher at degree 2 for large field size (r < q + 1).
- A proof for a regime of parameters which are 2-distinguishable for sure.
 much wider regime than [FGOPT10]!

Future work.

- Find a formula for $r \ge q + 1$;
- Find another algebraic interpretation of the distinguisher;
- See if it can be turned into and attack.

Thank you for your attention.

Change of basis

What does really depend on the basis?

Change of basis

What does really depend on the basis?

Proposition 18

Let \mathcal{A}, \mathcal{B} be two bases of the same code \mathscr{C} . There exists $\mathbf{P} \in \mathbf{GL}_k(\mathbb{F}_q)$ such that

$$\mathscr{C}_{mat}(\mathcal{A}) = \boldsymbol{P}^{\top}\mathscr{C}_{mat}(\mathcal{B})\boldsymbol{P}.$$

Change of basis

What does really depend on the basis?

Proposition 18

Let \mathcal{A},\mathcal{B} be two bases of the same code \mathscr{C} . There exists $extbf{P} \in \mathbf{GL}_k(\mathbb{F}_q)$ such that

$$\mathscr{C}_{mat}(\mathcal{A}) = \boldsymbol{P}^{\top}\mathscr{C}_{mat}(\mathcal{B})\boldsymbol{P}.$$

 \implies The number of rank r matrices does not depend on the basis!

Explicit algebraic modeling

Idea: compute a basis (M_1, \ldots, M_N) of \mathscr{C}_{mat} and write

$$\mathbf{M} = \sum_{i=1}^{N} X_i M_i.$$

Explicit algebraic modeling

Idea: compute a basis (M_1, \ldots, M_N) of $\mathscr{C}_{\mathsf{mat}}$ and write

$$\mathbf{M} = \sum_{i=1}^{N} X_i M_i.$$

 \hookrightarrow write quadratic equations ensuring that $\mathrm{rk}(\mathbf{M}) \leqslant 2$.

Explicit modeling for square-distinguishable Reed-Solomon codes

For r = 5, we have

$$\mathbf{M} = \begin{pmatrix} 0 & 0 & X_1 & X_2 & X_4 \\ 0 & 0 & X_2 & X_3 & X_5 \\ X_1 & X_2 & 0 & X_5 & X_6 \\ X_2 & X_3 & X_5 & 0 & 0 \\ X_4 & X_5 & X_6 & 0 & 0 \end{pmatrix}$$

Explicit modeling for square-distinguishable Reed-Solomon codes

For r = 6, we have

$$\mathbf{M} = \begin{pmatrix} 0 & 0 & X_1 & X_2 & X_4 & X_6 \\ 0 & 0 & X_2 & X_3 & X_5 & X_8 \\ X_1 & X_2 & 0 & X_5 + X_6 & X_7 & X_9 \\ X_2 & X_3 & X_5 + X_6 & 0 & X_9 & X_{10} \\ X_4 & X_5 & X_7 & X_9 & 0 & 0 \\ X_6 & X_8 & X_9 & X_{10} & 0 & 0 \end{pmatrix}$$

Explicit modeling for square-distinguishable Reed-Solomon codes

For r = 8, we have

$$\mathbf{M} = \begin{pmatrix} 0 & 0 & X_1 & X_2 & X_4 & X_6 & X_9 & X_{12} \\ 0 & 0 & X_2 & X_3 & X_5 & X_8 & X_{11} & X_{15} \\ X_1 & X_2 & 0 & X_5 + X_6 & X_7 & X_{10} & X_{14} & X_{17} \\ X_2 & X_3 & X_5 + X_6 & 0 & X_{10} + X_{11} + X_{12} & X_{13} & X_{16} & X_{19} \\ X_4 & X_5 & X_7 & X_{10} + X_{11} + X_{12} & 0 & X_{16} + X_{17} & X_{18} & X_{20} \\ X_6 & X_8 & X_{10} & X_{13} & X_{16} + X_{17} & 0 & X_{20} & X_{21} \\ X_9 & X_{11} & X_{14} & X_{16} & X_{18} & X_{20} & 0 & 0 \\ X_{12} & X_{15} & X_{17} & X_{19} & X_{20} & X_{21} & 0 & 0 \end{pmatrix}$$

And the equations

For r = 6, the Pfaffians of M of size 4 are

$$\begin{split} \mathsf{Pf}(\textbf{\textit{M}},2) &= \{X_2^2 + X_1 X_3, X_2 X_4 + X_1 X_5, X_2 X_6 + X_1 X_8, X_3 X_4 + X_2 X_5, \\ &\quad X_3 X_6 + X_2 X_8, X_5 X_6 + X_4 X_8, X_4 X_5 + X_4 X_6 + X_2 X_7 + X_1 X_9, \\ &\quad X_5 X_6 + X_6^2 + X_2 X_9 + X_1 X_{10}, X_6 X_7 + X_4 X_9, X_6 X_9 + X_4 X_{10}, \\ &\quad X_5^2 + X_5 X_6 + X_3 X_7 + X_2 X_9, X_5 X_8 + X_6 X_8 + X_3 X_9 + X_2 X_{10}, \\ &\quad X_7 X_8 + X_5 X_9, X_8 X_9 + X_5 X_{10}, X_9^2 + X_7 X_{10} \}. \end{split}$$

$$G_{\mathrm{pub}} = S \cdot G_{\mathrm{priv}} \cdot P_{\sigma}$$
 where $S \in \mathrm{GL}_{k}(\mathbb{F}_{q})$ and $P_{\sigma} \stackrel{\mathsf{def}}{=} (\delta_{i,\sigma(j)})_{i,j}$ for some $\sigma \in \mathfrak{S}_{n}$.

$$G_{\mathrm{pub}} = S \cdot G_{\mathrm{priv}} \cdot P_{\sigma}$$
 where $S \in \mathrm{GL}_{k}(\mathbb{F}_{q})$ and $P_{\sigma} \stackrel{\mathsf{def}}{=} (\delta_{i,\sigma(j)})_{i,j}$ for some $\sigma \in \mathfrak{S}_{n}$.

Proposition 19

Let $\mathscr{C} \subset \mathbb{F}_q^n$ be a code. Then

$$(\mathscr{C} \cdot P_{\sigma})^{\perp} = (\mathscr{C}^{\perp}) \cdot P_{\sigma^{-1}},$$

where $\mathscr{C} \cdot P_{\sigma} = \{ w^{\sigma} \stackrel{\text{def}}{=} (w_{\sigma(1)}, \dots, w_{\sigma(n)}) \}$. If **G** is a generator matrix of \mathscr{C} , then **G**P is a generator matrix of $\mathscr{C} \cdot P$.

$$G_{\mathrm{pub}} = S \cdot G_{\mathrm{priv}} \cdot P_{\sigma}$$
 where $S \in \mathrm{GL}_{k}(\mathbb{F}_{q})$ and $P_{\sigma} \stackrel{\mathrm{def}}{=} (\delta_{i,\sigma(j)})_{i,j}$ for some $\sigma \in \mathfrak{S}_{n}$.

Proposition 19

Let $\mathscr{C} \subset \mathbb{F}_q^n$ be a code. Then

$$(\mathscr{C} \cdot P_{\sigma})^{\perp} = (\mathscr{C}^{\perp}) \cdot P_{\sigma^{-1}},$$

where $\mathscr{C} \cdot P_{\sigma} = \{ w^{\sigma} \stackrel{\text{def}}{=} (w_{\sigma(1)}, \dots, w_{\sigma(n)}) \}$. If **G** is a generator matrix of \mathscr{C} , then **G**P is a generator matrix of $\mathscr{C} \cdot P$.

Corollary 20

$$\mathscr{A}_r(\mathbf{x}, \mathbf{y}) \cdot P_{\sigma} = \mathscr{A}_r(\mathbf{x}^{\sigma^{-1}}, \mathbf{y}^{\sigma^{-1}}).$$

By Proposition 19,

$$(\mathscr{A}_r(\boldsymbol{x},\boldsymbol{y})\cdot P_{\sigma})^{\perp}=\mathscr{A}_r(\boldsymbol{x},\boldsymbol{y})^{\perp}\cdot P_{\sigma^{-1}}.$$

Delstarte's theorem: $\mathscr{A}_r(\boldsymbol{x},\boldsymbol{y})^{\perp} = \mathrm{Tr}_{\mathbb{F}_{q^m}/\mathbb{F}_q}(\mathsf{GRS}_r(\boldsymbol{x},\boldsymbol{y}))$ has generator matrix

$$G \stackrel{\text{def}}{=} \begin{pmatrix} y_1^{(1)} & y_2^{(1)} & \dots & y_n^{(1)} \\ \vdots & \vdots & \ddots & \vdots \\ y_1^{(m)} & y_2^{(m)} & \dots & y_n^{(m)} \\ \vdots & \vdots & \ddots & \vdots \\ (y_1 x_1^{r-1})^{(1)} & (y_2 x_2^{r-1})^{(1)} & \dots & (y_n x_n^{r-1})^{(1)} \\ \vdots & \vdots & \ddots & \vdots \\ (y_1 x_1^{r-1})^{(m)} & (y_2 x_2^{r-1})^{(m)} & \dots & (y_n x_n^{r-1})^{(m)} \end{pmatrix}.$$

Therefore, $G \cdot P_{\sigma^{-1}}$ is a generator matrix of $\operatorname{Tr}_{\mathbb{F}_{q^m}/\mathbb{F}_q}(\mathsf{GRS}_r(\boldsymbol{x}^{\sigma^{-1}}, \boldsymbol{y}^{\sigma^{-1}}))$.