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Subspace Codes

Definition (Subspace code)

Let P4(n) denote the set of all the subspaces of Fg. A is a
non-empty collection C C Py(n) with minimum distance

d(C) = min{ds(U, V) | U,V € C, U# V} .

» The distance ds used here is the subspace distance and is defined by
ds(U, V) =dim(U) + dim(V) — 2dim(UN V) .
> If every subspace in code C is of the same dimension, say k, then
d(C) =2k — va@g){(j#vdim(Uﬁ V).

> It is well-known that Fyn is isomorphic to Fg as a vector space over Fy.

Due to rich algebraic structure of Fg» compared to Fg, we identify the
subspaces of Fg with that of Fgn.
> For a € Fz and U € Pq(n), the of U is defined as

aU={aulueU}.
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Orbit Codes

> We can define a group action Fgn x Pq(n) — Pg(n) of Fgn on Pg(n) as

(a,U) — aU.
For any Fq-subspace U C Fg, the , denoted by Orb(U), is
defined by
Orb(U) ={alU | a € Fgp}.
> The of U, denoted by Stab(U), is defined by

Stab(U) = {a € Fin | ol = U} .

Stab(U) U {0} = I, for some t which is a divisor of gcd(dimg, (U), n).
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Orbit Codes

> We can define a group action Fgn x Pq(n) — Pg(n) of Fgn on Pg(n) as

(a,U) — aU.
For any Fq-subspace U C Fg, the , denoted by Orb(U), is
defined by
Orb(U) ={alU | a € Fgp}.
> The of U, denoted by Stab(U), is defined by

Stab(U) = {a € Fin | ol = U} .

Stab(U) U {0} = I, for some t which is a divisor of gcd(dimg, (U), n).
» Using the orbit-stabilizer theorem, for any subspace U of Fj, we have

_ 9 -1 _q"-1
10BN = (Stabioy] ~ =1

> If Stab(U) = Iy, i.e., |Orb(U)| = %, then Orb(U) is called a

and we say that U generates a full-length orbit. Otherwise,
Orb(U) is a degenerate orbit.

4/29



Orbit Codes

A subspace code C is said to be a if aU € C for all
ae€lfgand U e C.

Definition

Fix an element 8 € F3.\{1}. Let U be an Fq-subspace in Fgn. The
generated by U is defined as the set

Orbs(U) = {B'U|i=0,1,...,|8 -1} .

If 3 is a primitive element of F4n, we write Orbg(U) simply as Orb(U) and call
it a Otherwise, it is termed a single-orbit
quasi-cyclic subspace code.
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Orbit Codes
A subspace code C is said to be a if aU € C for all
ae€lfgand U e C.
Definition

Fix an element 8 € F3.\{1}. Let U be an Fq-subspace in Fgn. The
generated by U is defined as the set

Orbs(U) = {B'U|i=0,1,...,|8 -1} .

If 3 is a primitive element of F4n, we write Orbg(U) simply as Orb(U) and call
it a Otherwise, it is termed a single-orbit
quasi-cyclic subspace code.

Definition (Equidistant code)

A B-cyclic orbit code Orbg(U) is an equidistant code if for all 5'U,
BU € Orby(U), U # pU

ds(8'U, B/U) = d(Orbs(U)) .
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Equidistant Codes

> Since, dim(5'U N B/U) = dim(U N §/~'U), the minimum distance of an
orbit code is given by

05(Orb(U)) = 2dim(U) —max{dim(UNA'U) | 0 < i < |B]—1, U # B'U}.

> lfforalli, 1 <i< || -1, U#pB'U,dim(UnN B'U) = c, for some
non-negative integer ¢ then Orbg(U) is said to be a
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Equidistant Codes

> Since, dim(5'U N B/U) = dim(U N §/~'U), the minimum distance of an
orbit code is given by

05(Orb(U)) = 2dim(U) —max{dim(UNA'U) | 0 < i < |B]—1, U # B'U}.

> lfforalli, 1 <i< || -1, U#pB'U,dim(UnN B'U) = c, for some
non-negative integer ¢ then Orbg(U) is said to be a

Definition (Sunflower)

A -cyclic orbit code Orbg(U) is a rif there exists a subspace T in
Fgn such that for all 3'U, 8/U € Orbg(U), B'U # B/U we have g'UN U = T.

» The subspace T is called the center of the sunflower Orbg(U).

> Note that for an equidistant code Orbg(U) if there exists a subspace S in
Fgn such that U N g'U = Sforall B'U € Orbs(U) with 3'U # U then
Orbg(U) is a sunflower.
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Difference sets

Definition (Difference set)

Suppose (G, +) is a finite group of order v in which the identity element is
denoted by “0”. Let k and X be positive integers suchthat2 < k < v. A

(v, k, X)-difference set in (G, +) is a subset D C G that satisfies the following
properties:

1. |D| = k,
2. the multiset [x — y : x, ¥y € D, x # y] contains every element in G\{0}
exactly A times.

> Note that if a (v, k, \)-difference set exists,
AMv—1)=k(k-1),

> Let Dbe a (v, k, \)-difference set in a group (G, +). Forany g € G,
define
D+g={x+g:xe€D}.
Any set D + g is called a translate of D.
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Difference sets

Lemma

Let G be a group of order v and D C G with |D| = k. If forevery 0 # g € G,
IDN(D+ g)| = A (A >0) then D is a (v, k, \)-difference set in G.
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Difference sets

Lemma

Let G be a group of order v and D C G with |D| = k. If forevery 0 # g € G,
IDN(D+ g)| = A (A >0) then D is a (v, k, \)-difference set in G.

Definition (Relative difference set)

Let (G, +) be a group of order nm and let (N, +) be a subgroup of G of order
n. Then a k-subset D of G is called a with parameters
n,m, k, Ay and X, (relative to N) or briefly an (n, m, k, A1, A2)-RDS, provided
that the list of differences {di — d> : di, d> € D, di # d»} contain each
element of N, except zero, precisely A\s times and each element of G\N
exactly X\, times.

> Let Dbe an (n,m, k, A1, X2)-RDS in G. Then

k(k—1)=n(m—1X2+(n—1)\ .
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Equidistant Codes

The code Orb(U) is trivially an equidistant code in the following cases:-
1. dim(U) = 1 ( Orb(U) is a 0-intersecting equidistant code.)
2. dim(U) = n—1 ((n — 2)-intersecting)
3. if Uis a cyclic shift of a subfield of Fgn, i.e., U = vF 4, where v € g, and
t is a divisor of n (0-intersecting)

For a subspace U of dimension k in Fgn, ds(Orb(U)) = 2k if and only if
U = BIF 4, for some 3 € Fgs.
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Equidistant Codes

The code Orb(U) is trivially an equidistant code in the following cases:-

1.
2.
3.

dim(U) = 1 ( Orb(U) is a O-intersecting equidistant code.)

dim(U) = n—1 ((n — 2)-intersecting)

if U is a cyclic shift of a subfield of Fqn, i.e., U = 7Fy, where v € Fg, and
t is a divisor of n (0-intersecting)

For a subspace U of dimension k in Fgn, ds(Orb(U)) = 2k if and only if

U=

>

BF g, for some 3 € Fgn.

Consider an extension field Fgn. Let a be a primitive element of .
ThenFjn = {a' | i=0,1,...,q" — 2}.

Now consider the group Zg»—1 = {0,1,...,q" — 2} under the operation
addition modulo g" — 1.

Let G={a® =1,0",a2,..., &/} be a subgroup of the multiplicative
group (IFgn, x).

Let /= {t | o' € G}. Then /s a subgroup in (Zgn_1, ®gn_1)-

Similarly, for a subgroup in (Zgn 1, ®¢n 1) there is a subgroup in (Fgn, x).
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Contd..

Theorem

Let o be a primitive element of Fon over Fa. Let U = {0,a™, a2, ... a2 -1}
be a subspace of dimension k in Fzn such that U generates a full-length orbit.
The subspace code Orb(U) is an r-intersecting equidistant code (r > 0) if
and only if the set of indices jj, 1 <j < 2K _ 1, is a difference set in Zon_.
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Contd..

Theorem

Let o be a primitive element of Fon over Fa. Let U = {0,a™, a2, ... a2 -1}
be a subspace of dimension k in Fzn such that U generates a full-length orbit.
The subspace code Orb(U) is an r-intersecting equidistant code (r > 0) if
and only if the set of indices jj, 1 <j < 2K _ 1, is a difference set in Zon_.

Proof idea:

e Let Orb(U) be an equidistant code and let ds(Orb(U)) = 2(k — r), where
r>0.

e As U generates a full-length orbit, for all 8 € Fan\Fz, dim(UN BU) =r.
« Now consider the set D = {j; | o/ € U}. Clearly D C Z»n_; and
|D| =2k — 1.
o Let j(# 0) be an arbitrary element in Zon_. Then o/ € Fan\Fs, and
dim(UndU) =r,i.e,
0,0, a2, ... a1} N {0,/ o/t o/ TRk-1} =

From this we get |[DN (j + D)| = 2" — 1.
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Contd..

Proof of Converse:

e Let D= {jj | o/ € U} constitutes a (2" — 1,2% — 1, s)-difference set in

Lion_1. Then,
s@"-2)=2 -1k -2).

From this we get s(2"" — 1) = (2K —1)(2""' —1).

e As k < n, we get s = (2" — 1). This implies that the multiset
[x —y: x,y € D, x # y] contains every element of Z>»_1\{0} exactly
2k=1 _ 1 times.

e Let a™U # U be an arbitrary element in Orb(U). Then m € Zn_1\{0}
and |D N (m+ D)| = 2k=" — 1. Therefore, |UN o™U| = 2" and
dim(UNa™U) = k — 1. Hence Orb(U) is an equidistant code.

Remark

Letq > 2. For2 € Fy, there existaj € Zq—1\{0} such that2 = o/. Now,
|DN (j+ D)| = g — 1. Thus, D is not a difference set in G.
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Contd..

Theorem

Let « be a primitive element of F» over Fq. Let U = {0, 0", a2, ... a/#-1}
be a subspace in Fqn of dimension k such that U generates a full-length orbit.
If the subspace code Orb(U) is an r-intersecting equidistant code (r > 0)
then the indices ijj, 1 < j < q“ — 1, form a relative difference set in Zqgn_+ .
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Contd..

Theorem

Let « be a primitive element of F» over Fq. Let U = {0, 0", a2, ... a/#-1}
be a subspace in Fqn of dimension k such that U generates a full-length orbit.
If the subspace code Orb(U) is an r-intersecting equidistant code (r > 0)
then the indices ijj, 1 < j < q“ — 1, form a relative difference set in Zqgn_+ .

Proof idea:

e Let Orb(U) be an equidistant subspace code, and let ds(Orb(U)) =
2(k —r), where r > 0.

o Let D= {j|al € Uyand N = {j| o/ € F;}. Then N is a subgroup of
Zg—yand [N =q—1.

e Foranyic Zg 1\N, o/ € Fgn\Fq and thus dim(UN a'U) = r. From this,
weget DN (i+D)|=q —1forallie€ Zg_1\N.

e Now forany t € N, o' € Fq and dim(U N a'U) = ¢*. Thus, for any
te N, |DN(t+ D)| = g* — 1. Hence the set of indices D constitutes a
(g—1, qq%ﬂ, q“—1,9" —1,9" — 1) relative difference set in Zgn_1
(relative to N).
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Contd..

Theorem

There is only the trivial equidistant (full length) single-orbit cyclic subspace
code in Pq(n) forn > 3.
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Contd..

Theorem

There is only the trivial equidistant (full length) single-orbit cyclic subspace
code in Pq(n) forn > 3.

Proof idea:

o Let a be a primitive element of Fgn over Fq and let U = {0, o, a2,
...,a'%~1} be a subspace of dimension k in Fgn over Iy,

e Let Orb(U) be an equidistant subspace code with subspace distance
2(k —r), where r > 0. Then the set of indices {jj | o/ € U} constitutes a

(g—1, ‘1::11 ,q" —1,9" —1,q" — 1)- relative difference set in Zgn_+.

e So, we get

(qk—1)(crk—2)=(q—1)(i;_]1 —1) (@ —1)+(g—2)q" —1).

e On simplifying the above equation, we get
@ -ND@ =)= - -1.
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Contd..

Further this gives

2k—1 _( ntr—1 _ n—1 r (1)

q g+1)d "' =g g ' -q .

Let r > k — 1. On dividing both sides of equation (1) by g*~', we get

n+r—k _ n—k r—k+1

d-(q+1)=gq g -q

Asn> Kk, r— k+1 > 0, the right side of the above equation is a multiple
of g but the left side is not. This is a contradiction.

Let r < k — 1. On dividing both sides of equation (1) by q", we get

2k—r—1

q —(g+1)q

k—r—1 _ qn—1 . qn7r71 1.

As n> k > r + 1, the left side of the above equation is a multiple of g
but the right side is not. This is a contradiction.

So, we conclude that r = k — 1. By putting the value of r = k — 1in (1),
we get kK = n — 1. Therefore, dim(U) = n— 1 and ds(Orb(U)) = 2.
Hence the result.
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Contd..

Theorem
Let o be a primitive element of F» over Fq. Let U = {0, 0", a2, ... a'*-1}
be a subspace in Fqn of dimension k such that

. If the subspace code Orb(U) is r-intersecting equidistant

code (r > 0), then the indices ij, 1 <j < g — 1, form a relative difference set
in an,1 .
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Contd..

Theorem

Let o be a primitive element of F» over Fq. Let U = {0, 0", a2, ... a'*-1}
be a subspace in Fqn of dimension k such that
. If the subspace code Orb(U) is r-intersecting equidistant

code (r > 0), then the indices ij, 1 <j < g — 1, form a relative difference set
in an,1 .

Proof idea:

e Let Orb(U) be an equidistant subspace code with subspace distance
2(k —r), where r > 0. Let Stab(U) = Fy, forsome t, 1 <t < k and t
divides gcd(k, n).

e Let N={j| ol € Fj;}. Then N is a subgroup of Zg:_1. Clearly, the
cardinality of N is g' — 1.

e Let D= {jj|ai € U}. Foranyj e N, U= o/U. This gives
DN (j+ D) =g 1.

e Forany m € Zgn_1\N, dim(UNa™U) =q". So,we get |DN(m+ D)| =
q" — 1. Thus, the set of indices D constitutes a
(' — 1, ‘];:1‘ ,q" — 1,9 —1,9" — 1)-relative difference set in Zgn_.
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Lemma

Let U be a subspace of dimension k inFgn. For any o € Fgn\Fq and s € Fg,
dim(U N (a + s)U) = dim(U N aU).

Theorem

Let n be an even integer and let U be a subspace inFqn. Let o be an element
of degree 2 inFg. Let V = UnNaU and V # {0}. ThenF, C Stab(V).
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Sunflower Codes

Theorem

Let n be an even number and U be a subspace in Fqn. For any element 3 of
degree 2 inFqn with 8 ¢ Stab(U), Orbs(U) is a sunflower.

17/29



Sunflower Codes

Theorem

Let n be an even number and U be a subspace in Fqn. For any element 3 of
degree 2 inFqn with 8 ¢ Stab(U), Orbs(U) is a sunflower.

Proof idea:

The proof consists of two parts. First, we prove that Orbg(U) is an
equidistant code.

Then, we show that the intersecting subspace of the reference space U
and elements of Orbg(U) are same.

As g is an element of degree 2 in Fgn, Fg[5] = {a+cB | a,¢c € Fq}.
Clearly, {8 | 0 < i < || — 1} C Fq[8].

Since dim(U N gU) = dim(U N (a+ cp)) for all a € Fq and ¢ € Fg,
Orbg(U) is an equidistant code.

If dim(U N U) = 0 then Orbg(U) is a sunflower with a trivial center.
Letdim(UNBU) # 0 andlet V.= Un BU. Then F, C Stab(V).
Consider an element 3/ = aB + c for some a, ¢ € Fq and a # 0 such that
BU £ U.
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Contd..

e AsF;, C Stab(V), (a8+¢) 'V =V.Thus (a8 +¢)"'V C Uand
VCUn (a8 +c)U.

e Since Orbg(U) is an equidistant code, dim(U N (a8 + c)U) =
dim(UnN BU). So,we get V = UnN (aB + ¢)U. Hence, Orbg(U) is a
sunflower.

Theorem

For any sunflower Orbs(U) (8 ¢ Stab(U)), the center does not generate a
full-length orbit.
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Contd..

e AsF;, C Stab(V), (a8+¢) 'V =V.Thus (a8 +¢)"'V C Uand
VCUn (a8 +c)U.

e Since Orbg(U) is an equidistant code, dim(U N (a8 + c)U) =
dim(UnN BU). So,we get V = UnN (aB + ¢)U. Hence, Orbg(U) is a
sunflower.

Theorem

For any sunflower Orbs(U) (8 ¢ Stab(U)), the center does not generate a
full-length orbit.

Proof idea:

e Let V be the center of the sunflower Orbg(U). If V = {0} then the result
is trivially true. Let V # {0}.

o Letp?eFy. As V =UnNZU,
BV =pUNBU=8UNU=V.
From this, we get V = V.
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Contd..

o Now, let 3% ¢ F,. Since V is the center,
V=UnpU=UnBU.

Now, V C gUN B2U = B(UN BU) = BV. This gives V = V. Thus,
B € Stab(V).
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Contd..

o Now, let 3% ¢ F,. Since V is the center,
V=UnpU=UnBU.

Now, V C gUN B2U = B(UN BU) = BV. This gives V = V. Thus,
B € Stab(V).
Observations:

» By previous theorem, for a sunflower Orbg(U) with center V # {0},

B € Stab(V). Itis known that Stab(V) is a subgroup of F3.. So, we
conclude that {#' | i =0,1,...,|8] — 1} C Stab(V).

> Since Stab(V) U {0} is a subfield of F4n, for a prime number n, the
sunflower Orbg(U) in Fgn always has a trivial center.

» We can quickly check that a subspace of dimension one generates a
full-length orbit. Thus, according to previous theorem, the dimension of
the non-trivial center of a sunflower is always greater than one.
However, 1-intersecting equidistant orbit codes, which are not sunflower,
can exist in Fgn. Next, we provide an example of such a code.
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Example

Consider an irreducible monic polynomial p(x) = x'® + x® + x® + x3+
x2 + x + 1 of degree 10 over Fy. Let « be a root of p(x). Then Fz(«) be
an extension field of degree 10 over F».

Let U= (1,a'®,a’ a'"),. The dimension of U over I, is 4.

The cardinality of the code Orb(U) = {yU | v € F};} is 1023. From this
follows that U generates a full-length orbit.

Let 8 = ™ be an element of order 11 in F},,. By using the Magma we
get that dim(U N g'U) = 1 forall iin {0,1,...,|8|—1} with 8'U # U.
Thus, Orbg(U) is 1- intersecting equidistant code.

As UN AU = {0,a®} and UN F2U = {0, a*'5}, Orbs(U) is not a
sunflower.
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Theorem

Let U be a subspace of dimension k inFq» such that U generates a full-length
orbit. Let Orbg(U) (B € Fgn\Fq) be a sunflower with a non-trivial center then

S
—1
[Obs(U)] < T= .

where s < k is the largest positive divisor of n.
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Contd..

Theorem
Let U be a subspace of dimension k inFq» such that U generates a full-length
orbit. Let Orbg(U) (B € Fgn\Fq) be a sunflower with a non-trivial center then

S
—1
[Obs(U)] < T= .

where s < k is the largest positive divisor of n.

Proof idea:
e Let V be the center of the sunflower Orbg(U) such that V # {0}.

e As Stab(V) U {0} is a subfield of Fgn and V is a vector space over
Stab( V) U {0}, let Stab(V) = IFgs for some positive integer s > 1 dividing
ged(dim(V), n).

e Since the dimension of U is k, the dim_ension of Vis less than or equal
tok—1.So,wegets< k—1and{g'|i=0,1,...,|8] -1} C Fg.

e Thus, the order of 3 is less than or equal to g° — 1. As U generates a
full-length orbit, |Orbs (U)| < €=

21/29



Contd..

> The cardinality of a sunflower Orbg(U) in Fgn with a trivial center may be
greater than q =1 where s < dim(U) is the largest positive divisor of n.
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» The cardinality of a sunflower Orbg(U) in Fgn with a trivial center may be
greater than ‘2%11 where s < dim(U) is the largest positive divisor of n.
The following example illustrates this.

Example

e Consider a monic irreducible polynomial p(x) = x'2 + x® 4+ x® + x*+
x2 + 2 of degree 12 over FFs. Let o be a root of p(x). Then, Fz(a) is an
extension field of degree 12 over Fs.

° Let U — <a5657a1239827a179292’a2083147a395390>ma_ The dimension Of U
over F3 is 5, and U generates a full-length orbit.

o Let v = o**® be an element in F412. The multiplicative order of + is 130.

e By using the Magma, we computed that U N ~'U = {0} for all i in
{1,...,|7|}- Thus, Orb,(U) is a sunflower with a trivial center.

e The cardinality of Orb.,(U) is 65. Here, nis 12, and k is 5. So, the largest
divisor of n less than k is 4. Clearly, |Orb.,(U)| = 65 > 3;%1‘ = 40.
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Theorem

Let U be a subspace of dimension k in Fgn such that Stab(U) = F,. Let
Orb.,(U) (v ¢ Stab(U)) be a sunflower with a non-trivial center then

g° -1
|(),t)7( Ll)' f; (7t 1

where s < k is the largest positive divisor of n.
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Theorem

Let U be a subspace of dimension k in Fgn such that Stab(U) = F,. Let
Orb.,(U) (v ¢ Stab(U)) be a sunflower with a non-trivial center then
g° -1

|(),t)7( Ll)' f; (7t 1

where s < k is the largest positive divisor of n.

Proof idea:
e Let Stab(U) = Fy;. Lety ¢ Stab(U) and let Orb, (U) be a sunflower with
a non-trivial center V. Then V = Un~U.
e Foranyé € Fy, 6V =36UnNdyU. As é € Stab(U), 6U = U and
d0yU =~U. Thus, §V = V. From this follows that § € Stab(V). Since ¢
was an arbitrary element in Stab(U), we get Stab(U) C Stab(V).
e Let Stab(V) = Fg. Now, by the same argument used in previous
theorem, we get
orb,(u) < T
— qt _ .1 )
where s < k is the largest positive divisor of n.
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Definition (Hirschfeld, 1998)
For any k(< n), a k-spread is a collection of k-dimensional subspaces
{X1 , Xy, Xt} of ]Fg such that

1. XnX={0}fori£j1<ij<t.

t
2. UX =T
i=1

Definition
A partial k-spread of Fgn is a subset A C Gq(n, k) such that Un V = {0} for
all U,V e Awith U # V.

Theorem

A k-spread exists if and only if k divides n. Moreover, the cardinality of a
k-spread is Z:j .

Hirschfeld, J.: Projective Geometries over Finite Fields, Second Edition. New York, Oxford University Press (1998).
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Lemma

Let A C Gq(n, K) be a partial k-spread code. Denote by r the remainder
obtained when n is divided by k. Then |A| < ‘L"k‘_‘f :

Next, we discuss about the maximum size of a sunflower with a trivial center.
> If k divides nthen Orbg(U) is clearly a subset of k-spread. Thus,

q"—1
< = .
10rbs (U)] <
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Lemma

Let A C Gq(n, K) be a partial k-spread code. Denote by r the remainder
obtained when n is divided by k. Then |A| < ‘Z:k‘_‘f :

Next, we discuss about the maximum size of a sunflower with a trivial center.

> If k divides nthen Orbg(U) is clearly a subset of k-spread. Thus,
q"—1

<t
Oros(U)] <

The above-stated bound may be attainable. We give below such an example.

Example

e Consider a monic irreducible polynomial p(x) = x'? + x” + x® 4+ x°+
x3 + x + 1 of degree 12 over F,. Let o be a root of p(x). Then Fa(a) is
an extension field of degree 12 over F» and Fao(a) >~ F1e.

o Let U= (1,a*°, 0% o%?2"); . The dimension of U over Fz is 4, and U
generates a full-length orbit. Let v = «'®. The multiplicative order of ~ in
F}y, is 273.
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Contd..

Example (Contd.)

e Consider the orbit code Orb.,(U) = {+'U | 0 < i < |y| — 1}. Using the
magma, we computed that U N xU = {0} for all xU € Orb, U with
xU # U. Thus, Orb, (U) is a sunflower with a trivial center.

e The computation through the magma shows that the cardinality of

Orb,, (V) is 273, which is equal to 22142—:1‘ Hence, Orb,, (U) is an optimal

sunflower code with a trivial center.
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Example (Contd.)

e Consider the orbit code Orb.,(U) = {+'U | 0 < i < |y| — 1}. Using the

magma, we computed that U N xU = {0} for all xU € Orb, U with
xU # U. Thus, Orb,(U) is a sunflower with a trivial center.

The computation through the magma shows that the cardinality of

Orb,, (V) is 273, which is equal to 22142—:1‘ Hence, Orb,, (U) is an optimal

sunflower code with a trivial center.

If k does not divide n then Orbg(U) is a subset of partial k-spread. Let r
denote the remainder obtained when nis divided by k. So, we get

n

Orba(U)| < ‘Z]k

7qr
—1 -

n—r 1)

From this, it follows that |Orbs(U)| < "(‘77 We know that the

cardinality of Orbg(U) is a divisor of the order of Fzn. However, %

does not divide g" — 1. Hence, in this case, |Orbs(U)| < ‘7 “7 .
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