Equidistant Single-Orbit Cyclic Subspace Codes

by

Mahak

Ph.D. student

Department of Mathematics Indian Institute of Technology Roorkee, India

work done with Maheshanand Bhaintwal

June 20, 2024

- Subspace codes
- Orbit codes
- Equidistant single-orbit cyclic subspace Codes
- Sunflower single-orbit cyclic subspace codes

Definition (Subspace code)

Let $\mathcal{P}_q(n)$ denote the set of all the subspaces of \mathbb{F}_q^n . A *subspace code* is a non-empty collection $C \subseteq \mathcal{P}_q(n)$ with minimum distance

 $d(C) = \min\{d_s(U, V) \mid U, V \in C, \ U \neq V\}.$

▶ The distance *d_s* used here is the subspace distance and is defined by

$$d_s(U, V) = \dim(U) + \dim(V) - 2\dim(U \cap V).$$

▶ If every subspace in code *C* is of the same dimension, say *k*, then

$$d(C) = 2k - \max_{U, V \in C, U \neq V} \dim(U \cap V) .$$

- It is well-known that F_{qⁿ} is isomorphic to Fⁿ_q as a vector space over F_q. Due to rich algebraic structure of F_{qⁿ} compared to Fⁿ_q, we identify the subspaces of Fⁿ_q with that of F_{qⁿ}.
- For $\alpha \in \mathbb{F}_{q^n}^*$ and $U \in \mathcal{P}_q(n)$, the *cyclic shift* of *U* is defined as

$$\alpha U = \{ \alpha u \mid u \in U \} .$$

▶ We can define a group action $\mathbb{F}_{q^n}^* \times \mathcal{P}_q(n) \to \mathcal{P}_q(n)$ of $\mathbb{F}_{q^n}^*$ on $\mathcal{P}_q(n)$ as

 $(\alpha, U) \rightarrow \alpha U$.

For any \mathbb{F}_q -subspace $U \subseteq \mathbb{F}_q^n$, the *orbit of U*, denoted by Orb(U), is defined by

$$\mathsf{Orb}(U) = \{ \alpha U \mid \alpha \in \mathbb{F}_{q^n}^* \} .$$

▶ The *stabilizer* of *U*, denoted by Stab(*U*), is defined by

 $\mathsf{Stab}(U) = \{ \alpha \in \mathbb{F}_{q^n}^* \mid \alpha U = U \} .$

 $\text{Stab}(U) \cup \{0\} = \mathbb{F}_{q^t}$ for some *t* which is a divisor of $\text{gcd}(\dim_{\mathbb{F}_q}(U), n)$.

▶ We can define a group action $\mathbb{F}_{q^n}^* \times \mathcal{P}_q(n) \to \mathcal{P}_q(n)$ of $\mathbb{F}_{q^n}^*$ on $\mathcal{P}_q(n)$ as

 $(\alpha, U) \rightarrow \alpha U$.

For any \mathbb{F}_q -subspace $U \subseteq \mathbb{F}_q^n$, the *orbit of U*, denoted by Orb(U), is defined by

$$\mathsf{Orb}(U) = \{ lpha U \mid lpha \in \mathbb{F}_{q^n}^* \} \;.$$

▶ The *stabilizer* of *U*, denoted by Stab(*U*), is defined by

$$\mathsf{Stab}(U) = \{ \alpha \in \mathbb{F}_{q^n}^* \mid \alpha U = U \} .$$

 $\text{Stab}(U) \cup \{0\} = \mathbb{F}_{q^t}$ for some *t* which is a divisor of $\text{gcd}(\dim_{\mathbb{F}_q}(U), n)$.

▶ Using the orbit-stabilizer theorem, for any subspace U of \mathbb{F}_q^n , we have

$$|\operatorname{Orb}(U)| = rac{q^n-1}{|\operatorname{Stab}(U)|} = rac{q^n-1}{q^t-1}$$

If Stab(U) = 𝔽^{*}_q, i.e., |Orb(U)| = ^{qⁿ-1}_{q-1}, then Orb(U) is called a *full-length* orbit code and we say that U generates a full-length orbit. Otherwise, Orb(U) is a degenerate orbit.

A subspace code *C* is said to be a *cyclic subspace code* if $\alpha U \in C$ for all $\alpha \in \mathbb{F}_{q^n}^*$ and $U \in C$.

Definition

Fix an element $\beta \in \mathbb{F}_{q^n}^* \setminus \{1\}$. Let *U* be an \mathbb{F}_q -subspace in \mathbb{F}_{q^n} . The β -cyclic orbit code generated by *U* is defined as the set

$$Orb_{\beta}(U) = \{\beta'U \mid i = 0, 1, \dots, |\beta| - 1\}.$$

If β is a primitive element of \mathbb{F}_{q^n} , we write $\operatorname{Orb}_{\beta}(U)$ simply as $\operatorname{Orb}(U)$ and call it a *single-orbit cyclic subspace code*. Otherwise, it is termed a *single-orbit quasi-cyclic subspace code*.

A subspace code *C* is said to be a *cyclic subspace code* if $\alpha U \in C$ for all $\alpha \in \mathbb{F}_{q^n}^*$ and $U \in C$.

Definition

Fix an element $\beta \in \mathbb{F}_{q^n}^* \setminus \{1\}$. Let *U* be an \mathbb{F}_q -subspace in \mathbb{F}_{q^n} . The β -cyclic orbit code generated by *U* is defined as the set

$$Orb_{\beta}(U) = \{\beta'U \mid i = 0, 1, \dots, |\beta| - 1\}.$$

If β is a primitive element of \mathbb{F}_{q^n} , we write $\operatorname{Orb}_{\beta}(U)$ simply as $\operatorname{Orb}(U)$ and call it a *single-orbit cyclic subspace code*. Otherwise, it is termed a *single-orbit quasi-cyclic subspace code*.

Definition (Equidistant code)

A β -cyclic orbit code $\operatorname{Orb}_{\beta}(U)$ is an equidistant code if for all $\beta^{i}U$, $\beta^{j}U \in \operatorname{Orb}_{\beta}(U), \ \beta^{i}U \neq \beta^{j}U$

 $d_{s}(\beta^{i}U,\beta^{j}U) = d(\operatorname{Orb}_{\beta}(U))$.

Equidistant Codes

Since, dim(βⁱU ∩ β^jU) = dim(U ∩ β^{j−i}U), the minimum distance of an orbit code is given by

 $d_{s}(\operatorname{Orb}(U)) = 2\dim(U) - \max\{\dim(U \cap \beta^{i}U) \mid 0 \le i \le |\beta| - 1, \ U \ne \beta^{i}U\}.$

If for all *i*, 1 ≤ *i* ≤ |β| − 1, U ≠ βⁱU, dim(U ∩ βⁱU) = c, for some non-negative integer c then Orb_β(U) is said to be a *c-intersecting equidistant code*.

Since, dim(βⁱU ∩ β^jU) = dim(U ∩ β^{j−i}U), the minimum distance of an orbit code is given by

 $d_{s}(\operatorname{Orb}(U)) = 2\dim(U) - \max\{\dim(U \cap \beta^{i}U) \mid 0 \le i \le |\beta| - 1, \ U \ne \beta^{i}U\}.$

If for all *i*, 1 ≤ *i* ≤ |β| − 1, U ≠ βⁱU, dim(U ∩ βⁱU) = c, for some non-negative integer c then Orb_β(U) is said to be a *c-intersecting equidistant code*.

Definition (Sunflower)

A β -cyclic orbit code $\operatorname{Orb}_{\beta}(U)$ is a *sunflower* if there exists a subspace T in \mathbb{F}_{q^n} such that for all $\beta^i U, \beta^j U \in \operatorname{Orb}_{\beta}(U), \ \beta^i U \neq \beta^j U$ we have $\beta^i U \cap \beta^j U = T$.

- The subspace T is called the center of the sunflower $Orb_{\beta}(U)$.
- Note that for an equidistant code Orb_β(U) if there exists a subspace S in 𝔽_{qⁿ} such that U ∩ βⁱU = S for all βⁱU ∈ Orb_β(U) with βⁱU ≠ U then Orb_β(U) is a sunflower.

Definition (Difference set)

Suppose (G, +) is a finite group of order v in which the identity element is denoted by "0". Let k and λ be positive integers such that $2 \le k < v$. A (v, k, λ) -difference set in (G, +) is a subset $D \subseteq G$ that satisfies the following properties:

- 1. |D| = k,
- 2. the multiset $[x y : x, y \in D, x \neq y]$ contains every element in $G \setminus \{0\}$ exactly λ times.
- Note that if a (v, k, λ) -difference set exists,

$$\lambda(\nu-1)=k(k-1),$$

Let D be a (v, k, λ)-difference set in a group (G, +). For any g ∈ G, define

$$D+g=\{x+g:x\in D\}.$$

Any set D + g is called a translate of D.

Lemma

Let G be a group of order v and $D \subseteq G$ with |D| = k. If for every $0 \neq g \in G$, $|D \cap (D+g)| = \lambda \ (\lambda > 0)$ then D is a (v, k, λ) -difference set in G.

Lemma

Let G be a group of order v and $D \subseteq G$ with |D| = k. If for every $0 \neq g \in G$, $|D \cap (D+g)| = \lambda$ ($\lambda > 0$) then D is a (v, k, λ)-difference set in G.

Definition (Relative difference set)

Let (G, +) be a group of order *nm* and let (N, +) be a subgroup of *G* of order *n*. Then a *k*-subset *D* of *G* is called a *relative difference set* with parameters n, m, k, λ_1 and λ_2 (relative to *N*) or briefly an $(n, m, k, \lambda_1, \lambda_2)$ -RDS, provided that the list of differences $\{d_1 - d_2 : d_1, d_2 \in D, d_1 \neq d_2\}$ contain each element of *N*, except zero, precisely λ_1 times and each element of *G**N* exactly λ_2 times.

Let *D* be an $(n, m, k, \lambda_1, \lambda_2)$ -RDS in *G*. Then

$$k(k-1) = n(m-1)\lambda_2 + (n-1)\lambda_1$$
.

Equidistant Codes

The code Orb(U) is trivially an equidistant code in the following cases:-

- 1. dim(U) = 1 (Orb(U) is a 0-intersecting equidistant code.)
- 2. dim(U) = n 1 ((n 2)-intersecting)
- 3. if *U* is a cyclic shift of a subfield of \mathbb{F}_{q^n} , i.e., $U = \gamma \mathbb{F}_{q^t}$, where $\gamma \in \mathbb{F}_{q^n}^*$ and *t* is a divisor of *n* (0-intersecting)

For a subspace U of dimension k in \mathbb{F}_{q^n} , $d_s(\operatorname{Orb}(U)) = 2k$ if and only if $U = \beta \mathbb{F}_{q^k}$, for some $\beta \in \mathbb{F}_{q^n}^*$.

The code Orb(U) is trivially an equidistant code in the following cases:-

- 1. dim(U) = 1 (Orb(U) is a 0-intersecting equidistant code.)
- 2. dim(U) = n 1 ((n 2)-intersecting)
- 3. if *U* is a cyclic shift of a subfield of \mathbb{F}_{q^n} , i.e., $U = \gamma \mathbb{F}_{q^t}$, where $\gamma \in \mathbb{F}_{q^n}^*$ and *t* is a divisor of *n* (0-intersecting)

For a subspace U of dimension k in \mathbb{F}_{q^n} , $d_s(\operatorname{Orb}(U)) = 2k$ if and only if $U = \beta \mathbb{F}_{q^k}$, for some $\beta \in \mathbb{F}_{q^n}^*$.

- Consider an extension field 𝔽_{qⁿ}. Let α be a primitive element of 𝔽_{qⁿ}. Then 𝔽^{*}_{qⁿ} = {αⁱ | i = 0, 1, ..., qⁿ − 2}.
- Now consider the group Z_{qⁿ-1} = {0, 1, ..., qⁿ − 2} under the operation addition modulo qⁿ − 1.
- ► Let $G = \{\alpha^0 = 1, \alpha^{j_1}, \alpha^{j_2}, \dots, \alpha^{j_m}\}$ be a subgroup of the multiplicative group $(\mathbb{F}_{q^n}^*, \times)$.
- ▶ Let $I = \{t \mid \alpha^t \in G\}$. Then *I* is a subgroup in $(\mathbb{Z}_{q^n-1}, \oplus_{q^n-1})$. Similarly, for a subgroup in $(\mathbb{Z}_{q^n-1}, \oplus_{q^n-1})$ there is a subgroup in $(\mathbb{F}_{q^n}^*, \times)$.

Let α be a primitive element of \mathbb{F}_{2^n} over \mathbb{F}_2 . Let $U = \{0, \alpha^{i_1}, \alpha^{i_2}, \dots, \alpha^{i_{2^k-1}}\}$ be a subspace of dimension k in \mathbb{F}_{2^n} such that U generates a full-length orbit. The subspace code Orb(U) is an r-intersecting equidistant code (r > 0) if and only if the set of indices i_j , $1 \le j \le 2^k - 1$, is a difference set in \mathbb{Z}_{2^n-1} .

Let α be a primitive element of \mathbb{F}_{2^n} over \mathbb{F}_2 . Let $U = \{0, \alpha^{i_1}, \alpha^{i_2}, \dots, \alpha^{i_{2^k-1}}\}$ be a subspace of dimension k in \mathbb{F}_{2^n} such that U generates a full-length orbit. The subspace code Orb(U) is an r-intersecting equidistant code (r > 0) if and only if the set of indices i_j , $1 \le j \le 2^k - 1$, is a difference set in \mathbb{Z}_{2^n-1} .

Proof idea:

- Let Orb(U) be an equidistant code and let $d_s(Orb(U)) = 2(k r)$, where r > 0.
- As U generates a full-length orbit, for all $\beta \in \mathbb{F}_{2^n} \setminus \mathbb{F}_2$, dim $(U \cap \beta U) = r$.
- Now consider the set $D = \{i_j \mid \alpha^{i_j} \in U\}$. Clearly $D \subseteq \mathbb{Z}_{2^n-1}$ and $|D| = 2^k 1$.
- Let *j*(≠ 0) be an arbitrary element in Z_{2ⁿ-1}. Then α^j ∈ F_{2ⁿ}\F₂, and dim(U ∩ α^jU) = r, i.e.,

$$|\{\mathbf{0}, \alpha^{i_1}, \alpha^{i_2}, \dots, \alpha^{i_{2^k-1}}\} \cap \{\mathbf{0}, \alpha^{j+i_1}, \alpha^{j+i_2}, \dots, \alpha^{j+i_{2^k-1}}\}| = 2^r .$$

From this we get $|D \cap (j + D)| = 2^r - 1$.

Proof of Converse:

• Let $D = \{i_j \mid \alpha^{i_j} \in U\}$ constitutes a $(2^n - 1, 2^k - 1, s)$ -difference set in $\mathbb{Z}_{2^{n-1}}$. Then,

$$s(2^n-2) = (2^k-1)(2^k-2)$$
.

From this we get $s(2^{n-1}-1) = (2^k - 1)(2^{k-1} - 1)$.

- As k < n, we get $s = (2^{k-1} 1)$. This implies that the multiset $[x y : x, y \in D, x \neq y]$ contains every element of $\mathbb{Z}_{2^n-1} \setminus \{0\}$ exactly $2^{k-1} 1$ times.
- Let $\alpha^m U \neq U$ be an arbitrary element in Orb(U). Then $m \in \mathbb{Z}_{2^n-1} \setminus \{0\}$ and $|D \cap (m+D)| = 2^{k-1} - 1$. Therefore, $|U \cap \alpha^m U| = 2^{k-1}$ and $\dim(U \cap \alpha^m U) = k - 1$. Hence Orb(U) is an equidistant code.

Remark

Let q > 2. For $2 \in \mathbb{F}_q$, there exist a $j \in \mathbb{Z}_{q^n-1} \setminus \{0\}$ such that $2 = \alpha^j$. Now, $|D \cap (j+D)| = q^k - 1$. Thus, D is not a difference set in G.

Let α be a primitive element of \mathbb{F}_{q^n} over \mathbb{F}_q . Let $U = \{0, \alpha^{i_1}, \alpha^{i_2}, \dots, \alpha^{i_{q^k-1}}\}$ be a subspace in \mathbb{F}_{q^n} of dimension k such that U generates a full-length orbit. If the subspace code Orb(U) is an r-intersecting equidistant code (r > 0) then the indices i_j , $1 \le j \le q^k - 1$, form a relative difference set in \mathbb{Z}_{q^n-1} .

Let α be a primitive element of \mathbb{F}_{q^n} over \mathbb{F}_q . Let $U = \{0, \alpha^{i_1}, \alpha^{i_2}, \dots, \alpha^{i_{q^k-1}}\}$ be a subspace in \mathbb{F}_{q^n} of dimension k such that U generates a full-length orbit. If the subspace code Orb(U) is an r-intersecting equidistant code (r > 0) then the indices i_j , $1 \le j \le q^k - 1$, form a relative difference set in \mathbb{Z}_{q^n-1} .

Proof idea:

- Let Orb(U) be an equidistant subspace code, and let d_s(Orb(U)) = 2(k − r), where r > 0.
- Let $D = \{i_j \mid \alpha^{i_j} \in U\}$ and $N = \{j \mid \alpha^j \in \mathbb{F}_q^*\}$. Then N is a subgroup of \mathbb{Z}_{q^n-1} and |N| = q 1.
- For any $i \in \mathbb{Z}_{q^n-1} \setminus N$, $\alpha^i \in \mathbb{F}_{q^n} \setminus \mathbb{F}_q$ and thus dim $(U \cap \alpha^i U) = r$. From this, we get $|D \cap (i + D)| = q^r 1$ for all $i \in \mathbb{Z}_{q^n-1} \setminus N$.
- Now for any $t \in N$, $\alpha^t \in \mathbb{F}_q$ and $\dim(U \cap \alpha^t U) = q^k$. Thus, for any $t \in N$, $|D \cap (t + D)| = q^k 1$. Hence the set of indices D constitutes a $(q 1, \frac{q^n 1}{q 1}, q^k 1, q^k 1, q^r 1)$ relative difference set in $\mathbb{Z}_{q^n 1}$ (relative to N).

There is only the trivial equidistant (full length) single-orbit cyclic subspace code in $\mathcal{P}_q(n)$ for $n \ge 3$.

Theorem

There is only the trivial equidistant (full length) single-orbit cyclic subspace code in $\mathcal{P}_q(n)$ for $n \ge 3$.

Proof idea:

- Let α be a primitive element of F_{qⁿ} over F_q and let U = {0, αⁱ¹, αⁱ², ..., α^{iqk-1}} be a subspace of dimension k in F_{qⁿ} over F_q.
- Let Orb(U) be an equidistant subspace code with subspace distance 2(k r), where r > 0. Then the set of indices $\{i_j \mid \alpha^{i_j} \in U\}$ constitutes a $(q 1, \frac{q^n 1}{q 1}, q^k 1, q^k 1, q^r 1)$ relative difference set in $\mathbb{Z}_{q^n 1}$.
- So, we get

$$(q^{k}-1)(q^{k}-2) = (q-1)\left(rac{q^{n}-1}{q-1}-1
ight)(q^{r}-1) + (q-2)(q^{k}-1)$$
.

· On simplifying the above equation, we get

$$(q^{k}-1)(q^{k-1}-1)=(q^{n-1}-1)(q^{r}-1).$$

Further this gives

$$q^{2k-1} - (q+1)q^{k-1} = q^{n+r-1} - q^{n-1} - q^r .$$
 (1)

• Let r > k - 1. On dividing both sides of equation (1) by q^{k-1} , we get

$$q^{k} - (q+1) = q^{n+r-k} - q^{n-k} - q^{r-k+1}$$

As n > k, r - k + 1 > 0, the right side of the above equation is a multiple of *q* but the left side is not. This is a contradiction.

• Let r < k - 1. On dividing both sides of equation (1) by q^r , we get

$$q^{2k-r-1} - (q+1)q^{k-r-1} = q^{n-1} - q^{n-r-1} - 1$$

As n > k > r + 1, the left side of the above equation is a multiple of q but the right side is not. This is a contradiction.

• So, we conclude that r = k - 1. By putting the value of r = k - 1 in (1), we get k = n - 1. Therefore, dim(U) = n - 1 and $d_s(Orb(U)) = 2$. Hence the result.

Theorem

Let α be a primitive element of \mathbb{F}_{q^n} over \mathbb{F}_q . Let $U = \{0, \alpha^{i_1}, \alpha^{i_2}, \dots, \alpha^{i_{q^{k-1}}}\}$ be a subspace in \mathbb{F}_{q^n} of dimension k such that U does not generate a full-length orbit. If the subspace code Orb(U) is r-intersecting equidistant code (r > 0), then the indices i_j , $1 \le j \le q^k - 1$, form a relative difference set in $\mathbb{Z}_{q^{n-1}}$.

Theorem

Let α be a primitive element of \mathbb{F}_{q^n} over \mathbb{F}_q . Let $U = \{0, \alpha^{i_1}, \alpha^{i_2}, \ldots, \alpha^{i_{q^k-1}}\}$ be a subspace in \mathbb{F}_{q^n} of dimension k such that U does not generate a full-length orbit. If the subspace code Orb(U) is r-intersecting equidistant code (r > 0), then the indices i_j , $1 \le j \le q^k - 1$, form a relative difference set in $\mathbb{Z}_{q^{n-1}}$.

Proof idea:

- Let Orb(U) be an equidistant subspace code with subspace distance 2(k r), where r > 0. Let $Stab(U) = \mathbb{F}_{q^t}^*$ for some t, 1 < t < k and t divides gcd(k, n).
- Let $N = \{i_j \mid \alpha^{i_j} \in \mathbb{F}_{q^t}^*\}$. Then *N* is a subgroup of \mathbb{Z}_{q^n-1} . Clearly, the cardinality of *N* is $q^t 1$.
- Let $D = \{i_j \mid \alpha^{i_j} \in U\}$. For any $j \in N$, $U = \alpha^j U$. This gives $|D \cap (j + D)| = q^k 1$.
- For any $m \in \mathbb{Z}_{q^n-1} \setminus N$, $\dim(U \cap \alpha^m U) = q^r$. So, we get $|D \cap (m+D)| = q^r 1$. Thus, the set of indices D constitutes a $(q^t 1, \frac{q^n 1}{q^t 1}, q^k 1, q^r 1)$ -relative difference set in \mathbb{Z}_{q^n-1} .

Lemma

Let U be a subspace of dimension k in \mathbb{F}_{q^n} . For any $\alpha \in \mathbb{F}_{q^n} \setminus \mathbb{F}_q$ and $s \in \mathbb{F}_q^*$, dim $(U \cap (\alpha + s)U) = \dim(U \cap \alpha U)$.

Theorem

Let *n* be an even integer and let *U* be a subspace in \mathbb{F}_{q^n} . Let α be an element of degree 2 in \mathbb{F}_q^n . Let $V = U \cap \alpha U$ and $V \neq \{0\}$. Then $\mathbb{F}_{q^2}^* \subseteq Stab(V)$.

Let *n* be an even number and *U* be a subspace in \mathbb{F}_{q^n} . For any element β of degree 2 in \mathbb{F}_{q^n} with $\beta \notin Stab(U)$, $Orb_{\beta}(U)$ is a sunflower.

Let n be an even number and U be a subspace in \mathbb{F}_{q^n} . For any element β of degree 2 in \mathbb{F}_{q^n} with $\beta \notin Stab(U)$, $Orb_{\beta}(U)$ is a sunflower.

Proof idea:

- The proof consists of two parts. First, we prove that Orb_β(U) is an equidistant code.
- Then, we show that the intersecting subspace of the reference space U and elements of Orb_β(U) are same.
- As β is an element of degree 2 in \mathbb{F}_{q^n} , $\mathbb{F}_q[\beta] = \{a + c\beta \mid a, c \in \mathbb{F}_q\}$. Clearly, $\{\beta^i \mid 0 \le i \le |\beta| - 1\} \subseteq \mathbb{F}_q[\beta]$.
- Since dim(U ∩ βU) = dim(U ∩ (a + cβ)) for all a ∈ 𝔽_q and c ∈ 𝔽_q^{*}, Orb_β(U) is an equidistant code.
- If dim $(U \cap \beta U) = 0$ then $Orb_{\beta}(U)$ is a sunflower with a trivial center.
- Let dim $(U \cap \beta U) \neq 0$ and let $V = U \cap \beta U$. Then $\mathbb{F}_{q^2}^* \subseteq \text{Stab}(V)$. Consider an element $\beta^j = a\beta + c$ for some $a, c \in \mathbb{F}_q$ and $a \neq 0$ such that $\beta^j U \neq U$.

- As $\mathbb{F}_{q^2}^* \subseteq \operatorname{Stab}(V)$, $(a\beta + c)^{-1}V = V$. Thus $(a\beta + c)^{-1}V \subseteq U$ and $V \subseteq U \cap (a\beta + c)U$.
- Since Orb_β(U) is an equidistant code, dim(U ∩ (aβ + c)U) = dim(U ∩ βU). So, we get V = U ∩ (aβ + c)U. Hence, Orb_β(U) is a sunflower.

Theorem

For any sunflower $Orb_{\beta}(U)$ ($\beta \notin Stab(U)$), the center does not generate a full-length orbit.

- As $\mathbb{F}_{q^2}^* \subseteq \operatorname{Stab}(V)$, $(a\beta + c)^{-1}V = V$. Thus $(a\beta + c)^{-1}V \subseteq U$ and $V \subseteq U \cap (a\beta + c)U$.
- Since Orb_β(U) is an equidistant code, dim(U ∩ (aβ + c)U) = dim(U ∩ βU). So, we get V = U ∩ (aβ + c)U. Hence, Orb_β(U) is a sunflower.

Theorem

For any sunflower $Orb_{\beta}(U)$ ($\beta \notin Stab(U)$), the center does not generate a full-length orbit.

Proof idea:

- Let V be the center of the sunflower Orb_β(U). If V = {0} then the result is trivially true. Let V ≠ {0}.
- Let $\beta^2 \in \mathbb{F}_q$. As $V = U \cap \beta U$,

$$\beta V = \beta U \cap \beta^2 U = \beta U \cap U = V .$$

From this, we get $V = \beta V$.

• Now, let $\beta^2 \notin \mathbb{F}_q$. Since *V* is the center,

$$V = U \cap \beta U = U \cap \beta^2 U$$
.

Now, $V \subseteq \beta U \cap \beta^2 U = \beta (U \cap \beta U) = \beta V$. This gives $V = \beta V$. Thus, $\beta \in \text{Stab}(V)$.

• Now, let $\beta^2 \notin \mathbb{F}_q$. Since *V* is the center,

$$V = U \cap \beta U = U \cap \beta^2 U \,.$$

Now, $V \subseteq \beta U \cap \beta^2 U = \beta (U \cap \beta U) = \beta V$. This gives $V = \beta V$. Thus, $\beta \in \text{Stab}(V)$.

Observations:

- By previous theorem, for a sunflower Orb_β(U) with center V ≠ {0}, β ∈ Stab(V). It is known that Stab(V) is a subgroup of F^{*}_{qⁿ}. So, we conclude that {βⁱ | i = 0, 1, ..., |β| − 1} ⊆ Stab(V).
- Since Stab(V) ∪ {0} is a subfield of F_{qⁿ}, for a prime number n, the sunflower Orb_β(U) in F_{qⁿ} always has a trivial center.
- We can quickly check that a subspace of dimension one generates a full-length orbit. Thus, according to previous theorem, the dimension of the non-trivial center of a sunflower is always greater than one.

However, 1-intersecting equidistant orbit codes, which are not sunflower, can exist in \mathbb{F}_{q^n} . Next, we provide an example of such a code.

Example

- Consider an irreducible monic polynomial p(x) = x¹⁰ + x⁶ + x⁵ + x³ + x² + x + 1 of degree 10 over F₂. Let α be a root of p(x). Then F₂(α) be an extension field of degree 10 over F₂.
- Let $U = \langle 1, \alpha^{13}, \alpha^{70}, \alpha^{177} \rangle_{\mathbb{F}_2}$. The dimension of U over \mathbb{F}_2 is 4.
- The cardinality of the code $Orb(U) = \{\gamma U \mid \gamma \in \mathbb{F}_{2^{10}}^*\}$ is 1023. From this follows that U generates a full-length orbit.
- Let $\beta = \alpha^{93}$ be an element of order 11 in $\mathbb{F}_{2^{10}}^*$. By using the Magma we get that dim $(U \cap \beta^i U) = 1$ for all *i* in $\{0, 1, \ldots, |\beta| 1\}$ with $\beta^i U \neq U$. Thus, $\operatorname{Orb}_{\beta}(U)$ is 1- intersecting equidistant code.
- As $U \cap \beta U = \{0, \alpha^{457}\}$ and $U \cap \beta^2 U = \{0, \alpha^{415}\}$, $Orb_{\beta}(U)$ is not a sunflower.

Theorem

Let U be a subspace of dimension k in \mathbb{F}_{q^n} such that U generates a full-length orbit. Let $Orb_{\beta}(U)$ ($\beta \in \mathbb{F}_{q^n} \setminus \mathbb{F}_q$) be a sunflower with a non-trivial center then

$$|\mathit{Orb}_{eta}(\mathit{U})| \leq rac{q^s-1}{q-1} \; ,$$

where s < k is the largest positive divisor of n.

Theorem

Let U be a subspace of dimension k in \mathbb{F}_{q^n} such that U generates a full-length orbit. Let $Orb_{\beta}(U)$ ($\beta \in \mathbb{F}_{q^n} \setminus \mathbb{F}_q$) be a sunflower with a non-trivial center then

$$|Orb_eta(U)| \leq rac{q^s-1}{q-1} \; ,$$

where s < k is the largest positive divisor of n.

Proof idea:

- Let V be the center of the sunflower $Orb_{\beta}(U)$ such that $V \neq \{0\}$.
- As Stab(V) ∪ {0} is a subfield of F_{qⁿ} and V is a vector space over Stab(V) ∪ {0}, let Stab(V) = F^{*}_{q^s} for some positive integer s > 1 dividing gcd(dim(V), n).
- Since the dimension of U is k, the dimension of V is less than or equal to k − 1. So, we get s ≤ k − 1 and {βⁱ | i = 0, 1, ..., |β| − 1} ⊆ 𝔽^{*}_{qs}.
- Thus, the order of β is less than or equal to $q^s 1$. As U generates a full-length orbit, $|\operatorname{Orb}_{\beta}(U)| \leq \frac{q^s 1}{q 1}$.

The cardinality of a sunflower Orb_β(U) in F_{qⁿ} with a trivial center may be greater than ^{q^s-1}/_{q-1} where s < dim(U) is the largest positive divisor of n.</p>

The cardinality of a sunflower Orb_β(U) in F_{qⁿ} with a trivial center may be greater than ^{q^s-1}/_{q-1} where s < dim(U) is the largest positive divisor of n. The following example illustrates this.</p>

Example

- Consider a monic irreducible polynomial p(x) = x¹² + x⁶ + x⁵ + x⁴ + x² + 2 of degree 12 over F₃. Let α be a root of p(x). Then, F₃(α) is an extension field of degree 12 over F₃.
- Let $U = \langle \alpha^{565}, \alpha^{123982}, \alpha^{179292}, \alpha^{208314}, \alpha^{395390} \rangle_{\mathbb{F}_3}$. The dimension of U over \mathbb{F}_3 is 5, and U generates a full-length orbit.
- Let $\gamma = \alpha^{4088}$ be an element in $\mathbb{F}_{3^{12}}$. The multiplicative order of γ is 130.
- By using the Magma, we computed that $U \cap \gamma^i U = \{0\}$ for all *i* in $\{1, \ldots, |\gamma|\}$. Thus, $Orb_{\gamma}(U)$ is a sunflower with a trivial center.
- The cardinality of Orb_γ(U) is 65. Here, n is 12, and k is 5. So, the largest divisor of n less than k is 4. Clearly, |Orb_γ(U)| = 65 > ^{3⁴-1}/₃₋₁ = 40.

Theorem

Let U be a subspace of dimension k in \mathbb{F}_{q^n} such that $Stab(U) = \mathbb{F}_{q^t}^*$. Let $Orb_{\gamma}(U)$ ($\gamma \notin Stab(U)$) be a sunflower with a non-trivial center then

$$|\mathit{Orb}_\gamma(\mathit{U})| \leq rac{q^s-1}{q^t-1} \;,$$

where s < k is the largest positive divisor of n.

Theorem

Let U be a subspace of dimension k in \mathbb{F}_{q^n} such that $Stab(U) = \mathbb{F}_{q^t}^*$. Let $Orb_{\gamma}(U)$ ($\gamma \notin Stab(U)$) be a sunflower with a non-trivial center then

$$|\mathit{Orb}_\gamma(\mathit{U})| \leq rac{q^s-1}{q^t-1} \;,$$

where s < k is the largest positive divisor of n.

Proof idea:

- Let Stab(U) = 𝔽^{*}_{q^t}. Let γ ∉ Stab(U) and let Orb_γ(U) be a sunflower with a non-trivial center V. Then V = U ∩ γU.
- For any δ ∈ ℝ^{*}_{qt}, δV = δU ∩ δγU. As δ ∈ Stab(U), δU = U and δγU = γU. Thus, δV = V. From this follows that δ ∈ Stab(V). Since δ was an arbitrary element in Stab(U), we get Stab(U) ⊆ Stab(V).
- Let Stab(V) = 𝔽^{*}_{q^s}. Now, by the same argument used in previous theorem, we get

$$|\mathsf{Orb}_\gamma(\mathcal{U})| \leq rac{q^s-1}{q^t-1} \;,$$

where s < k is the largest positive divisor of *n*.

Definition (Hirschfeld, 1998)

For any k(< n), a *k*-spread is a collection of *k*-dimensional subspaces $\{X_1, X_2, \ldots, X_t\}$ of \mathbb{F}_q^n such that

1.
$$X_i \cap X_j = \{0\}$$
, for $i \neq j, 1 \leq i, j \leq t$.
2. $\bigcup_{i=1}^t X_i = \mathbb{F}_q^n$.

Definition

A partial *k*-spread of \mathbb{F}_{q^n} is a subset $\mathcal{A} \subseteq \mathcal{G}_q(n, k)$ such that $U \cap V = \{0\}$ for all $U, V \in \mathcal{A}$ with $U \neq V$.

Theorem

A k-spread exists if and only if k divides n. Moreover, the cardinality of a k-spread is $\frac{q^n-1}{q^k-1}$.

Hirschfeld, J.: Projective Geometries over Finite Fields, Second Edition. New York, Oxford University Press (1998).

Lemma

Let $A \subseteq \mathcal{G}_q(n, k)$ be a partial k-spread code. Denote by r the remainder obtained when n is divided by k. Then $|A| \leq \frac{q^n - q^r}{q^k - 1}$.

Next, we discuss about the maximum size of a sunflower with a trivial center.

▶ If k divides n then $Orb_{\beta}(U)$ is clearly a subset of k-spread. Thus,

$$|\operatorname{Orb}_{\beta}(U)| \leq rac{q^n-1}{q^k-1} \; .$$

Lemma

Let $A \subseteq \mathcal{G}_q(n, k)$ be a partial k-spread code. Denote by r the remainder obtained when n is divided by k. Then $|\mathcal{A}| \leq \frac{q^n - q^r}{q^k - 1}$.

Next, we discuss about the maximum size of a sunflower with a trivial center.

▶ If k divides n then $Orb_\beta(U)$ is clearly a subset of k-spread. Thus,

$$|\mathsf{Orb}_eta(\mathcal{U})| \leq rac{q^n-1}{q^k-1} \;.$$

The above-stated bound may be attainable. We give below such an example.

Example

- Consider a monic irreducible polynomial p(x) = x¹² + x⁷ + x⁶ + x⁵ + x³ + x + 1 of degree 12 over F₂. Let α be a root of p(x). Then F₂(α) is an extension field of degree 12 over F₂ and F₂(α) ≃ F_{2¹²}.
- Let $U = \langle 1, \alpha^{470}, \alpha^{3607}, \alpha^{3621} \rangle_{\mathbb{F}_2}$. The dimension of U over \mathbb{F}_2 is 4, and U generates a full-length orbit. Let $\gamma = \alpha^{15}$. The multiplicative order of γ in $\mathbb{F}_{2^{12}}^*$ is 273.

Example (Contd.)

- Consider the orbit code Orb_γ(U) = {γⁱU | 0 ≤ i ≤ |γ| − 1}. Using the magma, we computed that U ∩ xU = {0} for all xU ∈ Orb_γU with xU ≠ U. Thus, Orb_γ(U) is a sunflower with a trivial center.
- The computation through the magma shows that the cardinality of Orb_γ(U) is 273, which is equal to ^{2¹²-1}/_{2⁴-1}. Hence, Orb_γ(U) is an optimal sunflower code with a trivial center.

Example (Contd.)

- Consider the orbit code Orb_γ(U) = {γⁱU | 0 ≤ i ≤ |γ| − 1}. Using the magma, we computed that U ∩ xU = {0} for all xU ∈ Orb_γU with xU ≠ U. Thus, Orb_γ(U) is a sunflower with a trivial center.
- The computation through the magma shows that the cardinality of Orb_γ(U) is 273, which is equal to ^{2¹²-1}/_{2⁴-1}. Hence, Orb_γ(U) is an optimal sunflower code with a trivial center.
- If k does not divide n then Orb_β(U) is a subset of partial k-spread. Let r denote the remainder obtained when n is divided by k. So, we get

$$|\mathsf{Orb}_eta(U)| \leq rac{q^n-q^r}{q^k-1}$$

From this, it follows that $|\operatorname{Orb}_{\beta}(U)| \leq \frac{q^{r}(q^{n-r}-1)}{q^{k}-1}$. We know that the cardinality of $\operatorname{Orb}_{\beta}(U)$ is a divisor of the order of $\mathbb{F}_{q^{n}}^{*}$. However, $\frac{q^{r}(q^{n-r}-1)}{q^{k}-1}$ does not divide $q^{n} - 1$. Hence, in this case, $|\operatorname{Orb}_{\beta}(U)| < \frac{q^{n}-q^{r}}{q^{k}-1}$.

References

- Kötter, R., Kschischang, R. F.: Coding for errors and erasures in random network coding, IEEE Trans. Inf. Theory 54, 3579-3591 (2008).
- Etzion, T., Vardy, A.: Error-correcting codes in projective space, IEEE Trans. Inf. Theory 57(2), 1165-1173 (2011).
 - Trautmann, L. A., Manganiello, F., Braun, M., Rosenthal, J.: Cyclic orbit codes, IEEE Trans. Inf. Theory 59(11), 7386-7404 (2013).
- Gluesing-Luerssen, H., Morrison, K., Troha, C.: Cyclic orbit codes and stabilizer subfields, Adv. Math. Commun. 9(2), 177-197 (2015).
- Otal, K., Ozbudak, F.: Cyclic subspace codes via subspace polynomials, Des. Codes Cryptogr. 85(2), 191-204 (2017).
- Etzion, T., Raviv, N..: Equidistant codes in the Grassmannian, Discret. Appl. Math. 186, 87-97 (2015).
- - Bartoli, D., Pavese, F.: A note on equidistant subspace codes, Discret. Appl. Math. 198, 291-296 (2016).
 - Gorla, E., Ravagnani, A.: Equidistant subspace codes, Linear Algebra Appl. 490, 48-65 (2016).

References

- Gluesing-Luerssen, H., Lehmann, H.: Distance distributions of cyclic orbit codes, Des. Codes Cryptogr. 89, 447-470 (2021).
 - Stinson, R. D.: Combinatorial Designs: Constructions and Analysis, Springer, New York (2004).
 - Van Lint, J.H., Wilson, R.M.: A Course in Combinatorics 2nd Edn. Cambridge University Press, Cambridge (2001).
- Jungnickel, D.: On automorphism groups of divisible designs. Can. J. Math. 34(2), 257-297 (1982).
- Ghatak, A.: Construction of Singer subgroup orbit codes based on cyclic difference sets. In: Proceedings of the Twentieth National Conference on Communications (NCC 2014), pp. 1-4, Kanpur, India. IEEE (2014).
- Gorla, E., Ravagnani, A.: Partial spreads in random network coding. Finite Fields Appl. 26, 104-115 (2014).
- Bosma, W., Cannon, J.: Handbook of Magma Functions, School of Mathematics and Statistics, Univ. of Sydney (1995).

Thank You.