Equidistant Single-Orbit Cyclic Subspace Codes

by

Mahak

Ph.D. student

Department of Mathematics Indian Institute of Technology Roorkee, India

work done with Maheshanand Bhaintwal

June 20, 2024

- Subspace codes
- Orbit codes
- Equidistant single-orbit cyclic subspace Codes
- Sunflower single-orbit cyclic subspace codes

Definition (Subspace code)

Let $\mathcal{P}_q(n)$ denote the set of all the subspaces of \mathbb{F}_q^n . A *subspace code* is a non-empty collection $C \subseteq \mathcal{P}_q(n)$ with minimum distance

 $d(C) = \min\{d_s(U, V) | U, V \in C, U \neq V\}$.

▶ The distance *d^s* used here is the subspace distance and is defined by

$$
d_s(U, V) = \dim(U) + \dim(V) - 2\dim(U \cap V).
$$

 \blacktriangleright If every subspace in code *C* is of the same dimension, say *k*, then

$$
d(C) = 2k - \max_{U,V \in C, U \neq V} \dim(U \cap V).
$$

- It is well-known that \mathbb{F}_{q^n} is isomorphic to \mathbb{F}_q^n as a vector space over \mathbb{F}_q . Due to rich algebraic structure of \mathbb{F}_{q^n} compared to \mathbb{F}_q^n , we identify the subspaces of \mathbb{F}_q^n with that of \mathbb{F}_{q^n} .
- ▶ For $\alpha \in \mathbb{F}_{q^n}^*$ and $U \in \mathcal{P}_q(n)$, the *cyclic shift* of *U* is defined as

$$
\alpha U = \{ \alpha u \mid u \in U \}.
$$

▶ We can define a group action $\mathbb{F}_{q^n}^* \times \mathcal{P}_q(n) \to \mathcal{P}_q(n)$ of $\mathbb{F}_{q^n}^*$ on $\mathcal{P}_q(n)$ as

 $(\alpha, U) \rightarrow \alpha U$.

For any \mathbb{F}_q -subspace $U \subseteq \mathbb{F}_q^n$, the *orbit of U*, denoted by Orb (U) , is defined by

Orb
$$
(U) = {\alpha U | \alpha \in \mathbb{F}_{q^n}^* }
$$
.

 \blacktriangleright The *stabilizer* of U, denoted by Stab (U) , is defined by

 $\text{Stab}(U) = \{ \alpha \in \mathbb{F}_{q^n}^* \mid \alpha U = U \}$.

Stab $(U) \cup \{0\} = \mathbb{F}_{q^t}$ for some *t* which is a divisor of gcd $(\dim_{\mathbb{F}_q}(U), n)$.

▶ We can define a group action $\mathbb{F}_{q^n}^* \times \mathcal{P}_q(n) \to \mathcal{P}_q(n)$ of $\mathbb{F}_{q^n}^*$ on $\mathcal{P}_q(n)$ as

 $(\alpha, U) \rightarrow \alpha U$.

For any \mathbb{F}_q -subspace $U \subseteq \mathbb{F}_q^n$, the *orbit of U*, denoted by Orb (U) , is defined by

Orb
$$
(U) = {\alpha U | \alpha \in \mathbb{F}_{q^n}^* }
$$
.

 \blacktriangleright The *stabilizer* of *U*, denoted by Stab(*U*), is defined by

$$
Stab(U) = \{ \alpha \in \mathbb{F}_{q^n}^* \mid \alpha U = U \}.
$$

Stab $(U) \cup \{0\} = \mathbb{F}_{q^t}$ for some *t* which is a divisor of gcd $(\dim_{\mathbb{F}_q}(U), n)$.

 \blacktriangleright Using the orbit-stabilizer theorem, for any subspace U of \mathbb{F}_q^n , we have

$$
|\mathsf{Orb}(U)| = \frac{q^n - 1}{|\mathsf{Stab}(U)|} = \frac{q^n - 1}{q^t - 1}
$$

.

▶ If Stab $(U) = \mathbb{F}_q^*$, i.e., $|\mathsf{Orb}(U)| = \frac{q^n-1}{q-1}$, then $\mathsf{Orb}(U)$ is called a *full-length orbit code* and we say that *U* generates a full-length orbit. Otherwise, Orb(*U*) is a degenerate orbit.

A subspace code *C* is said to be a *cyclic subspace code* if $\alpha U \in C$ for all $\alpha \in \mathbb{F}_{q^n}^*$ and $U \in \mathcal{C}$.

Definition

Fix an element $\beta \in \mathbb{F}_{q^n}^* \backslash \{1\}.$ Let U be an \mathbb{F}_q -subspace in $\mathbb{F}_{q^n}.$ The β -cyclic *orbit code* generated by *U* is defined as the set

Orb<sub>$$
\beta
$$</sub>(U) = { β ^{*i*}U | *i* = 0, 1, ..., $|\beta|$ – 1}.

If β is a primitive element of \mathbb{F}_{q^n} , we write Orb $_\beta(U)$ simply as Orb (U) and call it a *single-orbit cyclic subspace code.* Otherwise, it is termed a *single-orbit quasi-cyclic subspace code.*

A subspace code *C* is said to be a *cyclic subspace code* if $\alpha U \in C$ for all $\alpha \in \mathbb{F}_{q^n}^*$ and $U \in \mathcal{C}$.

Definition

Fix an element $\beta \in \mathbb{F}_{q^n}^* \backslash \{1\}.$ Let U be an \mathbb{F}_q -subspace in $\mathbb{F}_{q^n}.$ The β -cyclic *orbit code* generated by *U* is defined as the set

Orb<sub>$$
\beta
$$</sub>(U) = { β ^{*i*}U | *i* = 0, 1, ..., $|\beta|$ – 1}.

If β is a primitive element of \mathbb{F}_{q^n} , we write Orb $_\beta(U)$ simply as Orb (U) and call it a *single-orbit cyclic subspace code.* Otherwise, it is termed a *single-orbit quasi-cyclic subspace code.*

Definition (Equidistant code)

A β -cyclic orbit code Orb $_\beta$ (*U*) is an equidistant code if for all β^i *U*, $\beta^jU\in\mathsf{Orb}_\beta(U),\ \beta^iU\neq\beta^jU$

 $d_s(\beta^i U, \beta^j U) = d(\text{Orb}_{\beta}(U))$.

Equidistant Codes

▶ Since, dim $(\beta^i U \cap \beta^j U) =$ dim $(U \cap \beta^{j-i} U)$, the minimum distance of an orbit code is given by

 $d_\mathcal{S}(\mathsf{Orb}(U)) = 2\dim(U) - \max\{\mathsf{dim}(U\cap\beta^iU) \mid 0\leq i\leq |\beta|-1, \,\, U\neq\beta^iU\}$.

▶ If for all *i*, $1 \le i \le |\beta|-1$, $U \ne \beta^i U$, dim $(U \cap \beta^i U) = c$, for some non-negative integer *c* then Orb_β(*U*) is said to be a *c-intersecting equidistant code*.

▶ Since, dim $(\beta^i U \cap \beta^j U) =$ dim $(U \cap \beta^{j-i} U)$, the minimum distance of an orbit code is given by

 $d_\mathcal{S}(\mathsf{Orb}(U)) = 2\dim(U) - \max\{\mathsf{dim}(U\cap\beta^iU) \mid 0\leq i\leq |\beta|-1, \,\, U\neq\beta^iU\}$.

▶ If for all *i*, $1 \le i \le |\beta|-1$, $U \ne \beta^i U$, dim $(U \cap \beta^i U) = c$, for some non-negative integer *c* then Orb_β(*U*) is said to be a *c-intersecting equidistant code*.

Definition (Sunflower)

A β-cyclic orbit code Orb_β(*U*) is a *sunflower* if there exists a subspace *T* in \mathbb{F}_{q^n} such that for all $\beta^iU, \beta^jU \in \mathsf{Orb}_\beta(U), \ \beta^iU \neq \beta^jU$ we have $\beta^iU \cap \beta^jU = \mathcal{T}.$

- ▶ The subspace *T* is called the center of the sunflower Orb $_{\beta}(U)$.
- **▶ Note that for an equidistant code Orb** $_{\beta}(U)$ if there exists a subspace *S* in \mathbb{F}_{q^n} such that $U \cap \beta^i U = S$ for all $\beta^i U \in \mathsf{Orb}_\beta(U)$ with $\beta^i U \neq U$ then Orb $_\beta$ (*U*) is a sunflower.

Definition (Difference set)

Suppose $(G,+)$ is a finite group of order *v* in which the identity element is denoted by "0". Let *k* and λ be positive integers such that $2 \le k \le v$. A (ν, k, λ) -difference set in $(G, +)$ is a subset $D \subseteq G$ that satisfies the following properties:

- 1. $|D| = k$,
- 2. the multiset $[x y : x, y \in D, x \neq y]$ contains every element in $G \setminus \{0\}$ exactly λ times.
- \blacktriangleright Note that if a (ν, k, λ) -difference set exists,

$$
\lambda(v-1)=k(k-1)\ ,
$$

▶ Let *D* be a (v, k, λ) -difference set in a group $(G, +)$. For any $g \in G$, define

$$
D+g=\{x+g:x\in D\}\ .
$$

Any set $D + q$ is called a translate of D.

Lemma

Let G be a group of order v and D \subseteq *G with* $|D| = k$. If for every 0 \neq g \in *G*, $|D \cap (D+g)| = \lambda (\lambda > 0)$ *then D is a* (v, k, λ) -difference set in G.

Lemma

Let G be a group of order v and $D \subseteq G$ *with* $|D| = k$ *. If for every* $0 \neq g \in G$ *,* $|D \cap (D + g)| = \lambda (\lambda > 0)$ then *D* is a (*v*, *k*, λ)-difference set in *G*.

Definition (Relative difference set)

Let $(G, +)$ be a group of order *nm* and let $(N, +)$ be a subgroup of *G* of order *n*. Then a *k*-subset *D* of *G* is called a *relative difference set* with parameters *n*, *m*, *k*, λ_1 and λ_2 (relative to *N*) or briefly an $(n, m, k, \lambda_1, \lambda_2)$ -RDS, provided that the list of differences $\{d_1 - d_2 : d_1, d_2 \in D, d_1 \neq d_2\}$ contain each element of *N*, except zero, precisely λ_1 times and each element of $G\backslash N$ exactly λ_2 times.

 \blacktriangleright Let *D* be an $(n, m, k, \lambda_1, \lambda_2)$ -RDS in *G*. Then

$$
k(k-1)=n(m-1)\lambda_2+(n-1)\lambda_1.
$$

Equidistant Codes

The code Orb(*U*) is trivially an equidistant code in the following cases:-

- 1. $\dim(U) = 1$ ($\text{Orb}(U)$ is a 0-intersecting equidistant code.)
- 2. dim(U) = $n 1$ (($n 2$)-intersecting)
- 3. if U is a cyclic shift of a subfield of \mathbb{F}_{q^n} , i.e., $U=\gamma\mathbb{F}_{q^t},$ where $\gamma\in\mathbb{F}_{q^n}^*$ and *t* is a divisor of *n* (0-intersecting)

For a subspace U of dimension k in \mathbb{F}_{q^n} , $d_s(\mathsf{Orb}(\mathcal{U})) = 2k$ if and only if $U = \beta \mathbb{F}_{q^k}$, for some $\beta \in \mathbb{F}_{q^n}^*$.

The code $Orb(U)$ is trivially an equidistant code in the following cases:-

- 1. $\dim(U) = 1$ ($\text{Orb}(U)$ is a 0-intersecting equidistant code.)
- 2. dim(U) = $n 1$ (($n 2$)-intersecting)
- 3. if U is a cyclic shift of a subfield of \mathbb{F}_{q^n} , i.e., $U=\gamma\mathbb{F}_{q^t},$ where $\gamma\in\mathbb{F}_{q^n}^*$ and *t* is a divisor of *n* (0-intersecting)

For a subspace U of dimension k in \mathbb{F}_{q^n} , $d_s(\mathsf{Orb}(\mathcal{U})) = 2k$ if and only if $U = \beta \mathbb{F}_{q^k}$, for some $\beta \in \mathbb{F}_{q^n}^*$.

- ▶ Consider an extension field \mathbb{F}_{q^n} . Let α be a primitive element of \mathbb{F}_{q^n} . $\textsf{Then} \; \mathbb{F}_{q^n}^* = \{ \alpha^i \; | \; i = 0, 1, \ldots, q^n - 2 \}.$
- ▶ Now consider the group $\mathbb{Z}_{q^n-1} = \{0, 1, \ldots, q^n 2\}$ under the operation addition modulo $q^n - 1$.
- \blacktriangleright Let $G = \{ \alpha^0 = 1, \alpha^{j_1}, \alpha^{j_2}, \ldots, \alpha^{j_m} \}$ be a subgroup of the multiplicative group $(\mathbb{F}_{q^n}^*, \times)$.
- ▶ Let $I = \{t \mid \alpha^t \in G\}$. Then *I* is a subgroup in $(\mathbb{Z}_{q^n-1}, \oplus_{q^n-1})$. Similarly, for a subgroup in $(\mathbb{Z}_{q^n-1}, \oplus_{q^n-1})$ there is a subgroup in $(\mathbb{F}_{q^n}^*, \times)$.

Let α be a primitive element of \mathbb{F}_{2^n} over \mathbb{F}_2 . Let $\pmb{U} = \{0, \alpha^{i_1}, \alpha^{i_2}, \ldots, \alpha^{i_{2k-1}}\}$ be a subspace of dimension k in \mathbb{F}_{2^n} such that U generates a full-length orbit. *The subspace code Orb*(*U*) *is an r-intersecting equidistant code* (*r* > 0) *if* and only if the set of indices $i_j,~1\leq j\leq 2^k-1,$ is a difference set in $\mathbb{Z}_{2^n-1}.$

Let α be a primitive element of \mathbb{F}_{2^n} over \mathbb{F}_2 . Let $\pmb{U} = \{0, \alpha^{i_1}, \alpha^{i_2}, \ldots, \alpha^{i_{2k-1}}\}$ be a subspace of dimension k in \mathbb{F}_{2^n} such that U generates a full-length orbit. *The subspace code Orb*(*U*) *is an r-intersecting equidistant code* (*r* > 0) *if* and only if the set of indices $i_j,~1\leq j\leq 2^k-1,$ is a difference set in $\mathbb{Z}_{2^n-1}.$

Proof idea:

- Let Orb(*U*) be an equidistant code and let $d_s(\text{Orb}(U)) = 2(k r)$, where $r > 0$.
- As *U* generates a full-length orbit, for all $\beta \in \mathbb{F}_{2^n} \backslash \mathbb{F}_2$, dim $(U \cap \beta U) = r$.
- Now consider the set $D = \{i_j | \alpha^{i_j} \in U\}$. Clearly $D \subseteq \mathbb{Z}_{2^n-1}$ and $|D| = 2^k - 1.$
- Let $j (\neq 0)$ be an arbitrary element in $\mathbb{Z}_{2^n 1}$. Then $\alpha^j \in \mathbb{F}_{2^n} \backslash \mathbb{F}_2$, and $dim(U \cap \alpha^j U) = r$, i.e.,

$$
|\{0,\alpha^{i_1},\alpha^{i_2},\dots,\alpha^{i_{2^k-1}}\}\cap\{0,\alpha^{j+i_1},\alpha^{j+i_2},\dots,\alpha^{j+i_{2^k-1}}\}|=2^r\;.
$$

From this we get $|D \cap (j + D)| = 2^{r} - 1$.

Proof of Converse:

• Let $D = \{i_j | \alpha^{i_j} \in U\}$ constitutes a $(2^n - 1, 2^k - 1, s)$ -difference set in Z2 *ⁿ*−1. Then,

$$
s(2^n-2)=(2^k-1)(2^k-2).
$$

From this we get $s(2^{n-1} - 1) = (2^k - 1)(2^{k-1} - 1)$.

- As *k* < *n*, we get *s* = (2 *^k*−¹ − 1). This implies that the multiset $[x - y : x, y \in D, x \neq y]$ contains every element of $\mathbb{Z}_{2^n-1} \setminus \{0\}$ exactly 2^{*k*−1} − 1 times.
- Let $\alpha^m U \neq U$ be an arbitrary element in Orb(*U*). Then $m \in \mathbb{Z}_{2^n-1} \setminus \{0\}$ and $|D \cap (m+D)| = 2^{k-1} - 1.$ Therefore, $|U \cap \alpha^m U| = 2^{k-1}$ and $\dim(U \cap \alpha^m U) = k - 1$. Hence Orb (U) is an equidistant code.

Remark

 L et $q > 2$ *. For* $2 \in \mathbb{F}_q$, there exist a $j \in \mathbb{Z}_{q^n-1} \backslash \{0\}$ such that $2 = \alpha^j$. Now, $|D ∩ (j + D)| = q^k − 1$. Thus, D is not a difference set in G.

Let α be a primitive element of \mathbb{F}_{q^n} over \mathbb{F}_q . Let $\pmb{U}=\{0,\alpha^{i_1},\alpha^{i_2},\ldots,\alpha^{i_{q^k-1}}\}$ *be a subspace in* F*^q ⁿ of dimension k such that U generates a full-length orbit. If the subspace code Orb*(*U*) *is an r-intersecting equidistant code* (*r* > 0) *then the indices i_j, 1* \leq *j* \leq q^k-1 *, form a relative difference set in* \mathbb{Z}_{q^n-1} *.*

Let α be a primitive element of \mathbb{F}_{q^n} over \mathbb{F}_q . Let $\pmb{U}=\{0,\alpha^{i_1},\alpha^{i_2},\ldots,\alpha^{i_{q^k-1}}\}$ *be a subspace in* F*^q ⁿ of dimension k such that U generates a full-length orbit. If the subspace code Orb*(*U*) *is an r-intersecting equidistant code* (*r* > 0) *then the indices i_j, 1* \leq *j* \leq q^k-1 *, form a relative difference set in* \mathbb{Z}_{q^n-1} *.*

Proof idea:

- Let Orb(*U*) be an equidistant subspace code, and let $d_s(\text{Orb}(U)) =$ $2(k - r)$, where $r > 0$.
- Let $D=\{j\mid \alpha^{j_j}\in U\}$ and $N=\{j\mid \alpha^{j}\in \mathbb{F}_q^{*}\}.$ Then N is a subgroup of \mathbb{Z}_{q^n-1} and $|N|=q-1$.
- For any $i\in \mathbb{Z}_{q^n-1}\backslash N, \ \alpha^i\in \mathbb{F}_{q^n}\backslash \mathbb{F}_q$ and thus $\dim(U\cap \alpha^iU)=r.$ From this, w e get $|D \cap (i + D)| = q^r - 1$ for all $i \in \mathbb{Z}_{q^n - 1} \backslash \mathcal{N}$.
- Now for any $t \in N$, $\alpha^t \in \mathbb{F}_q$ and $\dim(U \cap \alpha^t U) = q^k$. Thus, for any *t* ∈ *N*, $|D \cap (t + D)| = q^k - 1$. Hence the set of indices *D* constitutes a $(q-1, \frac{q^n-1}{q-1}, q^k-1, q^k-1, q^r-1)$ relative difference set in \mathbb{Z}_{q^n-1} (relative to *N*).

There is only the trivial equidistant (full length) single-orbit cyclic subspace code in $P_q(n)$ *for* $n \geq 3$ *.*

Theorem

There is only the trivial equidistant (full length) single-orbit cyclic subspace code in $P_q(n)$ *for* $n \geq 3$ *.*

Proof idea:

- Let α be a primitive element of \mathbb{F}_{q^n} over \mathbb{F}_q and let $U = \{0, \alpha^{i_1}, \alpha^{i_2}, \alpha^{i_3}\}$ $\ldots, \alpha^{l_{\bm{q}^k-1}}\}$ be a subspace of dimension k in $\mathbb{F}_{\bm{q}^n}$ over $\mathbb{F}_{\bm{q}}.$
- Let Orb(*U*) be an equidistant subspace code with subspace distance 2($k - r$), where $r > 0$. Then the set of indices $\{j_j \mid \alpha^{j_j} \in U\}$ constitutes a $(q-1, \frac{q^{n}-1}{q-1}, q^{k}-1, q^{k}-1, q^{r}-1)$ - relative difference set in $\mathbb{Z}_{q^{n}-1}$.
- So, we get

$$
(q^{k}-1)(q^{k}-2)=(q-1)\left(\frac{q^{n}-1}{q-1}-1\right)(q^{r}-1)+(q-2)(q^{k}-1).
$$

• On simplifying the above equation, we get

$$
(q^{k}-1)(q^{k-1}-1)=(q^{n-1}-1)(q^{r}-1).
$$

• Further this gives

$$
q^{2k-1} - (q+1)q^{k-1} = q^{n+r-1} - q^{n-1} - q^r.
$$
 (1)

.

• Let *r* > *k* − 1. On dividing both sides of equation [\(1\)](#page-21-0) by q^{k-1} , we get

$$
q^{k} - (q + 1) = q^{n+r-k} - q^{n-k} - q^{r-k+1}
$$

As $n > k$, $r - k + 1 > 0$, the right side of the above equation is a multiple of *q* but the left side is not. This is a contradiction.

• Let *r* < *k* − 1. On dividing both sides of equation [\(1\)](#page-21-0) by *q r* , we get

$$
q^{2k-r-1}-(q+1)q^{k-r-1}=q^{n-1}-q^{n-r-1}-1.
$$

As $n > k > r + 1$, the left side of the above equation is a multiple of q but the right side is not. This is a contradiction.

• So, we conclude that $r = k - 1$. By putting the value of $r = k - 1$ in [\(1\)](#page-21-0), we get $k = n - 1$. Therefore, dim(U) = $n - 1$ and d_s (Orb(U)) = 2. Hence the result.

Theorem

Let α be a primitive element of \mathbb{F}_{q^n} over \mathbb{F}_q . Let $\pmb{U}=\{0,\alpha^{i_1},\alpha^{i_2},\ldots,\alpha^{i_{q^k-1}}\}$ *be a subspace in* F*^q ⁿ of dimension k such that U does not generate a full-length orbit. If the subspace code Orb*(*U*) *is r-intersecting equidistant code* ($r > 0$), then the indices i_j, 1 \leq j \leq $q^k-1,$ form a relative difference set $in \mathbb{Z}_{q^n-1}$.

Theorem

Let α be a primitive element of \mathbb{F}_{q^n} over \mathbb{F}_q . Let $\pmb{U}=\{0,\alpha^{i_1},\alpha^{i_2},\ldots,\alpha^{i_{q^k-1}}\}$ *be a subspace in* F*^q ⁿ of dimension k such that U does not generate a full-length orbit. If the subspace code Orb*(*U*) *is r-intersecting equidistant code* ($r > 0$), then the indices i_j, 1 \leq j \leq $q^k-1,$ form a relative difference set $in \mathbb{Z}_{q^n-1}$.

Proof idea:

- Let Orb(*U*) be an equidistant subspace code with subspace distance $2(k-r)$, where $r > 0$. Let $\text{Stab}(U) = \mathbb{F}_{q^t}^*$ for some $t,~1 < t < k$ and t divides gcd(*k*, *n*).
- Let $\mathsf{N}=\{i_j\mid \alpha^{i_j}\in \mathbb{F}_{q^t}^* \}.$ Then N is a subgroup of $\mathbb{Z}_{q^n-1}.$ Clearly, the cardinality of N is $q^t - 1$.
- Let $D = \{i_j | \alpha^{i_j} \in U\}$. For any $j \in N$, $U = \alpha^j U$. This gives $|D \cap (j + D)| = q^k - 1.$
- For any $m \in \mathbb{Z}_{q^n-1}\backslash N$, dim $(U \cap \alpha^m U) = q^r$. So, we get $|D \cap (m+D)| =$ *q*^{r} − 1. Thus, the set of indices *D* constitutes a $(q^{t}-1, \frac{q^{n}-1}{q^{t}-1}, q^{k}-1, q^{k}-1, q^{r}-1)$ -relative difference set in $\mathbb{Z}_{q^{n}-1}$.

Lemma

Let U be a subspace of dimension k in \mathbb{F}_{q^n} . For any $\alpha \in \mathbb{F}_{q^n} \backslash \mathbb{F}_q$ and $s \in \mathbb{F}_q^*$, $dim(U \cap (\alpha + s)U) = dim(U \cap \alpha U).$

Theorem

Let n be an even integer and let U be a subspace in \mathbb{F}_{q^n} *. Let* α *be an element of degree* 2 in \mathbb{F}_q^n *. Let* $V = U \cap \alpha U$ and $V \neq \{0\}$ *. Then* $\mathbb{F}_{q^2}^* \subseteq$ *Stab*(*V*)*.*

Let n be an even number and U be a subspace in \mathbb{F}_{q^n} *. For any element* β *of* deg *ree* 2 *in* \mathbb{F}_{q^n} *with* $\beta \notin$ *Stab*(*U*)*, Orb* $_\beta$ (*U*) *is a sunflower.*

Let n be an even number and U be a subspace in \mathbb{F}_{q^n} *. For any element* β *of* deg *ree* 2 *in* \mathbb{F}_{q^n} *with* $\beta \notin$ *Stab*(*U*)*, Orb* $_\beta$ (*U*) *is a sunflower.*

Proof idea:

- The proof consists of two parts. First, we prove that $Orb_β(U)$ is an equidistant code.
- Then, we show that the intersecting subspace of the reference space *U* and elements of $Orb_β(U)$ are same.
- As β is an element of degree 2 in \mathbb{F}_{q^n} , $\mathbb{F}_q[\beta] = \{a + c\beta \mid a, c \in \mathbb{F}_q\}$. Clearly, $\{\beta^i \mid 0 \leq i \leq |\beta| - 1\} \subseteq \mathbb{F}_q[\beta].$
- Since $dim(U \cap \beta U) = dim(U \cap (a + c\beta))$ for all $a \in \mathbb{F}_q$ and $c \in \mathbb{F}_q^*$, $Orb_β(U)$ is an equidistant code.
- If dim $(U \cap \beta U) = 0$ then Orb_{β} (U) is a sunflower with a trivial center.
- Let dim $(U \cap \beta U) \neq 0$ and let $V = U \cap \beta U$. Then $\mathbb{F}_{q^2}^* \subseteq \text{Stab}(V)$. Consider an element $\beta^j = a\beta + c$ for some $a, c \in \mathbb{F}_q$ and $a \neq 0$ such that $\beta^j U \neq U.$

- As $\mathbb{F}_{q^2}^* \subseteq \mathsf{Stab}(V), \ (a\beta + c)^{-1}V = V.$ Thus $(a\beta + c)^{-1}V \subseteq U$ and $V ⊂ U ∩ (a\beta + c)U$.
- Since Orb_β(*U*) is an equidistant code, dim($U \cap (a\beta + c)U$) = $\dim(U \cap \beta U)$. So, we get $V = U \cap (a\beta + c)U$. Hence, $\text{Orb}_{\beta}(U)$ is a sunflower.

Theorem

*For any sunflower Orb*_β(*U*) ($\beta \notin$ *Stab*(*U*)), the center does not generate a *full-length orbit.*

- As $\mathbb{F}_{q^2}^* \subseteq \mathsf{Stab}(V), \ (a\beta + c)^{-1}V = V.$ Thus $(a\beta + c)^{-1}V \subseteq U$ and $V \subset U \cap (a\beta + c)U$.
- Since Orb_β(*U*) is an equidistant code, dim($U \cap (a\beta + c)U$) = $dim(U \cap \beta U)$. So, we get $V = U \cap (a\beta + c)U$. Hence, $Orb_{\beta}(U)$ is a sunflower.

Theorem

*For any sunflower Orb*_β(*U*) ($\beta \notin$ *Stab*(*U*)), the center does not generate a *full-length orbit.*

Proof idea:

- Let *V* be the center of the sunflower $Orb_{\beta}(U)$. If $V = \{0\}$ then the result is trivially true. Let $V \neq \{0\}$.
- Let $\beta^2 \in \mathbb{F}_q$. As $V = U \cap \beta U$,

$$
\beta V = \beta U \cap \beta^2 U = \beta U \cap U = V.
$$

From this, we get $V = \beta V$.

• Now, let $\beta^2 \notin \mathbb{F}_q$. Since *V* is the center,

$$
V=U\cap \beta U=U\cap \beta^2 U.
$$

Now, $V \subseteq \beta U \cap \beta^2 U = \beta(U \cap \beta U) = \beta V$. This gives $V = \beta V$. Thus, $\beta \in$ Stab(*V*).

• Now, let $\beta^2 \notin \mathbb{F}_q$. Since *V* is the center,

 $V = U \cap \beta U = U \cap \beta^2 U$.

Now, $V \subseteq \beta U \cap \beta^2 U = \beta(U \cap \beta U) = \beta V$. This gives $V = \beta V$. Thus, $\beta \in$ Stab(V).

Observations:

- ▶ By previous theorem, for a sunflower Orb_β(*U*) with center $V \neq \{0\}$, $\beta \in \mathsf{Stab}(V)$. It is known that $\mathsf{Stab}(V)$ is a subgroup of $\mathbb{F}_{q^n}^*$. So, we conclude that $\{\beta^i \mid i = 0, 1, ..., |\beta| - 1\} \subseteq \text{Stab}(V)$.
- ▶ Since Stab(*V*) ∪ {0} is a subfield of ^F*^q ⁿ* , for a prime number n, the sunflower Orb $_\beta$ (*U*) in \mathbb{F}_{q^n} always has a trivial center.

 \triangleright We can quickly check that a subspace of dimension one generates a full-length orbit. Thus, according to previous theorem, the dimension of the non-trivial center of a sunflower is always greater than one.

However, 1-intersecting equidistant orbit codes, which are not sunflower, can exist in \mathbb{F}_{q^n} . Next, we provide an example of such a code.

Example

- Consider an irreducible monic polynomial $p(x) = x^{10} + x^6 + x^5 + x^3 +$ $x^2 + x + 1$ of degree 10 over \mathbb{F}_2 . Let α be a root of $p(x)$. Then $\mathbb{F}_2(\alpha)$ be an extension field of degree 10 over \mathbb{F}_2 .
- Let $U = \langle 1, \alpha^{13}, \alpha^{70}, \alpha^{177} \rangle_{\mathbb{F}_2}$. The dimension of *U* over \mathbb{F}_2 is 4.
- The cardinality of the code $\mathsf{Orb}(U) = \{ \gamma U \mid \gamma \in \mathbb{F}_{2^{10}}^* \}$ is 1023. From this follows that *U* generates a full-length orbit.
- Let $\beta = \alpha^{93}$ be an element of order 11 in $\mathbb{F}_{2^{10}}^*$. By using the Magma we g et that dim $(\bm{U} \cap \beta^i \bm{U}) = 1$ for all i in $\{0,1,\ldots,|\beta|-1\}$ with $\beta^i \bm{U} \neq \bm{U}.$ Thus, $Orb_β(U)$ is 1- intersecting equidistant code.
- As $U\cap \beta U=\{0,\alpha^{457}\}$ and $U\cap \beta^2U=\{0,\alpha^{415}\},$ Orb $_\beta(U)$ is not a sunflower.

Theorem

Let U be a subspace of dimension k in F*^q ⁿ such that U generates a full-length orbit. Let Orb* $_{\beta}(U)$ ($\beta \in \mathbb{F}_{q^n} \backslash \mathbb{F}_q$) *be a sunflower with a non-trivial center then*

$$
|\textit{Orb}_{\beta}(U)|\leq \frac{q^s-1}{q-1}\;,
$$

where s < *k is the largest positive divisor of n.*

Theorem

Let U be a subspace of dimension k in F*^q ⁿ such that U generates a full-length orbit. Let Orb* $_{\beta}(U)$ ($\beta \in \mathbb{F}_{q^n} \backslash \mathbb{F}_q$) *be a sunflower with a non-trivial center then*

$$
|\textit{Orb}_{\beta}(U)|\leq \frac{q^s-1}{q-1}\ ,
$$

where s < *k is the largest positive divisor of n.*

Proof idea:

- Let *V* be the center of the sunflower $Orb_{\beta}(U)$ such that $V \neq \{0\}$.
- As Stab(*V*) ∪ {0} is a subfield of F*^q ⁿ* and *V* is a vector space over Stab(V) \cup {0}, let Stab(V) = $\mathbb{F}_{q^s}^*$ for some positive integer $s > 1$ dividing gcd(dim(*V*), *n*).
- Since the dimension of *U* is *k*, the dimension of *V* is less than or equal to $k-1$. So, we get $s \leq k-1$ and $\{\beta^i \mid i = 0, 1, \ldots, |\beta|-1\} \subseteq \mathbb{F}_{q^s}^*$.
- Thus, the order of β is less than or equal to $q^s 1$. As U generates a full-length orbit, $|\mathsf{Orb}_{\beta}(U)| \leq \frac{q^s-1}{q-1}.$

▶ The cardinality of a sunflower Orb $_\beta$ (*U*) in \mathbb{F}_{q^n} with a trivial center may be greater than $\frac{q^{s}-1}{q-1}$ where $s<\dim(U)$ is the largest positive divisor of *n*.

▶ The cardinality of a sunflower Orb $_\beta$ (*U*) in \mathbb{F}_{q^n} with a trivial center may be greater than $\frac{q^{s}-1}{q-1}$ where $s<\dim(U)$ is the largest positive divisor of *n*. The following example illustrates this.

Example

- Consider a monic irreducible polynomial $p(x) = x^{12} + x^6 + x^5 + x^4 +$ $x^2 + 2$ of degree 12 over \mathbb{F}_3 . Let α be a root of $p(x)$. Then, $\mathbb{F}_3(\alpha)$ is an extension field of degree 12 over \mathbb{F}_3 .
- Let $\bm{U} = \langle \alpha^{565}, \alpha^{123982}, \alpha^{179292}, \alpha^{208314}, \alpha^{395390} \rangle_{\mathbb{F}_3}$. The dimension of \bm{U} over \mathbb{F}_3 is 5, and U generates a full-length orbit.
- Let $\gamma = \alpha^{4088}$ be an element in $\mathbb{F}_{3^{12}}$. The multiplicative order of γ is 130.
- By using the Magma, we computed that $U \cap \gamma^{i} U = \{0\}$ for all *i* in $\{1, \ldots, |\gamma|\}$. Thus, Orb_{γ}(*U*) is a sunflower with a trivial center.
- The cardinality of Orb_{γ}(*U*) is 65. Here, *n* is 12, and *k* is 5. So, the largest divisor of *n* less than *k* is 4. Clearly, $|\text{Orb}_{\gamma}(U)| = 65 > \frac{3^4-1}{3-1} = 40$.

Theorem

Let U be a subspace of dimension k in \mathbb{F}_{q^n} such that Stab $(U) = \mathbb{F}_{q^t}^*$. Let *Orb*_γ(*U*) ($\gamma \notin$ *Stab*(*U*)) *be a sunflower with a non-trivial center then*

$$
|\textit{Orb}_{\gamma}(U)| \leq \frac{q^s-1}{q^t-1} \ ,
$$

where s < *k is the largest positive divisor of n.*

Theorem

Let U be a subspace of dimension k in \mathbb{F}_{q^n} such that Stab $(U) = \mathbb{F}_{q^t}^*$. Let *Orb*_γ(*U*) ($\gamma \notin$ *Stab*(*U*)) *be a sunflower with a non-trivial center then*

$$
|\textit{Orb}_{\gamma}(U)| \leq \frac{q^s-1}{q^t-1} \ ,
$$

where s < *k is the largest positive divisor of n.*

Proof idea:

- Let Stab $(\mathcal{U})=\mathbb{F}_{q^t}^*$. Let $\gamma\notin\mathsf{Stab}(\mathcal{U})$ and let Orb $_\gamma(\mathcal{U})$ be a sunflower with a non-trivial center *V*. Then $V = U \cap \gamma U$.
- For any $\delta \in \mathbb{F}_{q^t}^*,\ \delta V = \delta U \cap \delta \gamma U.$ As $\delta \in \mathsf{Stab}(U),\ \delta U = U$ and $\delta \gamma U = \gamma U$. Thus, $\delta V = V$. From this follows that $\delta \in \text{Stab}(V)$. Since δ was an arbitrary element in Stab(*U*), we get Stab(*U*) ⊆ Stab(*V*).
- Let Stab $(V) = \mathbb{F}_{q^s}^*$. Now, by the same argument used in previous theorem, we get

$$
|\mathsf{Orb}_{\gamma}(\mathit{U})| \leq \frac{q^s-1}{q^t-1} \ ,
$$

where *s* < *k* is the largest positive divisor of *n*.

Definition (Hirschfeld, 1998)

For any *k*(< *n*), a *k*-spread is a collection of *k*-dimensional subspaces $\{X_1, X_2, \ldots, X_t\}$ of \mathbb{F}_q^n such that 1. $X_i \cap X_j = \{0\}$, for $i \neq j, 1 \leq i, j \leq t$. 2. $\bigcup^t X_i = \mathbb{F}_q^n$.

$$
i=1
$$

Definition

A partial *k*-spread of \mathbb{F}_{q^n} is a subset $\mathcal{A} \subseteq \mathcal{G}_q(n, k)$ such that $U \cap V = \{0\}$ for all $U, V \in \mathcal{A}$ with $U \neq V$.

Theorem

A k-spread exists if and only if k divides n. Moreover, the cardinality of a k-spread is $\frac{q^n-1}{q^k-1}$.

Hirschfeld, J.: Projective Geometries over Finite Fields, Second Edition. New York, Oxford University Press (1998).

Lemma

Let $A \subseteq \mathcal{G}_q(n,k)$ *be a partial k-spread code. Denote by r the remainder obtained when n is divided by k. Then* $|\mathcal{A}| \leq \frac{q^n - q^n}{q^k - 1}$ $\frac{q^{k}-q}{q^{k}-1}$.

Next, we discuss about the maximum size of a sunflower with a trivial center.

▶ If *k* divides *n* then Orb_{*B*}(*U*) is clearly a subset of *k*-spread. Thus,

$$
|\mathsf{Orb}_{\beta}(U)| \leq \frac{q^n-1}{q^k-1} \ .
$$

Lemma

Let $A \subseteq \mathcal{G}_{q}(n, k)$ *be a partial k-spread code. Denote by r the remainder obtained when n is divided by k. Then* $|\mathcal{A}| \leq \frac{q^n - q^n}{q^k - 1}$ $\frac{q^{k}-q}{q^{k}-1}$.

Next, we discuss about the maximum size of a sunflower with a trivial center.

▶ If *k* divides *n* then Orb_{*B*}(*U*) is clearly a subset of *k*-spread. Thus,

$$
|\mathsf{Orb}_{\beta}(U)| \leq \frac{q^n-1}{q^k-1}.
$$

The above-stated bound may be attainable. We give below such an example.

Example

- Consider a monic irreducible polynomial $p(x) = x^{12} + x^7 + x^6 + x^5 +$ $x^3 + x + 1$ of degree 12 over \mathbb{F}_2 . Let α be a root of $p(x)$. Then $\mathbb{F}_2(\alpha)$ is an extension field of degree 12 over \mathbb{F}_2 and $\mathbb{F}_2(\alpha)\simeq \mathbb{F}_{2^{12}}.$
- Let $U = \langle 1, \alpha^{470}, \alpha^{3607}, \alpha^{3621} \rangle_{\mathbb{F}_2}$. The dimension of U over \mathbb{F}_2 is 4, and U generates a full-length orbit. Let $\gamma=\alpha^{15}.$ The multiplicative order of γ in $\mathbb{F}_{2^{12}}^*$ is 273.

Example (Contd.)

- $\bullet \,$ Consider the orbit code Orb $_{\gamma} (U) = \{ \gamma^i U \mid 0 \leq i \leq |\gamma| 1 \}.$ Using the magma, we computed that $U \cap xU = \{0\}$ for all $xU \in \text{Orb}_y U$ with $xU \neq U$. Thus, Orb_{y}(*U*) is a sunflower with a trivial center.
- The computation through the magma shows that the cardinality of Orb $_{\gamma}(U)$ is 273, which is equal to $\frac{2^{12}-1}{2^4-1}$. Hence, Orb $_{\gamma}(U)$ is an optimal sunflower code with a trivial center.

Example (Contd.)

- $\bullet \,$ Consider the orbit code Orb $_{\gamma} (U) = \{ \gamma^i U \mid 0 \leq i \leq |\gamma| 1 \}.$ Using the magma, we computed that $U \cap xU = \{0\}$ for all $xU \in \text{Orb}_\gamma U$ with $xU \neq U$. Thus, Orb_{y}(*U*) is a sunflower with a trivial center.
- The computation through the magma shows that the cardinality of Orb $_{\gamma}(U)$ is 273, which is equal to $\frac{2^{12}-1}{2^4-1}$. Hence, Orb $_{\gamma}(U)$ is an optimal sunflower code with a trivial center.
- ▶ If *k* does not divide *n* then $Orb_β(U)$ is a subset of partial *k*-spread. Let *r* denote the remainder obtained when *n* is divided by *k*. So, we get

$$
|\mathsf{Orb}_{\beta}(U)| \leq \frac{q^n-q^r}{q^k-1}
$$

.

From this, it follows that $|\mathsf{Orb}_{\beta}(U)| \leq \frac{q'(q^{n-r}-1)}{q^k-1}$. We know that the $\int_0^{\infty} \frac{q^{r} (q^{n-r}-1)}{q^k-1}$ is a divisor of the order of $\mathbb{F}_{q^n}^*$. However, $\frac{q^{r} (q^{n-r}-1)}{q^k-1}$ does not divide $q^n - 1$. Hence, in this case, $|\mathsf{Orb}_{\beta}(U)| < \frac{q^n - q^n}{q^k - 1}$ $q^{k}-q$.

References

- 譶 Kötter, R., Kschischang, R. F.: Coding for errors and erasures in random network coding, IEEE Trans. Inf. Theory 54, 3579-3591 (2008).
- 靠 Etzion, T., Vardy, A.: Error-correcting codes in projective space, IEEE Trans. Inf. Theory 57(2), 1165-1173 (2011).
- 螶 Trautmann, L. A., Manganiello, F., Braun, M., Rosenthal, J.: Cyclic orbit codes, IEEE Trans. Inf. Theory 59(11), 7386-7404 (2013).
- E. Gluesing-Luerssen, H., Morrison, K., Troha, C.: Cyclic orbit codes and stabilizer subfields, Adv. Math. Commun. 9(2), 177-197 (2015).
- 畐 Otal, K., Ozbudak, F.: Cyclic subspace codes via subspace polynomials, Des. Codes Cryptogr. 85(2), 191-204 (2017).
- 螶 Etzion, T., Raviv, N..: Equidistant codes in the Grassmannian, Discret. Appl. Math. 186, 87-97 (2015).
- 品
	- Bartoli, D., Pavese, F.: A note on equidistant subspace codes, Discret. Appl. Math. 198, 291-296 (2016).
	- Gorla, E., Ravagnani, A.: Equidistant subspace codes, Linear Algebra Appl. 490, 48-65 (2016).

References

- ā. Gluesing-Luerssen, H., Lehmann, H.: Distance distributions of cyclic orbit codes, Des. Codes Cryptogr. 89, 447-470 (2021).
- E.
- Stinson, R. D.: Combinatorial Designs: Constructions and Analysis, Springer, New York (2004).
- 螶
- Van Lint, J.H., Wilson, R.M.: A Course in Combinatorics 2nd Edn. Cambridge University Press, Cambridge (2001).
- 畐 Jungnickel, D.: On automorphism groups of divisible designs. Can. J. Math. 34(2), 257-297 (1982).
- 螶

Ghatak, A.: Construction of Singer subgroup orbit codes based on cyclic difference sets. In: Proceedings of the Twentieth National Conference on Communications (NCC 2014), pp. 1-4, Kanpur, India. IEEE (2014).

- S. Gorla, E., Ravagnani, A.: Partial spreads in random network coding. Finite Fields Appl. 26, 104-115 (2014).
- 靠

Bosma, W., Cannon, J.: Handbook of Magma Functions, School of Mathematics and Statistics, Univ. of Sydney (1995).

Thank You.