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Subspace Codes

Definition (Subspace code)

Let Pq(n) denote the set of all the subspaces of Fn
q . A subspace code is a

non-empty collection C ⊆ Pq(n) with minimum distance

d(C) = min{ds(U,V ) | U,V ∈ C, U ̸= V} .

▶ The distance ds used here is the subspace distance and is defined by

ds(U,V ) = dim(U) + dim(V )− 2 dim(U ∩ V ) .

▶ If every subspace in code C is of the same dimension, say k , then

d(C) = 2k − max
U,V∈C,U ̸=V

dim(U ∩ V ) .

▶ It is well-known that Fqn is isomorphic to Fn
q as a vector space over Fq .

Due to rich algebraic structure of Fqn compared to Fn
q , we identify the

subspaces of Fn
q with that of Fqn .

▶ For α ∈ F∗
qn and U ∈ Pq(n), the cyclic shift of U is defined as

αU = {αu | u ∈ U} .
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Orbit Codes

▶ We can define a group action F∗
qn × Pq(n) → Pq(n) of F∗

qn on Pq(n) as

(α,U) → αU .

For any Fq-subspace U ⊆ Fn
q , the orbit of U, denoted by Orb(U), is

defined by
Orb(U) = {αU | α ∈ F∗

qn} .

▶ The stabilizer of U, denoted by Stab(U), is defined by

Stab(U) = {α ∈ F∗
qn | αU = U} .

Stab(U) ∪ {0} = Fqt for some t which is a divisor of gcd(dimFq (U), n).

▶ Using the orbit-stabilizer theorem, for any subspace U of Fn
q , we have

|Orb(U)| = qn − 1
|Stab(U)| =

qn − 1
qt − 1

.

▶ If Stab(U) = F∗
q , i.e., |Orb(U)| = qn−1

q−1 , then Orb(U) is called a full-length
orbit code and we say that U generates a full-length orbit. Otherwise,
Orb(U) is a degenerate orbit.
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Orbit Codes

A subspace code C is said to be a cyclic subspace code if αU ∈ C for all
α ∈ F∗

qn and U ∈ C.

Definition

Fix an element β ∈ F∗
qn\{1}. Let U be an Fq-subspace in Fqn . The β-cyclic

orbit code generated by U is defined as the set

Orbβ(U) = {β iU | i = 0, 1, . . . , |β| − 1} .

If β is a primitive element of Fqn , we write Orbβ(U) simply as Orb(U) and call
it a single-orbit cyclic subspace code. Otherwise, it is termed a single-orbit
quasi-cyclic subspace code.

Definition (Equidistant code)

A β-cyclic orbit code Orbβ(U) is an equidistant code if for all β iU,
β jU ∈ Orbβ(U), β iU ̸= β jU

ds(β
iU, β jU) = d(Orbβ(U)) .
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Equidistant Codes

▶ Since, dim(β iU ∩ β jU) = dim(U ∩ β j−iU), the minimum distance of an
orbit code is given by

ds(Orb(U)) = 2 dim(U)−max{dim(U∩β iU) | 0 ≤ i ≤ |β|−1, U ̸= β iU} .

▶ If for all i, 1 ≤ i ≤ |β| − 1, U ̸= β iU , dim(U ∩ β iU) = c, for some
non-negative integer c then Orbβ(U) is said to be a c-intersecting
equidistant code.

Definition (Sunflower)

A β-cyclic orbit code Orbβ(U) is a sunflower if there exists a subspace T in
Fqn such that for all β iU, β jU ∈ Orbβ(U), β iU ̸= β jU we have β iU ∩ β jU = T .

▶ The subspace T is called the center of the sunflower Orbβ(U).
▶ Note that for an equidistant code Orbβ(U) if there exists a subspace S in

Fqn such that U ∩ β iU = S for all β iU ∈ Orbβ(U) with β iU ̸= U then
Orbβ(U) is a sunflower.
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Difference sets

Definition (Difference set)

Suppose (G,+) is a finite group of order v in which the identity element is
denoted by “0”. Let k and λ be positive integers such that 2 ≤ k < v . A
(v , k , λ)-difference set in (G,+) is a subset D ⊆ G that satisfies the following
properties:

1. |D| = k ,

2. the multiset [x − y : x , y ∈ D, x ̸= y ] contains every element in G\{0}
exactly λ times.

▶ Note that if a (v , k , λ)-difference set exists,

λ(v − 1) = k(k − 1) ,

▶ Let D be a (v , k , λ)-difference set in a group (G,+). For any g ∈ G,
define

D + g = {x + g : x ∈ D} .

Any set D + g is called a translate of D.
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Difference sets

Lemma

Let G be a group of order v and D ⊆ G with |D| = k. If for every 0 ̸= g ∈ G,

|D ∩ (D + g)| = λ (λ > 0) then D is a (v , k , λ)-difference set in G.

Definition (Relative difference set)

Let (G,+) be a group of order nm and let (N,+) be a subgroup of G of order
n. Then a k -subset D of G is called a relative difference set with parameters
n,m, k , λ1 and λ2 (relative to N) or briefly an (n,m, k , λ1, λ2)-RDS, provided
that the list of differences {d1 − d2 : d1, d2 ∈ D, d1 ̸= d2} contain each
element of N, except zero, precisely λ1 times and each element of G\N
exactly λ2 times.

▶ Let D be an (n,m, k , λ1, λ2)-RDS in G. Then

k(k − 1) = n(m − 1)λ2 + (n − 1)λ1 .
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Equidistant Codes

The code Orb(U) is trivially an equidistant code in the following cases:-

1. dim(U) = 1 ( Orb(U) is a 0-intersecting equidistant code.)

2. dim(U) = n − 1 ((n − 2)-intersecting)

3. if U is a cyclic shift of a subfield of Fqn , i.e., U = γFqt , where γ ∈ F∗
qn and

t is a divisor of n (0-intersecting)

For a subspace U of dimension k in Fqn , ds(Orb(U)) = 2k if and only if
U = βFqk , for some β ∈ F∗

qn .

▶ Consider an extension field Fqn . Let α be a primitive element of Fqn .
Then F∗

qn = {αi | i = 0, 1, . . . , qn − 2}.
▶ Now consider the group Zqn−1 = {0, 1, . . . , qn − 2} under the operation

addition modulo qn − 1.
▶ Let G = {α0 = 1, αj1 , αj2 , . . . , αjm} be a subgroup of the multiplicative

group (F∗
qn ,×).

▶ Let I = {t | αt ∈ G}. Then I is a subgroup in (Zqn−1,⊕qn−1).
Similarly, for a subgroup in (Zqn−1,⊕qn−1) there is a subgroup in (F∗

qn ,×).
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Contd..

Theorem

Let α be a primitive element of F2n over F2. Let U = {0, αi1 , αi2 , . . . , α
i2k −1}

be a subspace of dimension k in F2n such that U generates a full-length orbit.
The subspace code Orb(U) is an r-intersecting equidistant code (r > 0) if
and only if the set of indices ij , 1 ≤ j ≤ 2k − 1, is a difference set in Z2n−1.

Proof idea:

• Let Orb(U) be an equidistant code and let ds(Orb(U)) = 2(k − r), where
r > 0.

• As U generates a full-length orbit, for all β ∈ F2n\F2, dim(U ∩ βU) = r .

• Now consider the set D = {ij | αij ∈ U}. Clearly D ⊆ Z2n−1 and
|D| = 2k − 1.

• Let j( ̸= 0) be an arbitrary element in Z2n−1. Then αj ∈ F2n\F2, and
dim(U ∩ αjU) = r , i.e.,

|{0, αi1 , αi2 , . . . , α
i2k −1} ∩ {0, αj+i1 , αj+i2 , . . . , α

j+i2k −1}| = 2r .

From this we get |D ∩ (j + D)| = 2r − 1.
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Contd..

Proof of Converse:

• Let D = {ij | αij ∈ U} constitutes a (2n − 1, 2k − 1, s)-difference set in
Z2n−1. Then,

s(2n − 2) = (2k − 1)(2k − 2) .

From this we get s(2n−1 − 1) = (2k − 1)(2k−1 − 1).

• As k < n, we get s = (2k−1 − 1). This implies that the multiset
[x − y : x , y ∈ D, x ̸= y ] contains every element of Z2n−1\{0} exactly
2k−1 − 1 times.

• Let αmU ̸= U be an arbitrary element in Orb(U). Then m ∈ Z2n−1\{0}
and |D ∩ (m + D)| = 2k−1 − 1. Therefore, |U ∩ αmU| = 2k−1 and
dim(U ∩ αmU) = k − 1. Hence Orb(U) is an equidistant code.

Remark

Let q > 2. For 2 ∈ Fq , there exist a j ∈ Zqn−1\{0} such that 2 = αj . Now,
|D ∩ (j + D)| = qk − 1. Thus, D is not a difference set in G.
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Contd..

Theorem

Let α be a primitive element of Fqn over Fq . Let U = {0, αi1 , αi2 , . . . , α
iqk −1}

be a subspace in Fqn of dimension k such that U generates a full-length orbit.
If the subspace code Orb(U) is an r -intersecting equidistant code (r > 0)
then the indices ij , 1 ≤ j ≤ qk − 1, form a relative difference set in Zqn−1 .

Proof idea:
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q}. Then N is a subgroup of

Zqn−1 and |N| = q − 1.

• For any i ∈ Zqn−1\N, αi ∈ Fqn\Fq and thus dim(U ∩ αiU) = r . From this,
we get |D ∩ (i + D)| = qr − 1 for all i ∈ Zqn−1\N.

• Now for any t ∈ N, αt ∈ Fq and dim(U ∩ αtU) = qk . Thus, for any
t ∈ N, |D ∩ (t + D)| = qk − 1. Hence the set of indices D constitutes a
(q − 1, qn−1

q−1 , qk − 1, qk − 1, qr − 1) relative difference set in Zqn−1

(relative to N).
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Contd..

Theorem

There is only the trivial equidistant (full length) single-orbit cyclic subspace
code in Pq(n) for n ≥ 3.

Proof idea:

• Let α be a primitive element of Fqn over Fq and let U = {0, αi1 , αi2 ,

. . . , α
iqk −1} be a subspace of dimension k in Fqn over Fq .

• Let Orb(U) be an equidistant subspace code with subspace distance
2(k − r), where r > 0. Then the set of indices {ij | αij ∈ U} constitutes a
(q − 1, qn−1

q−1 , qk − 1, qk − 1, qr − 1)- relative difference set in Zqn−1.

• So, we get

(qk − 1)(qk − 2) = (q − 1)
(

qn − 1
q − 1

− 1
)
(qr − 1) + (q − 2)(qk − 1) .

• On simplifying the above equation, we get

(qk − 1)(qk−1 − 1) = (qn−1 − 1)(qr − 1) .
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Contd..

• Further this gives

q2k−1 − (q + 1)qk−1 = qn+r−1 − qn−1 − qr . (1)

• Let r > k − 1. On dividing both sides of equation (1) by qk−1, we get

qk − (q + 1) = qn+r−k − qn−k − qr−k+1 .

As n > k , r − k + 1 > 0, the right side of the above equation is a multiple
of q but the left side is not. This is a contradiction.

• Let r < k − 1. On dividing both sides of equation (1) by qr , we get

q2k−r−1 − (q + 1)qk−r−1 = qn−1 − qn−r−1 − 1 .

As n > k > r + 1, the left side of the above equation is a multiple of q
but the right side is not. This is a contradiction.

• So, we conclude that r = k − 1. By putting the value of r = k − 1 in (1),
we get k = n − 1. Therefore, dim(U) = n − 1 and ds(Orb(U)) = 2.
Hence the result.
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Contd..

Theorem

Let α be a primitive element of Fqn over Fq . Let U = {0, αi1 , αi2 , . . . , α
iqk −1}

be a subspace in Fqn of dimension k such that U does not generate a
full-length orbit. If the subspace code Orb(U) is r -intersecting equidistant
code (r > 0), then the indices ij , 1 ≤ j ≤ qk − 1, form a relative difference set
in Zqn−1 .

Proof idea:
• Let Orb(U) be an equidistant subspace code with subspace distance

2(k − r), where r > 0. Let Stab(U) = F∗
qt for some t , 1 < t < k and t

divides gcd(k , n).
• Let N = {ij | αij ∈ F∗

qt }. Then N is a subgroup of Zqn−1. Clearly, the
cardinality of N is qt − 1.

• Let D = {ij | αij ∈ U}. For any j ∈ N, U = αjU. This gives
|D ∩ (j + D)| = qk − 1.

• For any m ∈ Zqn−1\N, dim(U ∩ αmU) = qr . So, we get |D ∩ (m + D)| =
qr − 1. Thus, the set of indices D constitutes a
(qt − 1, qn−1

qt−1 , q
k − 1, qk − 1, qr − 1)-relative difference set in Zqn−1.
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Contd..

Lemma

Let U be a subspace of dimension k in Fqn . For any α ∈ Fqn\Fq and s ∈ F∗
q ,

dim(U ∩ (α+ s)U) = dim(U ∩ αU).

Theorem

Let n be an even integer and let U be a subspace in Fqn . Let α be an element
of degree 2 in Fn

q . Let V = U ∩ αU and V ̸= {0}. Then F∗
q2 ⊆ Stab(V ).
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Sunflower Codes

Theorem

Let n be an even number and U be a subspace in Fqn . For any element β of
degree 2 in Fqn with β /∈ Stab(U), Orbβ(U) is a sunflower.

Proof idea:

• The proof consists of two parts. First, we prove that Orbβ(U) is an
equidistant code.

• Then, we show that the intersecting subspace of the reference space U
and elements of Orbβ(U) are same.

• As β is an element of degree 2 in Fqn , Fq[β] = {a + cβ | a, c ∈ Fq}.
Clearly, {β i | 0 ≤ i ≤ |β| − 1} ⊆ Fq[β].

• Since dim(U ∩ βU) = dim(U ∩ (a + cβ)) for all a ∈ Fq and c ∈ F∗
q ,

Orbβ(U) is an equidistant code.

• If dim(U ∩ βU) = 0 then Orbβ(U) is a sunflower with a trivial center.

• Let dim(U ∩ βU) ̸= 0 and let V = U ∩ βU. Then F∗
q2 ⊆ Stab(V ).

Consider an element β j = aβ + c for some a, c ∈ Fq and a ̸= 0 such that
β jU ̸= U.
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Sunflower Codes
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and elements of Orbβ(U) are same.

• As β is an element of degree 2 in Fqn , Fq[β] = {a + cβ | a, c ∈ Fq}.
Clearly, {β i | 0 ≤ i ≤ |β| − 1} ⊆ Fq[β].

• Since dim(U ∩ βU) = dim(U ∩ (a + cβ)) for all a ∈ Fq and c ∈ F∗
q ,

Orbβ(U) is an equidistant code.

• If dim(U ∩ βU) = 0 then Orbβ(U) is a sunflower with a trivial center.

• Let dim(U ∩ βU) ̸= 0 and let V = U ∩ βU. Then F∗
q2 ⊆ Stab(V ).

Consider an element β j = aβ + c for some a, c ∈ Fq and a ̸= 0 such that
β jU ̸= U.
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• As F∗
q2 ⊆ Stab(V ), (aβ + c)−1V = V . Thus (aβ + c)−1V ⊆ U and

V ⊆ U ∩ (aβ + c)U.

• Since Orbβ(U) is an equidistant code, dim(U ∩ (aβ + c)U) =

dim(U ∩ βU). So, we get V = U ∩ (aβ + c)U. Hence, Orbβ(U) is a
sunflower.

Theorem

For any sunflower Orbβ(U) (β /∈ Stab(U)), the center does not generate a
full-length orbit.

Proof idea:

• Let V be the center of the sunflower Orbβ(U). If V = {0} then the result
is trivially true. Let V ̸= {0}.

• Let β2 ∈ Fq . As V = U ∩ βU,

βV = βU ∩ β2U = βU ∩ U = V .

From this, we get V = βV .
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• Now, let β2 /∈ Fq . Since V is the center,

V = U ∩ βU = U ∩ β2U .

Now, V ⊆ βU ∩ β2U = β(U ∩ βU) = βV . This gives V = βV . Thus,
β ∈ Stab(V ).

Observations:

▶ By previous theorem, for a sunflower Orbβ(U) with center V ̸= {0},
β ∈ Stab(V ). It is known that Stab(V) is a subgroup of F∗

qn . So, we
conclude that {β i | i = 0, 1, . . . , |β| − 1} ⊆ Stab(V ).

▶ Since Stab(V ) ∪ {0} is a subfield of Fqn , for a prime number n, the
sunflower Orbβ(U) in Fqn always has a trivial center.

▶ We can quickly check that a subspace of dimension one generates a
full-length orbit. Thus, according to previous theorem, the dimension of
the non-trivial center of a sunflower is always greater than one.

However, 1-intersecting equidistant orbit codes, which are not sunflower,
can exist in Fqn . Next, we provide an example of such a code.
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Example

• Consider an irreducible monic polynomial p(x) = x10 + x6 + x5 + x3+

x2 + x + 1 of degree 10 over F2. Let α be a root of p(x). Then F2(α) be
an extension field of degree 10 over F2.

• Let U = ⟨1, α13, α70, α177⟩F2 . The dimension of U over F2 is 4.

• The cardinality of the code Orb(U) = {γU | γ ∈ F∗
210} is 1023. From this

follows that U generates a full-length orbit.

• Let β = α93 be an element of order 11 in F∗
210 . By using the Magma we

get that dim(U ∩ β iU) = 1 for all i in {0, 1, . . . , |β|−1} with β iU ̸= U.
Thus, Orbβ(U) is 1- intersecting equidistant code.

• As U ∩ βU = {0, α457} and U ∩ β2U = {0, α415}, Orbβ(U) is not a
sunflower.
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Theorem

Let U be a subspace of dimension k in Fqn such that U generates a full-length
orbit. Let Orbβ(U) (β ∈ Fqn\Fq) be a sunflower with a non-trivial center then

|Orbβ(U)| ≤ qs − 1
q − 1

,

where s < k is the largest positive divisor of n.

Proof idea:

• Let V be the center of the sunflower Orbβ(U) such that V ̸= {0}.

• As Stab(V ) ∪ {0} is a subfield of Fqn and V is a vector space over
Stab(V )∪ {0}, let Stab(V ) = F∗

qs for some positive integer s > 1 dividing
gcd(dim(V ), n).

• Since the dimension of U is k , the dimension of V is less than or equal
to k − 1. So, we get s ≤ k − 1 and {β i | i = 0, 1, . . . , |β| − 1} ⊆ F∗

qs .

• Thus, the order of β is less than or equal to qs − 1. As U generates a
full-length orbit, |Orbβ(U)| ≤ qs−1

q−1 .
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▶ The cardinality of a sunflower Orbβ(U) in Fqn with a trivial center may be
greater than qs−1

q−1 where s < dim(U) is the largest positive divisor of n.

The following example illustrates this.

Example

• Consider a monic irreducible polynomial p(x) = x12 + x6 + x5 + x4+

x2 + 2 of degree 12 over F3. Let α be a root of p(x). Then, F3(α) is an
extension field of degree 12 over F3.

• Let U = ⟨α565, α123982, α179292, α208314, α395390⟩F3 . The dimension of U
over F3 is 5, and U generates a full-length orbit.

• Let γ = α4088 be an element in F312 . The multiplicative order of γ is 130.

• By using the Magma, we computed that U ∩ γ iU = {0} for all i in
{1, . . . , |γ|}. Thus, Orbγ(U) is a sunflower with a trivial center.

• The cardinality of Orbγ(U) is 65. Here, n is 12, and k is 5. So, the largest
divisor of n less than k is 4. Clearly, |Orbγ(U)| = 65 > 34−1

3−1 = 40.
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Theorem

Let U be a subspace of dimension k in Fqn such that Stab(U) = F∗
qt . Let

Orbγ(U) (γ /∈ Stab(U)) be a sunflower with a non-trivial center then

|Orbγ(U)| ≤ qs − 1
qt − 1

,

where s < k is the largest positive divisor of n.

Proof idea:
• Let Stab(U) = F∗

qt . Let γ /∈ Stab(U) and let Orbγ(U) be a sunflower with
a non-trivial center V . Then V = U ∩ γU.

• For any δ ∈ F∗
qt , δV = δU ∩ δγU. As δ ∈ Stab(U), δU = U and

δγU = γU. Thus, δV = V . From this follows that δ ∈ Stab(V ). Since δ

was an arbitrary element in Stab(U), we get Stab(U) ⊆ Stab(V ).
• Let Stab(V ) = F∗

qs . Now, by the same argument used in previous
theorem, we get

|Orbγ(U)| ≤ qs − 1
qt − 1

,

where s < k is the largest positive divisor of n.
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Definition (Hirschfeld, 1998)

For any k(< n), a k -spread is a collection of k -dimensional subspaces
{X1,X2, . . . ,Xt} of Fn

q such that

1. Xi ∩ Xj = {0}, for i ̸= j, 1 ≤ i, j ≤ t .

2.
t⋃

i=1
Xi = Fn

q .

Definition

A partial k -spread of Fqn is a subset A ⊆ Gq(n, k) such that U ∩ V = {0} for
all U,V ∈ A with U ̸= V .

Theorem

A k-spread exists if and only if k divides n. Moreover, the cardinality of a
k-spread is qn−1

qk−1 .

Hirschfeld, J.: Projective Geometries over Finite Fields, Second Edition. New York, Oxford University Press (1998).
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Lemma

Let A ⊆ Gq(n, k) be a partial k-spread code. Denote by r the remainder
obtained when n is divided by k. Then |A| ≤ qn−qr

qk−1 .

Next, we discuss about the maximum size of a sunflower with a trivial center.

▶ If k divides n then Orbβ(U) is clearly a subset of k -spread. Thus,

|Orbβ(U)| ≤ qn − 1
qk − 1

.

The above-stated bound may be attainable. We give below such an example.

Example

• Consider a monic irreducible polynomial p(x) = x12 + x7 + x6 + x5+

x3 + x + 1 of degree 12 over F2. Let α be a root of p(x). Then F2(α) is
an extension field of degree 12 over F2 and F2(α) ≃ F212 .

• Let U = ⟨1, α470, α3607, α3621⟩F2 . The dimension of U over F2 is 4, and U
generates a full-length orbit. Let γ = α15. The multiplicative order of γ in
F∗

212 is 273.
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Example (Contd.)

• Consider the orbit code Orbγ(U) = {γ iU | 0 ≤ i ≤ |γ| − 1}. Using the
magma, we computed that U ∩ xU = {0} for all xU ∈ OrbγU with
xU ̸= U. Thus, Orbγ(U) is a sunflower with a trivial center.

• The computation through the magma shows that the cardinality of
Orbγ(U) is 273, which is equal to 212−1

24−1 . Hence, Orbγ(U) is an optimal
sunflower code with a trivial center.

▶ If k does not divide n then Orbβ(U) is a subset of partial k -spread. Let r
denote the remainder obtained when n is divided by k . So, we get

|Orbβ(U)| ≤ qn − qr

qk − 1
.

From this, it follows that |Orbβ(U)| ≤ qr (qn−r−1)
qk−1 . We know that the

cardinality of Orbβ(U) is a divisor of the order of F∗
qn . However, qr (qn−r−1)

qk−1

does not divide qn − 1. Hence, in this case, |Orbβ(U)| < qn−qr

qk−1 .
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