Weight Distribution of the Binary Reed-Muller Code $\mathcal{R}(4,9)$

Miroslav Markov

Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Sofia, Bulgaria joint work with Yuri Borissov

WCC2024: The XIII-th International Workshop on Coding and Cryptography Perugia, Italy, June 17-21, 2024 19.06.2024

2 Motivation

weight distribution

Definition 1.

The weight distribution of a code C of length *n* is the vector $W(C) = (W_0, \ldots, W_n)$, where W_i denotes the number of codewords of Hamming weight *i*.

weight spectrum

Definition 2.

The weight spectrum of a code C with weight distribution $W(\mathbf{C}) = (W_0, \ldots, W_n)$ is the set $\{i : 0 \le i \le n, W_i > 0\}$.

• the simplest form of weight enumerator

Definition 3.

The following polynomial in the indeterminate z: $\mathcal{W}[z; \mathbf{C}] = \sum_{i=0}^{n} W_i z^i$ is called a weight enumerator of the code \mathbf{C} with weight distribution $W(\mathbf{C}) = (W_0, \dots, W_n)$.

We assume familiarity with notions of:

- Boolean function, Algebraic Normal Form, the General Affine group GA(m) and its subgroup the General Linear group GL(m, 2) acting on F₂^m;
- The set of all Boolean functions in m variables, will be denoted by \mathcal{B}_m .

• binary Reed-Muller code

Definition 4.

For $0 \le r \le m$, the *r*-th order binary Reed-Muller (or RM) code $\mathcal{R}(r,m)$ is the set of all vectors **f** of length $n = 2^m$ whose corresponding $f \in \mathcal{B}_m$ are of algebraic degree at most *r*.

Recall:

Statement 5.

For any m and any $r, 0 \le r \le m$, the binary RM code $\mathcal{R}(r, m)$ is a linear [n, k, d] code with:

- length $n = 2^m$, dimension $k = \sum_{i=0}^r \binom{m}{i}$ and minimum distance $d = 2^{m-r}$;
- the dual of $\mathcal{R}(r,m)$ is $\mathcal{R}(m-r-1,m)$; in particular, for any $s \ge 1$ the code $\mathcal{R}(s, 2s+1)$ is a self-dual code.

Some Definitions and Notations (5)

• The action of $A \in GA(m)$ on a Boolean function $f(\mathbf{x})$ is denoted by $f \circ A$, i.e.

 $f \circ A(\mathbf{x}) = f(A(\mathbf{x})).$

Recall:

Definition 6.

The cosets $C_1 = f_1 + \mathcal{R}(r, m)$ and $C_2 = f_2 + \mathcal{R}(r, m)$ of $\mathcal{R}(r, m)$ with $f_1, f_2 \in \mathcal{B}_m$ are called affine equivalent if there exists a transformation $A \in GA(m)$: $f_2 = f_1 \circ A$.

• The following well-known fact is extensively used in our work (see, e.g., [4]):

Statement 7.

The weight enumerators of two affine equivalent cosets of a Reed-Muller code are identical.

Motivation

- By [13] one concludes that for $m \le 9$ the **only so far unknown** is the (exact) weight distribution of $\mathcal{R}(4,9)$:
 - R(4,9) was listed among the smallest Reed-Muller codes whose weight distributions were unknown (in 1977) [11, p. 447];
 - The weight spectrum of that code has been found in [1];
 - To our knowledge there have been very few attempts to find (exact) weight distribution of $\mathcal{R}(4,9)],$ namely:
 - Since R(4,9) is a doubly even binary self-dual code, the general form of weight enumerators of such codes is known from A. M. Gleason's work (see, e.g., [11, Ch.19]) might be of help. But, although this approach has been successful for shorter RM codes requiring modest efforts for computing, its application to the code of interest needs more intrinsic knowledge than presented in [6, 7] (see, [2, Ch. 11] for details).
 - D. V. Sarwate has evaluated that the methods from [12] are not applicable to $\mathcal{R}(4,9)$ since there are too many equivalence classes of cosets of the desired kind to be useful;

The necessary ingredients (1)

For $0 \le r \le m$, denote by $\mathcal{H}^{(r)}(m)$ the set of all homogeneous polynomials on m binary variables of algebraic degree r adjoined with the 0.

Theorem 8.

([12, Sarwate 5.12]) For $0 \le r \le m$, it holds:

$$\mathcal{W}[z; \mathcal{R}(r+2, m+2)] = \sum_{p \in \mathcal{H}^{(r+2)}(m+1)} \mathcal{W}^2[z; p + \mathcal{R}(r+1, m+1)]$$

Theorem 9.

([12, Sarwate 5.13])

g

Let $p = e + fx_{m+1}$, with given $e \in \mathcal{H}^{(r+2)}(m)$ and $f \in \mathcal{H}^{(r+1)}(m)$. Then the weight enumerator of the coset $\mathcal{C}(p) = p + \mathcal{R}(r+1, m+1)$ equals to:

$$\sum_{\in \mathcal{H}^{(r+1)}(m)} \mathcal{W}[z; e+g+\mathcal{R}(r,m)] \cdot \mathcal{W}[z; e+f+g+\mathcal{R}(r,m)].$$

- The affine equivalence classification of the cosets of RM codes is useful in studying important coding theoretical and cryptographic properties of Boolean functions, e.g., the covering radii. Recently, the interest in that topic has been renewed by [3] which provides (among other things) a method to classify B₇;
- In our work, we make use of:
 - Langevin & Leander's classification [10] of the quotient space $\mathcal{R}(4,8)/\mathcal{R}(3,8)$ under the action of GL(8,2), i.e., the classification of the Boolean quartic forms in eight variables;
 - Gillot & Langevin's classification [3] of the cosets of $\mathcal{R}(2,7)$ in $\mathcal{R}(4,7)$.

Let n(k,m) be the number of linear equivalence classes of the quotient space $\mathcal{R}^*(k,m) = \mathcal{R}(k,m)/\mathcal{R}(k-1,m)$, i.e. the number of orbits to which $\mathcal{R}^*(k,m)$ is partitioned under the action of GL(m,2). Assume that some numbering of these classes is fixed.

Corollary 10.

Let $p_i \in \mathcal{H}^{(r+2)}(m+1)$ and L_i be a representative and size, respectively, of the *i*-th linear equivalence class in $\mathcal{R}^*(r+2, m+1)$. Then, it holds:

$$\mathcal{W}[z; \mathcal{R}(r+2, m+2)] = \sum_{i=1}^{n(r+2, m+1)} L_i \mathcal{W}^2[z; p_i + \mathcal{R}(r+1, m+1)].$$
(1)

Proof.

The claim is an immediate consequence of Theorem 8² and Statement 7²

Miroslav Markov

Weight Distribution of the Binary Reed-Muller Code $\mathcal{R}(4,9)$

Corollary 11.

For given $e \in \mathcal{H}^{(r+2)}(m)$, let $\mathcal{H}^{(r+1)}(m)$ is partitioned into blocks $G_i, 1 \leq i \leq s$, such that if $g \in G_i$ the enumerator $\mathcal{W}[z; e+g+\mathcal{R}(r,m)]$ is a (distinct) constant polynomial $w_i(z)$. Then the weight enumerator of the coset $\mathcal{C}(p) = p + \mathcal{R}(r+1,m+1)$ where $p = e + fx_{m+1}$ with $f \in \mathcal{H}^{(r+1)}(m)$, can be expressed by

$$\sum_{i=1}^{s} w_i(z) \left(\sum_{g \in G_i} \mathcal{W}[z; e+f+g+\mathcal{R}(r,m)] \right).$$
(2)

Proof.

Follows by Theorem 9 rearranging the summands and putting outside brackets the common multipliers $w_i(z), 1 \le i \le s$.

Corollaries 10^{21} make feasible the computation of $W[z; \mathcal{R}(4, 9)]$, namely:

- Corollary 10 reduces the number of needed weight enumerator computations from the straightforward $|\mathcal{H}^{(4)}(8)| = 2^{\binom{8}{4}} = 2^{70}$ to the **reasonable** n(4, 8) = 999.
- The affine equivalence classification of $\mathcal{R}(4,7)/\mathcal{R}(2,7)$ allows to substantiate the usage of Corollary 11 (thoroughly explained in general settings on the next slide).

• Recall:

Definition 12.

The subgroup St(e) of GA(m) that fixes given $e \in \mathcal{H}^{(r+2)}(m)$ is called stabilizer of e in GA(m), i.e., for each $A \in St(e)$ it holds $e \circ A \in e + \mathcal{R}(r+1,m)$.

- For given $e \in \mathcal{H}^{(r+2)}(m)$, consider the partition $\Delta(e)$ of the cosets of form $e + g + \mathcal{R}(r,m), g \in \mathcal{H}^{(r+1)}(m)$ under the action of the stabilizer $\mathcal{S}t(e)$. By Statement 7, we can talk for "orbit weight" enumerator: the common weight enumerator of all orbit members. Moreover, we can constitute efficiently the coarse partition $\Delta'(e) = \{G_i, 1 \leq i \leq s\}$ from Corollary 11, by merging the orbits with identical weight enumerators (computed in advance on chosen orbit representatives of $\Delta(e)$).
- So, the number of needed polynomial multiplications to compute expr. (2) is reduced to the number of distinct orbit enumerators while that of polynomial additions is, of course, retained to (almost) $2^{\binom{m}{r+1}}$.

• Let $\mathcal{E}(4,7)$ be the set of representatives of the 12 linear equivalence classes of $\mathcal{R}^*(4,7)$ given in [9].

For each $e \in \mathcal{E}(4,7)$, we perform in advance the following three tasks:

- $-\mathcal{T}_1$: Constitute and store the orbits of the partition $\Delta(e)$ ("orbit algorithm" [5]);
- $\mathcal{T}2$: Compute the weight enumerators of the cosets $e + g + \mathcal{R}(2,7)$ when g runs over a set of representatives of $\Delta(e)$'s orbits (by exhaustive generation of $\mathcal{R}(2,7)$ based on some Gray code);
- $\mathcal{T}3$: Merge the orbits with identical weight enumerators to get the coarse $\Delta'(e)$.
- Note: Data arrangement enables for given *f* ∈ H⁽³⁾(7) to look up the identifier of the orbit (block) in Δ(e) (Δ'(e)) containing *f*.

Table: Sizes of partitions $\Delta(e)$ and $\Delta'(e)$

$e \in \mathcal{E}(4,7)$: ANF's according to ([9])	$ \Delta(e) $	$ \Delta'(e) $
0	12	12
4567	63	52
1235+1345+1356+1456+2346+2356+2456	130	112
2367+4567	289	182
1237+4567	480	306
1257+1367+4567	730	395
1237+1247+1357+2367+4567	204	157
1236+1257+1345+1467+2347+2456+3567	1098	675
1236+1356+1567+2357+2467+2567+3456	1340	811
1367+2345+2356+3456+4567	6449	2170
1234+1237+1267+1567+2345+3456+4567	23988	3377
1236+1367+1567+2345+3456+3457+3467	33660	4636

- We have developed and implemented two algorithms (see, the *Proceedings*):
 - Algorithm 1 which returns $\mathcal{W}[z; p + \mathcal{R}(3, 8)]$ where $p = e + fx_8$ for given inputs $e \in \mathcal{E}(4, 7)$ and $f \in \mathcal{H}^{(3)}(7)$ (using expr. (2) in Corollary 11),
 - Algorithm 2 which computes the sum in Corollary 10, and thus $\mathcal{W}[z; \mathcal{R}(4, 9)]$.

Note:

The second algorithm requires a list S of pairs: (representative p_i , class size L_i) for the *i*-th class of the classification of $\mathcal{R}^*(4,8)$ where $p_i = e + f_i x_8$ for some $e \in \mathcal{E}(4,7)$ and $f_i \in \mathcal{H}^{(3)}(7), 1 \le i \le 999$.

- To provide a list S, we make use of data present in [8]. However, there p'_i are of the form $e' + f'_i x_8$ where e's constitute different set $\mathcal{E}'(4,7)$ of representatives of the 12 classes of $\mathcal{R}^*(4,7)$;
- To adjust, we follow a procedure (derived by [4]) consisting of 3 steps:
 - Form the sets $\mathcal{E}'(3,7), \mathcal{E}(3,7)$ of duals of the forms in $\mathcal{E}'(4,7), \mathcal{E}(4,7)$, respectively;
 - Match the linearly equivalent pairs (ē', ē) ∈ E'(3,7) × E(3,7) using the invariants given in [4, pp. 115-117]), so the pairs in the original sets are matched, too;
 - For each matched pair $(e', e) \in \mathcal{E}'(4, 7) \times \mathcal{E}(4, 7)$, generate at random a nonsingular (7×7) matrix A and check the condition $e' \circ A \in e + \mathcal{R}(3, 7)$ until such matrix is obtained.
- The last step is carried out efficiently due to relatively large stabilizers sizes, e.g., the smallest is of size $9216 \approx 2^{13.17}$ while $|GL(7,2)| \approx 2^{47.21}$;
- Finally, acting on f'_i , $1 \le i \le 999$, by the obtained linear transitions, we get a needed list S.

Table: The matching between $\mathcal{E}'(3,7)$ and $\mathcal{E}(3,7)$

$\mathcal{E}'(3,7)$	${\cal E}(3,7)$
0	0
123	123
127+136+145	137+147+157+237+247+267+467
125+134	123+145
126+345	123+456
126+135+234	123+245+346
135+146+235+236+245	123+145+246+356+456
127+136+145+234	124+137+156+235+267+346+457
125+134+135+167+247+357	127+134+135+146+234+247+457
123+247+356	123+127+147+167+245
147+156+237+246+345	123+127+167+234+345+456+567
127+146+236+345	125+126+127+167+234+245+457

Briefly:

- the computational cost of task \mathcal{T}_1 is $|\mathcal{H}^{(3)}(7)| \times \sum_{e \in \mathcal{E}(4,7)} |Sg(e)| = 2^{35} \times 26 \approx 2^{40}$ affine transformations where Sg(e) denotes the set of generators of the stabilizer $\mathcal{S}t(e)$;
- the computational cost of task \mathcal{T}^2 is in total proportional to the product $68443 \times 2^{29} \approx 2^{45}$ with the first factor being the number of classes of $\mathcal{R}(4,7)/\mathcal{R}(2,7)$ and the second being the size of $\mathcal{R}(2,7)$;
- the compressed storing of orbits and data arrangement into RAM needs at most 124 GB of memory.

The set of linear equivalence classes of $\mathcal{R}^*(4,8)$ is naturally partitioned into subsets of cardinalities $\mu(e)$ for fixed $e \in \mathcal{E}(4,7)$ and distinct $f \in \mathcal{H}^{(3)}(7)$ (see, [8]):

 $\overline{\mu} = (3, 2, 21, 15, 89, 56, 10, 7, 502, 1, 1, 292)$

• By Corollaries 10 7, one can easily deduce the following estimates, i.e.:

• necessary multiplications of degree 128 polynomials:

$$\sum_{e \in \mathcal{E}(4,7)} \mu(e) \times |\Delta'(e)| = 1827252 \approx 2^{21};$$

• necessary additions of degree 128 polynomials:

$$n(4,8) \times 2^{\binom{7}{3}} = 999 \times 2^{35} \approx 2^{45};$$

• 999 squarings of degree 256 polynomials; and some additional operations of negligible cost, of course.

Miroslav Markov

- Recent advances in the classification of Boolean functions [3],[10] and the utilization of modern high performance computers make feasible the application of Sarwate's approach [12] to determining **exact** weight distribution of $\mathcal{R}(4,9)$;
- However, we should admit that it may not be doable to push this line of research much further due to the enormous increase in computational burden with code length.

0	512	1
32	480	52955952
48	464	919315326720
50	45.0	071707101040720
36	400	2/1/0/121340500
60	452	860689275027456
64	448	89163020044002040
68	444	1777323352931696640
72	440	64959328938397057024
76	436	2094952122987829002240
60	499	96130956719311070026769
00	400	001200001001001000000
04	420	3718387228743293604906680
88	424	216407674400647746861465600
92	420	15958945395035022932054114304
96	416	1570964763114053055495174389136
100	412	207755244457303752035637154283520
104	408	34164336816436357675455725024378880
109	404	E0000767626007272515190070766519000
1100	404	000170010100000000000000000000000000000
112	400	963217921610034263357552475069021004268
116	396	140881159168600922710983130625456163782656
120	392	17178463264607761296016540993629780705771520
124	388	1770270551281316280504947079180771901717872640
128	384	154198773988541804525321284585063483246993999900
132	380	11380437366712812474455050864177326068447989202944
100	276	712702445200974211677920706970716106196715200216044
130	370	0/13/934402900/421100/039/900/9/10100103/13200210004
140	372	38161660034401312969466264769054124765959796671119360
144	368	1744077996406613042017016863461234839306732612077058560
148	364	68320936493023612641136928149296775084064365913214812160
152	360	2299744204800465802453316637595783829108912802028206751744
156	356	66674424868716978552789375387240003239187186349775851094016
160	352	1668559700964160587350805664583122924498928358151715733007408
164	348	36117082274027891545154187373048131661136552390031364702863360
100	244	67749569996647107792616101947796614266621194741956041461104640
100	344	07/46359090934/10/795015101247/35914209021104/41350041401104040
172	340	11032441933713096201663286389373184730113421621201515757397082112
176	336	156225095497619813307679231937780861426835567156776476525084177664
180	332	1926667532217097161576702991776654344250440175688196887457279508480
184	328	20723534026876536792281002394151796205045793736436788802938336133120
188	324	194671442741837852939975553363771856234841259238404365556287065292800
192	320	1599044990181340998819270766161596605692512085057170791477694075282632
106	216	11408415685246202180888474222781442401860120057714864172250801067627264
200	210	79 46 46 75 77 496 99 10 300 47 42 22 10 442 43 10 10 12 36 71 40 04 17 32 30 05 10 70 70 70 70
200	312	/243940/3/0/430030193/0012/10/249/3406/0//0404020494030939/2020/009/92
204	308	400549932263936554220342987258224499780564121712827465674395223861493760
208	304	1944071611978423909059426198144849863064608675044397429548995177751732480
212	300	8291211853278378544436157221213736835450108801042695204524353086973542400
216	296	31095502600701130763682713427899390240950550846409105550583369693522427904
220	292	102622652435510219354959437959897900434480615845926142166854426192158654464
224	288	298206281302110726623000750445450132512881810629607123478473554095237810960
228	284	763396919631666688676755106996803883003881847438728311891109384630797598720
220	204	17224527761762109062574524960245721759046652427251604709109790592551697169
202	200	1/22-902/1/01/02 1909037902-90090937311 30040003437331094799190070992502031087100
230	276	342673046023730390447034764730662777386769465315478403354123631366508642304
240	2/2	6013163599469663999312799935491777179772724247998877953378442920501417933824
244	268	9309551320248854051332692772889245412495562988894547412532818045057116405760
248	264	12718986044129514620716674156341900030463015021774940408815989741288144568320
252	260	15336997499945305387056357527918950456934399969250231086077675815418680311808
	256	16324199909251682000435577287934368523097397692548071777837483832108326674502

References [1]

[1] C. Carlet and P. Solé, "The weight spectrum of two families of Reed-Muller codes", Discrete Mathematics, 346(10), 113568, 2023. [2] P. Charpin, "Open problems on cyclic codes", in Handbook of Coding Theory, vol. 1, V. S. Pless, C. W. Huffman, editors, R. A. Brualdi, assistant editor, Elsevier, 963-1063, 1998. [3] V. Gillot and Ph. Langevin, "Classification of some cosets of the Reed-Muller code", Cryptogr. Commun. (2023), available at https://doi.org/10.1007/s12095-023-00652-4. [4] X. -D. Hou, "GL(m, 2) acting on $\mathcal{R}(r, m)/\mathcal{R}(r-1, m)$ ", Discrete Mathematics. 149, 99-122, 1996. [5] A. Hulpke, "Computing with group orbits", available at https://www.math.colostate.edu/ [6] T. Kasami, N. Tokura, On the weight structure of Reed-Muller codes, IEEE Trans. Info. Theory, 16, 752-759, 1970.

References [2]

[7] T. Kasami, N. Tokura, S. Azumi, On the weight enumeration of weights less than 2.5d of Reed-Muller codes, Information and Control, 30, 380–395, 1976.

- [8] Ph. Langevin, "Classification of Boolean quartic forms in eight variables", available at https://langevin.univ-tln.fr/project/quartics.html, 2007.
- [9] Ph. Langevin, "Classification of RM(4,7)/RM(2,7)", available at https://langevin.univ-tln.fr/project/rm742.html, 2012.
- [10] Ph. Langevin and G. Leander, "Classification of Boolean quartic forms in eight variables", in *Boolean Functions in Cryptology and Information Security*, B. Preneel and O. A. Logachev (Eds.), IOS Press, 139-147, 2008.
- [11] F. J. MacWilliams and N. J. A. Sloane, *The Theory of Error-Correcting Codes*, North-Holland Publishing Company, Amsterdam, New York, Oxford, 1977.

[12]

- D. V. Sarwate, *Weight Enumeratin of Reed-Muller Codes and Cosets*, Ph.D., Dep. Elec. Eng., Princeton Univ., Princeton, N.J., Sept. 1973, Advisors: E. R. Berlekamp and J. D. Ullman.
- [13] N. J. A. Sloane, "On-line Encyclopedia of Integer Sequences" available at https://oeis.org/wiki/List of weight distributions.

THANKS FOR YOUR ATTENTION!