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Some Definitions and Notations (1)

@ weight distribution

Definition 1.

The weight distribution of a code C of length n is the vector W (C) = (W, ..., W,,),
where W; denotes the number of codewords of Hamming weight i.

@ weight spectrum

Definition 2.

The weight spectrum of a code C with weight distribution W (C) = (Wy,...,W,,) is
theset {i: 0<i<n,W;,>0}.

@ the simplest form of weight enumerator

Definition 3.

The following polynomial in the indeterminate z: W[z;C] = >°1 W;z" is called a
weight enumerator of the code C with weight distribution W (C) = (W, ..., W,).
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Some Definitions and Notations (2)

We assume familiarity with notions of:

@ Boolean function, Algebraic Normal Form,
the General Affine group GA(m) and its subgroup
the General Linear group GL(m,2) acting on F3;

@ The set of all Boolean functions in m variables, will be denoted by 5,,.
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Some Definitions and Notations (3)

@ binary Reed-Muller code

Definition 4.
For 0 < r < m, the r—th order binary Reed-Muller (or RM) code R(r,m) is the
set of all vectors f of length n = 2™ whose corresponding f € B,, are of algebraic

degree at most r.

@ Recall:

For any m and any r,0 < r < m, the binary RM code R(r,m) is a linear [n, k,d]
code with:

e lengthn = 2™, dimension k = ""_ (") and minimum distance d = 2™~";

o the dual of R(r,m) is R(m —r — 1,m);
in particular, for any s > 1 the code R (s, 2s + 1) is a self-dual code.
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Some Definitions and Notations (5)

@ The action of A € GA(m) on a Boolean function f(x) is denoted by f o A4, i.e:

foAx) = f(A(x)).

@ Recall:

Definition 6.

The cosets C1 = f1 + R(r,m) and Cy = fo + R(r,m) of R(r,m) with f1, fo € By,
are called affine equivalent if there exists a transformation A € GA(m): fo = f10 A.

@ The following well-known fact is extensively used in our work (see, e.g., [4%:

The weight enumerators of two affine equivalent cosets of a Reed-Muller code are
identical.
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e By [l 3?one concludes that for m < 9 the only so far unknown is the (exact)
weight distribution of R(4,9):
e R(4,9) was listed among the smallest Reed-Muller codes whose weight
distributions were unknown (in 1977) [115p. 447];
e The weight spectrum of that code has been found in [ﬁ?

e To our knowledge there have been very few attempts to find (exact) weight
distribution of R(4,9)], namely:

@ Since R(4,9) is a doubly even binary self-dual code, the general form of weight
enumerators of such codes is known from A. M. Gleason's work (see, e.g., [11%
Ch.19]) might be of help. But, although this approach has been successful for
shorter RM codes requiring modest efforts for computing, its application to the code
of interest needs more intrinsic knowledge than presented in [6,97?(see, [2,QCh. 11]
for details).

@ D. V. Sarwate has evaluated that the methods from [1 2?are not applicable to R(4,9)
since there are too many equivalence classes of cosets of the desired kind to be
useful;
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The necessary ingredients (1)

For 0 < r < m, denote by #(")(m) the set of all homogeneous polynomials on m
binary variables of algebraic degree r adjoined with the 0.

([12°Sarwate 5.12]) For0 < r < m, it holds:

Wlz; R(r+2,m+2)] = Z W2[z;p+ R(r +1,m +1)].
peH("+2) (m+1)

Theorem 9.

|

(/ “Sarwate 5.1 3])
Letp = e+ fap,,1, with given e € H 2 (m) and f € H"+Y(m). Then the weight
enumerator of the cosetC(p) =p+ R(r +1,m + 1) equals to:
Y. Wihse+g+R(r,m)-Wizie+ f+ g+ R(r,m)).
gGH(T""l)(m)
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The necessary ingredients (2)

@ The affine equivalence classification of the cosets of RM codes is useful in
studying important coding theoretical and cryptographic properties of Boolean
functions, e.g., the covering radii. Recently, the interest in that topic has been
renewed by [S?Which provides (among other things) a method to classify 57;

@ In our work, we make use of:

e Langevin & Leander’s classification [10}of the quotient space R(4,8)/R(3,8)
under the action of GL(8,2), i.e., the classification of the Boolean quartic forms
in eight variables;

e Gillot & Langevin’s classification [S?Of the cosets of R(2,7) in R(4,7).
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The refined approach: rationalle (1)

Let n(k,m) be the number of linear equivalence classes of the quotient space
R*(k,m) = R(k,m)/R(k — 1,m), i.e. the number of orbits to which R*(k,m) is
partitioned under the action of GL(m,2). Assume that some numbering of these
classes is fixed.

Corollary 10.

Let p; € H"*+2)(m + 1) and L; be a representative and size, respectively, of the
i—th linear equivalence class in R*(r + 2, m + 1). Then, it holds:

n(r+2,m+1)
Wi R(r+2,m+2)]=>  LiW?[zpi+ R(r+ 1,m+1)]. (1)
=1

v

The claim is an immediate consequence of Theorem ‘and Statement 7%’ Ol
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The refined approach: rationalle (2)

Corollary 11.

For given e € H"2)(m), let H"+Y (m) is partitioned into blocks G;,1 < i < s, such
that if g € G; the enumerator W|z; e+ g+ R(r,m)] is a (distinct) constant polynomial
w;(z). Then the weight enumerator of the coset C(p) = p + R(r + 1,m + 1) where
p=e+ fr,e1 with f € HUHD(m), can be expressed by

> wi(z) (Z W[z;e+f+g+7z(r,m)]). )
=1

9eG;

| |
\

Proof.
Follows by Theorem 9°fearranging the summands and putting outside brackets the
common multipliers w;(z),1 < <'s. O
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The refined approach: rationalle (3)

Corollaries 101 1“take feasible the computation of W[z; R(4,9)], namely:

@ Corollary 10%educes the number of needed weight enumerator computations
8
from the straightforward [#®(8)| = 2(2) = 270 to the reasonable n(4, 8) = 999.

@ The affine equivalence classification of R(4,7)/R(2,7) allows to substantiate
the usage of Corollary 1 1%horough|y explained in general settings on the next
slide).
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The refined approach: rationalle (4)

@ Recall:
Definition 12.

The subgroup St(e) of GA(m) that fixes given e € H("t2)(m) is called stabilizer of
ein GA(m), i.e., foreach A € St(e)itholds eo A € e + R(r + 1,m).

@ For given e € H"2)(m), consider the partition A(e) of the cosets of form
e+ g+ R(r,m),g € HUY(m) under the action of the stabilizer St(e). By
Statement 7-’we can talk for "orbit weight" enumerator: the common weight
enumerator of all orbit members. Moreover, we can constitute efficiently the
coarse partition A’(e) = {G;,1 < i < s} from Corollary “by merging the
orbits with identical weight enumerators (computed in advance on chosen orbit
representatives of A(e)).

@ So, the number of needed polynomial multiplications to compute expr. ( ?is
reduced to the number of distinct orbit enumerators while that of polynomial

additions is, of course, retained to (almost) 2(TTI).
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The refined approach: pre-computing (1)

@ Let £(4,7) be the set of representatives of the 12 linear equivalence classes of
R*(4,7) given in [95.>

For each e € £(4,7), we perform in advance the following three tasks:

— T1: Constitute and store the orbits of the partition A(e) ("orbit algorithm" [Sﬁ;

— T2: Compute the weight enumerators of the cosets e + g + R(2,7) when g runs
over a set of representatives of A(e)’s orbits (by exhaustive generation of
R(2,7) based on some Gray code);

— T3: Merge the orbits with identical weight enumerators to get the coarse A’(e).

@ Note: Data arrangement enables for given f € #©)(7) to look up the identifier
of the orbit (block) in A(e) (A’(e)) containing f.
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The refined approach: pre-computing (2)

Table: Sizes of partitions A(e) and A’(e)

e € £(4,7): ANF’s according to ([9f) [A(e)] | |A'(e)]
0 12 12
4567 63 52
1235+1345+1356+1456+2346+2356+2456 130 112
2367+4567 289 182
1237+4567 480 306
1257+1367+4567 730 395
1237+1247+1357+2367+4567 204 157

1236+1257+1345+1467+2347+2456+3567 | 1098 675
1236+1356+1567+2357+2467+2567+3456 | 1340 811
1367+2345+2356+3456+4567 6449 | 2170
1234+1237+1267+1567+2345+3456+4567 | 23988 | 3377
1236+1367+1567+2345+3456+3457+3467 | 33660 | 4636
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The refined approach: the actual computing (1)

@ We have developed and implemented two algorithms (see, the Proceedings):
e Algorithm 1 which returns W|[z;p + R(3,8)] where p = e + fuas for given inputs
e € &(4,7) and f € H®)(7) (using expr. (2¥in Corollary 11%;

e Algorithm 2 which computes the sum in Corollary 10¥and thus Wiz; R(4,9)].

o Note:

The second algorithm requires a list S of pairs: (representative p;, class size L;)
for the i—th class of the classification of R*(4,8) where p; = e + f;z5 for some
e€&(4,7)and f; € HO(7),1 <4 < 999.
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The refined approach: pre-computing (3)

@ To provide a list S, we make use of data present in [ ? However, there p are
of the form ¢’ + f/zs where ¢’s constitute different set £'(4, 7) of representatives
of the 12 classes of R*(4,7);

@ To adjust, we follow a procedure (derived by [ ﬁconsisting of 3 steps:
e Formthe sets £'(3,7),£(3,7) of duals of the forms in £'(4,7), (4, 7), respectively;
e Match the linearly equivalent pairs (¢’,¢) € £'(3,7) x £(3,7) using the invariants
given in [45pp. 115-117]), so the pairs in the original sets are matched, too;
e Foreach matched pair (¢/,¢e) € £'(4,7)xE(4,7), generate at random a nonsingular
(7 x 7) matrix A and check the condition ¢’ o A € e + R(3,7) until such matrix is
obtained.

@ The last step is carried out efficiently due to relatively large stabilizers sizes,
e.g., the smallest is of size 9216 ~ 2317 while |GL(7,2)| ~ 24721,

@ Finally, acting on f/,1 < i < 999, by the obtained linear transitions, we get a
needed list S.
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The refined approach: pre-computing (4)

Table: The matching between £'(3,7) and £(3,7)

£3,7) | £3,7)
00
123 | 123
12741364145 | 137+147+15742374247+267+467
1254134 | 123+145
126+345 | 123+456
12641354234 | 12342454346
135+146+235+2364245 | 123+145+246+356+456
127+136+145+234 | 124+137+15642354267+346+457
1254+134+135+167+247+357 | 127+134+135+146+234+247+457
12342474356 | 123+127+147+167+245
147+156+237+246+345 | 123+127+167+234+3454+456+567
127+146+236+345 | 125+1264+127+167+23442454457
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The refined approach: evaluating computational costs of the pre-computing

Briefly:
@ the computational cost of task 7 1 is [H®)(7)] x 3 cg(7) [Sg(e)| = 2% x 26 ~
240 affine transformations where Sg(e) denotes the set of generators of the
stabilizer St(e);

@ the computational cost of task 72 is in total proportional to the product 68443 x
229 ~ 245 with the first factor being the number of classes of R(4,7)/R(2,7)
and the second being the size of R(2,7);

@ the compressed storing of orbits and data arrangement into RAM needs at
most 124 GB of memory.
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The refined approach: evaluating computational costs of the actual computing

The set of linear equivalence classes of R*(4, 8) is naturally partitioned into subsets
of cardinalities p(e) for fixed e € £(4,7) and distinct f € H3)(7) (see, [8]):

o =(3,2,21,15,89,56,10,7,502,1, 1,292)
@ By Corollaries 1041 1¥one can easily deduce the following estimates, i.e.:
e necessary multiplications of degree 128 polynomials:

> ple) x |A(e)] = 1827252 ~ 22
e€&(4,7)

@ necessary additions of degree 128 polynomials:

n(4,8) x 2(3) = 999 x 235 ~ 2%,

@ 999 squarings of degree 256 polynomials; and some additional operations of
negligible cost, of course.
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Conclusion

@ Recent advances in the classification of Boolean functions [3}]10}and the
utilization of modern high performance computers make feasible the application
of Sarwate’s approach [1 Zﬂo determining exact weight distribution of R(4,9);

@ However, we should admit that it may not be doable to push this line of research
much further due to the enormous increase in computational burden with code
length.
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Weight Distribution of R(4,9)

0 512
32 480
48 464
56 456
60 452
64 448
68 444
72 440
76 436
80 432
84 428
88 424
%2 420
9 416

100 412
104 408
108 404
112 400
116 396
120 392
124 388
128 384
132 380
136 376
140 372
144 368
148 364
152 360
156 356
160 352
164 348
168 344
172 340
176 336
180 332
184 328
188 324
192 320
196 316
200 312
204 308
208 304
212 300
216 296
220 292
224 288
228 284
232 280
236 276
240 272
244 268
248 264
252 260
256
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