

Security of Encryption Modes and an Exposition of Proof Techniques

Bart Mennink

Radboud University (The Netherlands)

WCC 2024

June 21, 2024

Keyed Symmetric Cryptography

- Two parties, Alice and Bob, communicate over a public channel
 - They have agreed on a joint key \swarrow and use it to transmit data

- Two parties, Alice and Bob, communicate over a public channel
 - They have agreed on a joint key 🎤 and use it to transmit data
- A malicious party, Eve, may try to exploit/disturb/... the communication
- In symmetric cryptography, we are concerned with two main security properties:

- Two parties, Alice and Bob, communicate over a public channel
- A malicious party, Eve, may try to exploit/disturb/... the communication
- In symmetric cryptography, we are concerned with two main security properties:
 - Confidentiality (or data privacy): Eve cannot learn anything about data

- Two parties, Alice and Bob, communicate over a public channel
- A malicious party, Eve, may try to exploit/disturb/... the communication
- In symmetric cryptography, we are concerned with two main security properties:
 - Confidentiality (or data privacy): Eve cannot learn anything about data
 - Authenticity: Eve cannot manipulate the data

- Two parties, Alice and Bob, communicate over a public channel
- A malicious party, Eve, may try to exploit/disturb/... the communication
- In symmetric cryptography, we are concerned with two main security properties:
 - Confidentiality (or data privacy): Eve cannot learn anything about data
 - Authenticity: Eve cannot manipulate the data

In this presentation I will focus on confidentiality

Decryption:

Decryption:

• One-time pad is a type of stream encryption

- One-time pad is a type of stream encryption
- Perfect secrecy (against an attacker that has no knowledge about the key)
 - Given C, an attacker correctly guesses M with probability $1/2^{|K|}$

- One-time pad is a type of stream encryption
- Perfect secrecy (against an attacker that has no knowledge about the key)
 - Given C, an attacker correctly guesses M with probability $1/2^{|K|}$
- Key must be as long as the plaintext!

- One-time pad is a type of stream encryption
- Perfect secrecy (against an attacker that has no knowledge about the key)
 - Given C, an attacker correctly guesses M with probability $1/2^{|K|}$
- Key must be as long as the plaintext!

Stream Ciphers

• Generate long keystream Z from short key K

- One-time pad is a type of stream encryption
- Perfect secrecy (against an attacker that has no knowledge about the key)
 - Given C, an attacker correctly guesses M with probability $1/2^{|K|}$
- Key must be as long as the plaintext!

Stream Ciphers

- Generate long keystream ${\cal Z}$ from short key ${\cal K}$
- Much more practical!

- One-time pad is a type of stream encryption
- Perfect secrecy (against an attacker that has no knowledge about the key)
 - Given C, an attacker correctly guesses M with probability $1/2^{|K|}$
- Key must be as long as the plaintext!

Stream Ciphers

- Generate long keystream ${\cal Z}$ from short key ${\cal K}$
- Much more practical!
- Security degrades:
 - 1. Key guessing still succeeds with probability $1/2^{|K|}$ but now with shorter key
 - 2. The stream cipher mechanism is another focal point of attack

- Key guessing:
 - Exhaustive key search succeeds with probability $\mathbf{Pr}\left(\mathsf{success}\right) = 1/2^{|K|}$

- Key guessing:
 - Exhaustive key search succeeds with probability $\mathbf{Pr}\left(\mathsf{success}\right) = 1/2^{|K|}$
- Ciphertext Only Attack:
 - Long ciphertexts leak info via letter frequencies

- Key guessing:
 - Exhaustive key search succeeds with probability $\mathbf{Pr}\left(\mathsf{success}\right) = 1/2^{|K|}$
- Ciphertext Only Attack:
 - Long ciphertexts leak info via letter frequencies
- Known Plaintext Attack:
 - Knowledge of short plaintext sequence reveals full keystream

- Key guessing:
 - Exhaustive key search succeeds with probability $\mathbf{Pr}(\mathsf{success}) = 1/2^{|K|}$
- Ciphertext Only Attack:
 - Long ciphertexts leak info via letter frequencies
- Known Plaintext Attack:
 - Knowledge of short plaintext sequence reveals full keystream

We need something more sophisticated!

How to Model Security?

Modern Stream Ciphers

• Using key K, diversifier D, and length ℓ , keystream Z of length ℓ is generated

- Using key K, diversifier D, and length ℓ , keystream Z of length ℓ is generated
- The diversifier must be different for each message that is transmitted

- Using key K, diversifier D, and length ℓ , keystream Z of length ℓ is generated
- The diversifier must be different for each message that is transmitted
- Example: data streams, e.g., pay TV and telephone, often split data in relatively short, numbered, frames. The frame number may serve as diversifier:

$$C_i = M_i \oplus \mathsf{SC}(K, i, |M_i|)$$

- Using key K, diversifier D, and length ℓ , keystream Z of length ℓ is generated
- The diversifier must be different for each message that is transmitted
- Example: data streams, e.g., pay TV and telephone, often split data in relatively short, numbered, frames. The frame number may serve as diversifier:

 $C_i = M_i \oplus \mathsf{SC}(K, i, |M_i|)$

When is a stream cipher strong enough?

Stream Cipher Security, Intuition (1/3)

- Kerckhoffs principle: security should be based on secrecy of K
- Thus: attacker knows the algorithm SC

Stream Cipher Security, Intuition (1/3)

- Kerckhoffs principle: security should be based on secrecy of K
- Thus: attacker knows the algorithm SC
- Attacker can also learn some amount of input-output combinations of SC_K
- Intuitively, these data do not expose any irregularities (except for repetition)

Stream Cipher Security, Intuition (1/3)

- Kerckhoffs principle: security should be based on secrecy of K
- Thus: attacker knows the algorithm SC
- Attacker can also learn some amount of input-output combinations of SC_K
- Intuitively, these data do not expose any irregularities (except for repetition)
- SC_K should behave like a random oracle

- A database of input-output tuples
- Initially empty

D	Ζ	

Random Oracle

- A database of input-output tuples
- Initially empty
- New query (D, ℓ) :
 - If D is not in the database:

D	Ζ	

• If D is in the database,

- A database of input-output tuples
- Initially empty
- New query (D, ℓ) :
 - If D is not in the database:
 - generate ℓ random bits Z
 - $\bullet \ {\rm add} \ (D,Z)$ to the list
 - return Z
 - If D is in the database,

D	Ζ	

- A database of input-output tuples
- Initially empty
- New query (D, ℓ) :
 - If D is not in the database:
 - generate ℓ random bits Z
 - $\bullet \ {\rm add} \ (D,Z)$ to the list
 - return Z
 - If D is in the database,

D	Z
1100	101011101010101

- A database of input-output tuples
- Initially empty
- New query (D, ℓ) :
 - If D is not in the database:
 - generate ℓ random bits Z
 - $\bullet \ {\rm add} \ (D,Z)$ to the list
 - return Z
 - If D is in the database,

D	Ζ
1100 1111010101101101	101011101010101 110101

- A database of input-output tuples
- Initially empty
- New query (D, ℓ) :
 - If D is not in the database:
 - generate ℓ random bits Z
 - $\bullet \ {\rm add} \ (D,Z)$ to the list
 - return Z
 - If D is in the database,

D	Ζ
1100	101011101010101
1111010101101101	110101
001000011100	101011010111010101010111
- A database of input-output tuples
- Initially empty
- New query (D, ℓ) :
 - If D is not in the database:
 - generate ℓ random bits Z
 - $\bullet \ {\rm add} \ (D,Z)$ to the list
 - return Z
 - If D is in the database, look at corresponding Z:
 - If $|Z| \ge \ell$:
 - If $|Z| < \ell$:

D	Z
1100	101011101010101
1111010101101101	110101
001000011100	10101101011101010101011

- A database of input-output tuples
- Initially empty
- New query (D, ℓ) :
 - If D is not in the database:
 - generate ℓ random bits Z
 - $\bullet \ {\rm add} \ (D,Z)$ to the list
 - return Z
 - If D is in the database, look at corresponding Z:
 - If $|Z| \ge \ell$: return first ℓ bits of Z
 - If $|Z| < \ell$:

D	Z
1100	101011101010101
1111010101101101	110101
001000011100	10101101011101010101011

- A database of input-output tuples
- Initially empty
- New query (D, ℓ) :
 - If D is not in the database:
 - generate ℓ random bits Z
 - $\bullet \ {\rm add} \ (D,Z)$ to the list
 - return Z
 - If D is in the database, look at corresponding Z:
 - If $|Z| \ge \ell$: return first ℓ bits of Z
 - If $|Z| < \ell$:

D	Ζ
1100	101011101010101
1111010101101101	110101
001000011100	10101101011101010101011

- A database of input-output tuples
- Initially empty
- New query (D, ℓ) :
 - If D is not in the database:
 - generate ℓ random bits Z
 - $\bullet \ \operatorname{add} \ (D,Z)$ to the list
 - return Z
 - If D is in the database, look at corresponding Z:
 - If $|Z| \ge \ell$: return first ℓ bits of Z
 - If $|Z| < \ell$: generate $\ell |Z|$ random bits Z', append Z' to Z, return Z||Z'

D	Ζ
1100	101011101010101
1111010101101101	110101
001000011100	10101101011101010101011

- A database of input-output tuples
- Initially empty
- New query (D, ℓ) :
 - If D is not in the database:
 - generate ℓ random bits Z
 - $\bullet \ \operatorname{add} \ (D,Z)$ to the list
 - return Z
 - If D is in the database, look at corresponding Z:
 - If $|Z| \ge \ell$: return first ℓ bits of Z
 - If $|Z| < \ell$: generate $\ell |Z|$ random bits Z', append Z' to Z, return Z||Z'

D	Ζ
1100	101011101010101
1111010101101101	1101011101111101101
001000011100	10101101011101010101011

- A database of input-output tuples
- Initially empty
- New query (D, ℓ) :
 - If D is not in the database:
 - generate ℓ random bits Z
 - $\bullet \ \operatorname{add} \ (D,Z)$ to the list
 - return Z
 - If D is in the database, look at corresponding Z:
 - If $|Z| \ge \ell$: return first ℓ bits of Z
 - If $|Z| < \ell$: generate $\ell |Z|$ random bits Z', append Z' to Z, return Z||Z'
 - update (D, Z) in the list

D	Z
1100	101011101010101
1111010101101101	1101011101111101101
001000011100	1010110101110101010111

• We thus want to "compare" SC_K with a random oracle RO

- We thus want to "compare" SC_K with a random oracle RO
- \bullet We model a distinguisher ${\cal D}$ that is given oracle access to either of the worlds

- We thus want to "compare" SC_K with a random oracle RO
- \bullet We model a distinguisher ${\cal D}$ that is given oracle access to either of the worlds
 - We toss a coin:
 - head: \mathcal{D} is given oracle access to SC_K
 - tail: \mathcal{D} is given oracle access to RO
 - \mathcal{D} does a priori not know which oracle it is given access to

- We thus want to "compare" SC_K with a random oracle RO
- \bullet We model a distinguisher ${\cal D}$ that is given oracle access to either of the worlds
 - We toss a coin:
 - head: \mathcal{D} is given oracle access to SC_K
 - tail: \mathcal{D} is given oracle access to RO
 - \mathcal{D} does a priori not know which oracle it is given access to
 - \mathcal{D} can now make queries (D, ℓ) to receive Z

- We thus want to "compare" SC_K with a random oracle RO
- \bullet We model a distinguisher ${\cal D}$ that is given oracle access to either of the worlds
 - We toss a coin:
 - head: \mathcal{D} is given oracle access to SC_K
 - tail: \mathcal{D} is given oracle access to RO
 - \mathcal{D} does a priori not know which oracle it is given access to
 - \mathcal{D} can now make queries (D, ℓ) to receive Z
 - At the end, ${\cal D}$ has to guess the outcome of the toss coin (head/tail)

• Denote \mathcal{D} 's success probability in correctly guessing head/tail by \mathbf{Pr} (success)

- Denote \mathcal{D} 's success probability in correctly guessing head/tail by \mathbf{Pr} (success)
- \mathcal{D} can always guess and succeeds with probability $\geq 1/2$, so we scale the probability to \mathcal{D} 's advantage:

 $\mathbf{Adv}(\mathcal{D}) = 2 \cdot \mathbf{Pr}(\mathsf{success}) - 1$

- Denote \mathcal{D} 's success probability in correctly guessing head/tail by \mathbf{Pr} (success)
- \mathcal{D} can always guess and succeeds with probability $\geq 1/2$, so we scale the probability to \mathcal{D} 's advantage:

$$\begin{split} \mathbf{Adv}(\mathcal{D}) &= 2 \cdot \mathbf{Pr} \left(\mathsf{success} \right) - 1 \\ &= \mathbf{Pr} \left(\mathcal{D}^{\mathsf{SC}_K} \text{ returns head} \right) - \mathbf{Pr} \left(\mathcal{D}^{\mathsf{RO}} \text{ returns head} \right) \end{split}$$

- Denote \mathcal{D} 's success probability in correctly guessing head/tail by \mathbf{Pr} (success)
- \mathcal{D} can always guess and succeeds with probability $\geq 1/2$, so we scale the probability to \mathcal{D} 's advantage:

$$egin{aligned} \mathbf{Adv}(\mathcal{D}) &= 2 \cdot \mathbf{Pr} \left(\mathsf{success}
ight) - 1 \ &= \mathbf{Pr} \left(\mathcal{D}^{\mathsf{SC}_K} ext{ returns head}
ight) - \mathbf{Pr} \left(\mathcal{D}^{\mathsf{RO}} ext{ returns head}
ight) \end{aligned}$$

• \mathcal{D} is limited by certain constraints

- Denote \mathcal{D} 's success probability in correctly guessing head/tail by \mathbf{Pr} (success)
- \mathcal{D} can always guess and succeeds with probability $\geq 1/2$, so we scale the probability to \mathcal{D} 's advantage:

$$egin{aligned} \mathbf{Adv}(\mathcal{D}) &= 2 \cdot \mathbf{Pr} \left(\mathsf{success}
ight) - 1 \ &= \mathbf{Pr} \left(\mathcal{D}^{\mathsf{SC}_K} ext{ returns head}
ight) - \mathbf{Pr} \left(\mathcal{D}^{\mathsf{RO}} ext{ returns head}
ight) \end{aligned}$$

- ${\mathcal D}$ is limited by certain constraints
 - Data (or online) complexity q: total cost of queries \mathcal{D} can make
 - Computation (or time) complexity t: everything that D can do "on its own"

• Two oracles: SC_K (for secret key K) and RO (secret)

- Two oracles: SC_K (for secret key K) and RO (secret)
- $\bullet\,$ Distinguisher ${\cal D}$ has query access to one of these

- Two oracles: SC_K (for secret key K) and RO (secret)
- $\bullet\,$ Distinguisher ${\cal D}$ has query access to one of these
- ${\mathcal D}$ tries to determine which oracle it communicates with

- Two oracles: SC_K (for secret key K) and RO (secret)
- $\bullet\,$ Distinguisher ${\cal D}$ has query access to one of these
- $\ensuremath{\mathcal{D}}$ tries to determine which oracle it communicates with
- Its advantage is defined as:

$$\mathbf{Adv}_{\mathsf{SC}}^{\mathrm{prf}}(\mathcal{D}) = \Delta_{\mathcal{D}}\left(\mathsf{SC}_{K} \; ; \; \mathsf{RO}\right) = \left|\mathbf{Pr}\left(\mathcal{D}^{\mathsf{SC}_{K}} = 1\right) - \mathbf{Pr}\left(\mathcal{D}^{\mathsf{RO}} = 1\right)\right|$$

- Two oracles: SC_K (for secret key K) and RO (secret)
- $\bullet\,$ Distinguisher ${\cal D}$ has query access to one of these
- ${\mathcal D}$ tries to determine which oracle it communicates with
- Its advantage is defined as:

$$\mathbf{Adv}_{\mathsf{SC}}^{\mathrm{prf}}(\mathcal{D}) = \Delta_{\mathcal{D}}\left(\mathsf{SC}_{K} \; ; \; \mathsf{RO}\right) = \left|\mathbf{Pr}\left(\mathcal{D}^{\mathsf{SC}_{K}} = 1\right) - \mathbf{Pr}\left(\mathcal{D}^{\mathsf{RO}} = 1\right)\right|$$

• $\mathbf{Adv}_{SC}^{\mathrm{prf}}(q,t)$: maximum advantage over any distinguisher with complexity q,t

Generic Stream Cipher Design

Generic Stream Cipher Design (1/2)

- Classical approach: LFSRs strengthened with non-linear component
- Modern approach: building construction from smaller cryptographic primitive

Generic Stream Cipher Design (1/2)

- Classical approach: LFSRs strengthened with non-linear component
- Modern approach: building construction from smaller cryptographic primitive
- Suppose (for the sake of argument):
 - we **know** how to build a strong stream cipher F with fixed-length output
 - we want to build a stream cipher with variable-length output

• Feed K to primitive

- Feed K to primitive
- Evaluate primitive as often as needed, with *D* concatenated with counter

- Feed K to primitive
- Evaluate primitive as often as needed, with *D* concatenated with counter
- Concatenate outputs:

 $Z = Z_1 \parallel Z_2 \parallel Z_3 \parallel \cdots$

- Feed K to primitive
- Evaluate primitive as often as needed, with *D* concatenated with counter
- Concatenate outputs:

 $Z = Z_1 \parallel Z_2 \parallel Z_3 \parallel \cdots$

Security

• If F_K is hard to distinguish from a RO'

- Feed K to primitive
- Evaluate primitive as often as needed, with *D* concatenated with counter
- Concatenate outputs:

 $Z = Z_1 \parallel Z_2 \parallel Z_3 \parallel \cdots$

$$D \|\langle 0 \rangle_{32} \longrightarrow \mathbb{RO}' \longrightarrow Z_1$$

$$D\|\langle 1\rangle_{32} \xrightarrow[128]{} \mathsf{RO'} \xrightarrow[128]{} Z_2$$

 $D \| \langle 2 \rangle_{32} \longrightarrow \mathsf{RO}'$

Security

• If F_K is hard to distinguish from a RO'

 $128 \rightarrow Z_3$

- Feed K to primitive
- Evaluate primitive as often as needed, with *D* concatenated with counter
- Concatenate outputs:

 $Z = Z_1 \parallel Z_2 \parallel Z_3 \parallel \cdots$

$$\mathsf{D}\|\langle 0\rangle_{32} \xrightarrow[128]{} \mathsf{RO}' \xrightarrow[128]{} Z_1$$

$$D\|\langle 1\rangle_{32} \xrightarrow{i_{28}} \mathsf{RO}' \xrightarrow{i_{28}} Z_2$$

Security

- If F_K is hard to distinguish from a RO'
- Then construction is hard to distinguish from RO

$$D\|\langle 2\rangle_{32} \xrightarrow[128]{} \mathsf{RO}' \xrightarrow[128]{} Z_3$$

- Feed K to primitive
- Evaluate primitive as often as needed, with *D* concatenated with counter
- Concatenate outputs:

 $Z = Z_1 \parallel Z_2 \parallel Z_3 \parallel \cdots$

$$D \|\langle 0 \rangle_{32} \longrightarrow \mathbb{RO}' \longrightarrow Z_1$$

$$D \|\langle 1 \rangle_{32} \longrightarrow \mathbb{RO}' \longrightarrow Z_2$$

Security

- If F_K is hard to distinguish from a RO'
- Then construction is hard to distinguish from RO
- For the purists: $\mathbf{Adv}_{\mathsf{SC}[F]}^{\mathrm{prf}}(q,t) \leq \mathbf{Adv}_F^{\mathrm{prf}}(q,t')$

$$D\|\langle 2 \rangle_{32} \longrightarrow \mathbb{RO}' \longrightarrow Z_3$$

Block Ciphers

- Using key K, message M is bijectively transformed to ciphertext C
- Key, plaintext, and ciphertext are typically of fixed size

- Using key K, message M is bijectively transformed to ciphertext C
- Key, plaintext, and ciphertext are typically of fixed size
- For fixed key, E_K is invertible and the inverse is denoted as E_K^{-1}

- Using key K, message M is bijectively transformed to ciphertext C
- Key, plaintext, and ciphertext are typically of fixed size
- For fixed key, E_K is invertible and the inverse is denoted as E_K^{-1}
- Example [DR02]:

AES-128:
$$\{0, 1\}^{128} \times \{0, 1\}^{128} \to \{0, 1\}^{128}$$

 $(K, M) \mapsto C$

- Using key K, message M is bijectively transformed to ciphertext C
- Key, plaintext, and ciphertext are typically of fixed size
- For fixed key, E_K is invertible and the inverse is denoted as E_K^{-1}
- Example [DR02]:

AES-128:
$$\{0, 1\}^{128} \times \{0, 1\}^{128} \to \{0, 1\}^{128}$$

 $(K, M) \mapsto C$

• A good block cipher should behave like a random permutation

• Two oracles: E_K (for secret key K) and p (secret)

- Two oracles: E_K (for secret key K) and p (secret)
- $\bullet\,$ Distinguisher ${\cal D}$ has query access to one of these

- Two oracles: E_K (for secret key K) and p (secret)
- $\bullet\,$ Distinguisher ${\cal D}$ has query access to one of these
- $\ensuremath{\mathcal{D}}$ tries to determine which oracle it communicates with

- Two oracles: E_K (for secret key K) and p (secret)
- $\bullet\,$ Distinguisher ${\cal D}$ has query access to one of these
- ${\mathcal D}$ tries to determine which oracle it communicates with
- Its advantage is defined as:

$$\mathbf{Adv}_{E}^{\mathrm{prp}}(\mathcal{D}) = \Delta_{\mathcal{D}}\left(E_{K} ; p\right) = \left|\mathbf{Pr}\left(\mathcal{D}^{E_{K}} = 1\right) - \mathbf{Pr}\left(\mathcal{D}^{p} = 1\right)\right|$$

- Two oracles: E_K (for secret key K) and p (secret)
- $\bullet\,$ Distinguisher ${\cal D}$ has query access to one of these
- ${\mathcal D}$ tries to determine which oracle it communicates with
- Its advantage is defined as:

$$\mathbf{Adv}_{E}^{\mathrm{prp}}(\mathcal{D}) = \Delta_{\mathcal{D}}\left(E_{K} ; p\right) = \left|\mathbf{Pr}\left(\mathcal{D}^{E_{K}} = 1\right) - \mathbf{Pr}\left(\mathcal{D}^{p} = 1\right)\right|$$

• $\mathbf{Adv}_E^{\mathrm{prp}}(q,t)$: maximum advantage over any $\mathcal D$ with query/time complexity q/t

Counter Mode Encryption

Features

- Stream-based encryption mode
- Fully parallelizable (encryption and decryption) and extremely simple
- Decryption needs no E_K^{-1}

Features

- Stream-based encryption mode
- Fully parallelizable (encryption and decryption) and extremely simple
- Decryption needs no E_K^{-1}

Security

• "Hopefully" secure as long as N is never repeated and E_K is a secure PRP

Features

- Stream-based encryption mode
- Fully parallelizable (encryption and decryption) and extremely simple
- Decryption needs no E_K^{-1}

Security

- "Hopefully" secure as long as N is never repeated and E_K is a secure PRP
- Let us investigate that!

• Let us consider counter mode based on AES: CTR[AES_K]

• Let us consider counter mode based on AES: CTR[AES_K]

• We focus on the keystream generation portion

• Let us consider counter mode based on AES: CTR[AES_K]

- We focus on the keystream generation portion
- Assumptions
 - Distinguisher never repeats nonce ${\cal N}$
 - AES itself is sufficiently secure: $\mathbf{Adv}_{\mathsf{AFS}}^{\mathrm{prp}}(q,t)$ is small

• Two oracles: $CTR[AES_K]$ (for secret key K) and RO (secret)

- Two oracles: $CTR[AES_K]$ (for secret key K) and RO (secret)
- \bullet Distinguisher ${\cal D}$ has query access to one of these

- Two oracles: $CTR[AES_K]$ (for secret key K) and RO (secret)
- $\bullet\,$ Distinguisher ${\cal D}$ has query access to one of these
- $\ensuremath{\mathcal{D}}$ tries to determine which oracle it communicates with

- Two oracles: CTR[AES_K] (for secret key K) and RO (secret)
- $\bullet\,$ Distinguisher ${\cal D}$ has query access to one of these
- $\ensuremath{\mathcal{D}}$ tries to determine which oracle it communicates with
- Its advantage is defined as:

$$\mathbf{Adv}_{\mathsf{CTR}[\mathsf{AES}]}^{\mathrm{prf}}(\mathcal{D}) = \Delta_{\mathcal{D}}\left(\mathsf{CTR}[\mathsf{AES}_K] \; ; \; \mathsf{RO}\right) = \left| \mathbf{Pr}\left(\mathcal{D}^{\mathsf{CTR}[\mathsf{AES}_K]} = 1 \right) - \mathbf{Pr}\left(\mathcal{D}^{\mathsf{RO}} = 1 \right) \right|$$

- Two oracles: CTR[AES_K] (for secret key K) and RO (secret)
- $\bullet\,$ Distinguisher ${\cal D}$ has query access to one of these
- $\ensuremath{\mathcal{D}}$ tries to determine which oracle it communicates with
- Its advantage is defined as:

 $\mathbf{Adv}_{\mathsf{CTR}[\mathsf{AES}]}^{\mathrm{prf}}(\mathcal{D}) = \Delta_{\mathcal{D}}\left(\mathsf{CTR}[\mathsf{AES}_K] \; ; \; \mathsf{RO}\right) = \left|\mathbf{Pr}\left(\mathcal{D}^{\mathsf{CTR}[\mathsf{AES}_K]} = 1\right) - \mathbf{Pr}\left(\mathcal{D}^{\mathsf{RO}} = 1\right)\right|$

• $\mathbf{Adv}_{\mathsf{CTR}[\mathsf{AES}]}^{\mathrm{prf}}(q,t)$: maximum advantage over any \mathcal{D} with q/t blocks/time

• For any (fixed) distinguisher \mathcal{D} (later, we supremize over all), we have to bound: $\mathbf{Adv}_{\mathsf{CTR}[\mathsf{AES}]}^{\mathrm{prf}}(\mathcal{D}) = \Delta_{\mathcal{D}} (\mathsf{CTR}[\mathsf{AES}_K] ; \mathsf{RO}) = \left| \mathbf{Pr} \left(\mathcal{D}^{\mathsf{CTR}[\mathsf{AES}_K]} = 1 \right) - \mathbf{Pr} \left(\mathcal{D}^{\mathsf{RO}} = 1 \right) \right|$

• For any (fixed) distinguisher ${\cal D}$ (later, we supremize over all), we have to bound:

 $\mathbf{Adv}_{\mathsf{CTR}[\mathsf{AES}]}^{\mathrm{prf}}(\mathcal{D}) = \Delta_{\mathcal{D}}\left(\mathsf{CTR}[\mathsf{AES}_K] \; ; \; \mathsf{RO}\right) = \left|\mathbf{Pr}\left(\mathcal{D}^{\mathsf{CTR}[\mathsf{AES}_K]} = 1\right) - \mathbf{Pr}\left(\mathcal{D}^{\mathsf{RO}} = 1\right)\right|$

• We add intermediate worlds CTR[p] and CTR[f] for random p and f

• For any (fixed) distinguisher \mathcal{D} (later, we supremize over all), we have to bound:

 $\mathbf{Adv}_{\mathsf{CTR}[\mathsf{AES}]}^{\mathrm{prf}}(\mathcal{D}) = \Delta_{\mathcal{D}}\left(\mathsf{CTR}[\mathsf{AES}_K] ; \mathsf{RO}\right) = \left|\mathbf{Pr}\left(\mathcal{D}^{\mathsf{CTR}[\mathsf{AES}_K]} = 1\right) - \mathbf{Pr}\left(\mathcal{D}^{\mathsf{RO}} = 1\right)\right|$

- We add intermediate worlds CTR[p] and CTR[f] for random p and f
- By the triangle inequality:

 $\Delta_{\mathcal{D}}\left(\mathsf{CTR}[\mathsf{AES}_{K}] \ ; \ \mathsf{RO}\right) \leq \Delta_{\mathcal{D}}\left(\mathsf{CTR}[\mathsf{AES}_{K}] \ ; \ \mathsf{CTR}[p]\right) + \Delta_{\mathcal{D}}\left(\mathsf{CTR}[p] \ ; \ \mathsf{CTR}[f]\right) + \Delta_{\mathcal{D}}\left(\mathsf{CTR}[f] \ ; \ \mathsf{RO}\right)$

• For any (fixed) distinguisher \mathcal{D} (later, we supremize over all), we have to bound:

 $\mathbf{Adv}_{\mathsf{CTR}[\mathsf{AES}]}^{\mathrm{prf}}(\mathcal{D}) = \Delta_{\mathcal{D}}\left(\mathsf{CTR}[\mathsf{AES}_K] ; \mathsf{RO}\right) = \left|\mathbf{Pr}\left(\mathcal{D}^{\mathsf{CTR}[\mathsf{AES}_K]} = 1\right) - \mathbf{Pr}\left(\mathcal{D}^{\mathsf{RO}} = 1\right)\right|$

- We add intermediate worlds CTR[p] and CTR[f] for random p and f
- By the triangle inequality:

 $\Delta_{\mathcal{D}}\left(\mathsf{CTR}[\mathsf{AES}_{K}] \ ; \ \mathsf{RO}\right) \leq \Delta_{\mathcal{D}}\left(\mathsf{CTR}[\mathsf{AES}_{K}] \ ; \ \mathsf{CTR}[p]\right) + \Delta_{\mathcal{D}}\left(\mathsf{CTR}[p] \ ; \ \mathsf{CTR}[f]\right) + \Delta_{\mathcal{D}}\left(\mathsf{CTR}[f] \ ; \ \mathsf{RO}\right)$

• \mathcal{D} 's goal: distinguish $CTR[AES_K]$ from CTR[p]

- \mathcal{D} 's goal: distinguish $CTR[AES_K]$ from CTR[p]
- $\bullet\,$ We replace ${\mathcal D}$ by a distinguisher ${\mathcal D}'$ that has more power

- \mathcal{D} 's goal: distinguish $CTR[AES_K]$ from CTR[p]
- $\bullet\,$ We replace ${\mathcal D}$ by a distinguisher ${\mathcal D}'$ that has more power
- \mathcal{D}' 's goal: distinguish AES_K from p

- \mathcal{D} 's goal: distinguish $CTR[AES_K]$ from CTR[p]
- $\bullet\,$ We replace ${\mathcal D}$ by a distinguisher ${\mathcal D}'$ that has more power
- \mathcal{D}' 's goal: distinguish AES_K from p
- \mathcal{D}' simulates the oracles of \mathcal{D} :
- Once $\mathcal D$ makes its final guess, $\mathcal D'$ makes the same guess

- \mathcal{D} 's goal: distinguish $CTR[AES_K]$ from CTR[p]
- We replace ${\mathcal D}$ by a distinguisher ${\mathcal D}'$ that has more power
- \mathcal{D}' 's goal: distinguish AES_K from p
- \mathcal{D}' simulates the oracles of \mathcal{D} :
- Once ${\mathcal D}$ makes its final guess, ${\mathcal D}'$ makes the same guess
- \mathcal{D}' success probability turns out to be at least that of \mathcal{D} : $\Delta_{\mathcal{D}} (\mathsf{CTR}[\mathsf{AES}_K] ; \mathsf{CTR}[p]) \leq \Delta_{\mathcal{D}'} (\mathsf{AES}_K ; p)$

- \mathcal{D} 's goal: distinguish $CTR[AES_K]$ from CTR[p]
- We replace ${\mathcal D}$ by a distinguisher ${\mathcal D}'$ that has more power
- \mathcal{D}' 's goal: distinguish AES_K from p
- \mathcal{D}' simulates the oracles of \mathcal{D} :
- Once ${\mathcal D}$ makes its final guess, ${\mathcal D}'$ makes the same guess
- \mathcal{D}' success probability turns out to be at least that of \mathcal{D} : $\Delta_{\mathcal{D}} (\mathsf{CTR}[\mathsf{AES}_K] ; \mathsf{CTR}[p]) \leq \Delta_{\mathcal{D}'} (\mathsf{AES}_K ; p)$
- But we have seen this distance before:

$$\Delta_{\mathcal{D}'} (\mathsf{AES}_K ; p) = \mathbf{Adv}_{\mathsf{AES}}^{\mathrm{prp}}(\mathcal{D}') \leq \mathbf{Adv}_{\mathsf{AES}}^{\mathrm{prp}}(q, t')$$
(t' slightly larger than t)

• \mathcal{D} 's goal: distinguish CTR[p] from CTR[f]

- \mathcal{D} 's goal: distinguish $\mathsf{CTR}[p]$ from $\mathsf{CTR}[f]$
- We replace ${\mathcal D}$ by a distinguisher ${\mathcal D}'$ that has more power

- \mathcal{D} 's goal: distinguish CTR[p] from CTR[f]
- We replace ${\mathcal D}$ by a distinguisher ${\mathcal D}'$ that has more power
- \mathcal{D}' 's goal: distinguish p from f

- \mathcal{D} 's goal: distinguish CTR[p] from CTR[f]
- We replace ${\mathcal D}$ by a distinguisher ${\mathcal D}'$ that has more power
- \mathcal{D}' 's goal: distinguish p from f
- \mathcal{D}' simulates the oracles of \mathcal{D} :
- \bullet Once ${\mathcal D}$ makes its final guess, ${\mathcal D}'$ makes the same guess

- \mathcal{D} 's goal: distinguish CTR[p] from CTR[f]
- We replace ${\mathcal D}$ by a distinguisher ${\mathcal D}'$ that has more power
- \mathcal{D}' 's goal: distinguish p from f
- \mathcal{D}' simulates the oracles of \mathcal{D} :
- Once ${\mathcal D}$ makes its final guess, ${\mathcal D}'$ makes the same guess
- \mathcal{D}' success probability turns out to be at least that of \mathcal{D} : $\Delta_{\mathcal{D}} (\mathsf{CTR}[p] \ ; \ \mathsf{CTR}[f]) \leq \Delta_{\mathcal{D}'} (p \ ; \ f)$

- \mathcal{D} 's goal: distinguish CTR[p] from CTR[f]
- We replace ${\mathcal D}$ by a distinguisher ${\mathcal D}'$ that has more power
- \mathcal{D}' 's goal: distinguish p from f
- \mathcal{D}' simulates the oracles of \mathcal{D} :
- Once ${\mathcal D}$ makes its final guess, ${\mathcal D}'$ makes the same guess
- \mathcal{D}' success probability turns out to be at least that of \mathcal{D} : $\Delta_{\mathcal{D}} (\mathsf{CTR}[p] \ ; \ \mathsf{CTR}[f]) \leq \Delta_{\mathcal{D}'} (p \ ; \ f)$
- This is a well-known distance, called the RP-RF switch

- Distinguisher \mathcal{D}' gets q random n-bit samples:
 - real world: without replacement
 - ideal world: with replacement

- Distinguisher \mathcal{D}' gets q random n-bit samples:
 - real world: without replacement
 - ideal world: with replacement
- The two worlds can only be distinguished if f ever outputs colliding samples
Proof: From CTR[p] to CTR[f] (2/2)

- Distinguisher \mathcal{D}' gets q random n-bit samples:
 - real world: without replacement
 - ideal world: with replacement
- The two worlds can only be distinguished if f ever outputs colliding samples
- This happens with probability at most $\binom{q}{2}/2^n$

Proof: From CTR[p] to CTR[f] (2/2)

- Distinguisher \mathcal{D}' gets q random n-bit samples:
 - real world: without replacement
 - ideal world: with replacement
- The two worlds can only be distinguished if f ever outputs colliding samples
- This happens with probability at most $\binom{q}{2}/2^n$
- Hence: $\Delta_{\mathcal{D}'}\left(p \; ; \; f \right) \leq {\binom{q}{2}}/{2^n}$

Proof: From CTR[f] **to** RO

- In real world: f is a random function that is never evaluated for repeated $N ||\langle i \rangle$
- In ideal world: RO is a random oracle that is never evaluated for repeated N

Proof: From CTR[f] **to** RO

- In real world: f is a random function that is never evaluated for repeated $N \| \langle i \rangle$
- In ideal world: RO is a random oracle that is never evaluated for repeated N
- Hence: $\Delta_{\mathcal{D}} \left(\mathsf{CTR}[f] ; \mathsf{RO} \right) = 0$

• Recall goal: bounding $\mathbf{Adv}_{\mathsf{CTR}[\mathsf{AES}]}^{\mathrm{prf}}(\mathcal{D})$ for any \mathcal{D} querying q blocks in t time

- Recall goal: bounding $\mathbf{Adv}_{\mathsf{CTR[AES]}}^{\mathrm{prf}}(\mathcal{D})$ for any \mathcal{D} querying q blocks in t time
- From the triangle inequality and bounds on the three individual terms:

 $\begin{aligned} \mathbf{Adv}_{\mathsf{CTR}[\mathsf{AES}]}^{\mathrm{prf}}(\mathcal{D}) &= \Delta_{\mathcal{D}} \left(\mathsf{CTR}[\mathsf{AES}_K] \; ; \; \mathsf{RO} \right) \\ &\leq \Delta_{\mathcal{D}} \left(\mathsf{CTR}[\mathsf{AES}_K] \; ; \; \mathsf{CTR}[p] \right) + \Delta_{\mathcal{D}} \left(\mathsf{CTR}[p] \; ; \; \mathsf{CTR}[f] \right) + \Delta_{\mathcal{D}} \left(\mathsf{CTR}[f] \; ; \; \mathsf{RO} \right) \\ &\leq \mathbf{Adv}_{\mathsf{AES}}^{\mathrm{prp}}(q, t') + \binom{q}{2} / 2^n + 0 \end{aligned}$

- Recall goal: bounding $\mathbf{Adv}_{\mathsf{CTR}[\mathsf{AES}]}^{\mathrm{prf}}(\mathcal{D})$ for any \mathcal{D} querying q blocks in t time
- From the triangle inequality and bounds on the three individual terms:

 $\begin{aligned} \mathbf{Adv}_{\mathsf{CTR}[\mathsf{AES}]}^{\mathrm{prf}}(\mathcal{D}) &= \Delta_{\mathcal{D}} \left(\mathsf{CTR}[\mathsf{AES}_K] \; ; \; \mathsf{RO} \right) \\ &\leq \Delta_{\mathcal{D}} \left(\mathsf{CTR}[\mathsf{AES}_K] \; ; \; \mathsf{CTR}[p] \right) + \Delta_{\mathcal{D}} \left(\mathsf{CTR}[p] \; ; \; \mathsf{CTR}[f] \right) + \Delta_{\mathcal{D}} \left(\mathsf{CTR}[f] \; ; \; \mathsf{RO} \right) \\ &\leq \mathbf{Adv}_{\mathsf{AES}}^{\mathrm{prp}}(q, t') + \binom{q}{2} / 2^n + 0 \end{aligned}$

• As this reasoning holds for all distinguishers \mathcal{D} querying q blocks in t time, we obtain:

$$\mathbf{Adv}_{\mathsf{CTR}[\mathsf{AES}]}^{\mathrm{prf}}(q,t) \leq \mathbf{Adv}_{\mathsf{AES}}^{\mathrm{prp}}(q,t') + \binom{q}{2}/2^{n}$$

Beyond Birthday Bound Security

For a random selection of 23 people, with a probability at least 50% two of them share the same birthday

For a random selection of 23 people, with a probability at least 50% two of them share the same birthday

General Birthday Paradox

- Consider space $\mathcal{S} = \{0, 1\}^n$
- Randomly draw q elements from ${\mathcal S}$
- Expected number of collisions:

$$\mathbf{Ex}\left[\mathsf{collisions}\right] = \binom{q}{2}/2^n$$

For a random selection of 23 people, with a probability at least 50% two of them share the same birthday

General Birthday Paradox

- Consider space $\mathcal{S} = \{0, 1\}^n$
- Randomly draw q elements from ${\mathcal S}$
- Expected number of collisions:

$$\mathbf{Ex}\left[\mathsf{collisions}
ight] = inom{q}{2}/2^n$$

• Important phenomenon in cryptography

HAPPY BIRTHDAY

• Security bound:

$$\mathbf{Adv}_{\mathsf{CTR}[E]}^{\mathrm{prf}}(q,t) \leq \mathbf{Adv}_{E}^{\mathrm{prp}}(q,t') + \binom{q}{2}/2^{n}$$

• Security bound:

$$\mathbf{Adv}_{\mathsf{CTR}[E]}^{\mathrm{prf}}(q,t) \leq \mathbf{Adv}_{E}^{\mathrm{prp}}(q,t') + \binom{q}{2}/2^{n}$$

- CTR[E] is secure as long as:
 - E_K is a secure PRP
 - Number of encrypted blocks $q \ll 2^{n/2}$

- $M_i \oplus C_i$ is distinct for all q blocks
- Unlikely to happen for random string

- $M_i \oplus C_i$ is distinct for all q blocks
- Unlikely to happen for random string
- Distinguishing attack in $q \approx 2^{n/2}$ blocks:

$$\binom{q}{2}/2^n \lesssim \mathbf{Adv}_{\mathsf{CTR}[E]}^{\mathrm{prf}}(q,t)$$

Counter Mode Based on Pseudorandom Function

Counter Mode Based on Pseudorandom Function

• Security bound:

$$\mathbf{Adv}^{\mathrm{prf}}_{\mathsf{CTR}[F]}(q,t) \leq \mathbf{Adv}^{\mathrm{prf}}_F(q,t')$$

Counter Mode Based on Pseudorandom Function

• Security bound:

$$\mathbf{Adv}_{\mathsf{CTR}[F]}^{\mathrm{prf}}(q,t) \le \mathbf{Adv}_{F}^{\mathrm{prf}}(q,t')$$

- CTR[F] is secure as long as F_K is a secure PRF
- Birthday bound security loss disappeared

Counter Mode Based on XoP

• Security bound [Pat08, DHT17]:

 $\mathbf{Adv}^{\mathrm{prf}}_{\mathsf{CTR}[\mathsf{XoP}]}(q,t) \leq \mathbf{Adv}^{\mathrm{prf}}_{\mathsf{XoP}}(q,t')$

Counter Mode Based on XoP

• Security bound [Pat08, DHT17]:

$$\begin{aligned} \mathbf{Adv}_{\mathsf{CTR}[\mathsf{XoP}]}^{\mathrm{prf}}(q,t) &\leq \mathbf{Adv}_{\mathsf{XoP}}^{\mathrm{prf}}(q,t') \\ &\leq \mathbf{Adv}_{E}^{\mathrm{prp}}(2q,t'') + q/2^n \end{aligned}$$

Counter Mode Based on XoP

• Security bound [Pat08, DHT17]:

$$\begin{split} \mathbf{Adv}_{\mathsf{CTR}[\mathsf{XoP}]}^{\mathrm{prf}}(q,t) &\leq \mathbf{Adv}_{\mathsf{XoP}}^{\mathrm{prf}}(q,t') \\ &\leq \mathbf{Adv}_{E}^{\mathrm{prp}}(2q,t'') + q/2^n \end{split}$$

• Beyond birthday bound but 2x as expensive as CTR[E]

CENC by Iwata [Iwa06]

• One subkey used for $w \ge 1$ encryptions

CENC by Iwata [Iwa06]

- One subkey used for $w \ge 1$ encryptions
- Almost as expensive as CTR[E]

- One subkey used for $w \ge 1$ encryptions
- Almost as expensive as CTR[E]
- Security bound [IMV16]:

$$\begin{split} \mathbf{Adv}_{\mathsf{CTR}[\mathsf{XoP}[w]]}^{\mathrm{prf}}(q,t) &\leq \mathbf{Adv}_{\mathsf{XoP}[w]}^{\mathrm{prf}}(q,t') \\ &\leq \mathbf{Adv}_{E}^{\mathrm{prp}}((w+1)q,t'') + wq/2^{n} \end{split}$$

- One subkey used for $w \ge 1$ encryptions
- Almost as expensive as CTR[E]
- Security bound [IMV16]:

$$\begin{split} \mathbf{Adv}_{\mathsf{CTR}[\mathsf{XoP}[w]]}^{\mathrm{prf}}(q,t) &\leq \mathbf{Adv}_{\mathsf{XoP}[w]}^{\mathrm{prf}}(q,t') \\ &\leq \mathbf{Adv}_{E}^{\mathrm{prp}}((w+1)q,t'') + wq/2' \end{split}$$

• Security of XoP and XoP[w] can be proven using mirror theory [Pat03]

Accordion Modes

- Message M encrypted to ciphertext C with secret key K
- Fixed block size

- Message M encrypted to ciphertext C with secret key K
- Fixed block size
- In order to encrypt variable sized messages, we need a mode of operation
 - These modes require a nonce

- Alternatively, we can design a wide block cipher
- A wide block cipher is a block cipher with a variable block size

- Alternatively, we can design a wide block cipher
- A wide block cipher is a block cipher with a variable block size
- Every part of the output (ideally) depends on every part of the input

Tweakable Wide Block Ciphers

- A tweakable wide block cipher additionally has a tweak
- Tweak W public, ciphertext completely changes with a different tweak

Tweakable Wide Block Ciphers

- A tweakable wide block cipher additionally has a tweak
- Tweak W public, ciphertext completely changes with a different tweak
- Useful for e.g. disk encryption, where every sector gets its own tweak

NIST's Incentive to Develop Accordion Mode

- March 2024: NIST announced quest for tweakable wide block ciphers
- There is a workshop right now aimed to discuss ideas on requirements, designs, security goals, targets, ...

NIST's Incentive to Develop Accordion Mode

- March 2024: NIST announced quest for tweakable wide block ciphers
- There is a workshop right now aimed to discuss ideas on requirements, designs, security goals, targets, ...
- Quote from the website:

NIST plans to develop a new mode of the AES that is a tweakable, variable-input-length-strong pseudorandom permutation (VIL-SPRP) with a reduction proof to the security of the underlying block cipher.

NIST's Incentive to Develop Accordion Mode

- March 2024: NIST announced quest for tweakable wide block ciphers
- There is a workshop right now aimed to discuss ideas on requirements, designs, security goals, targets, ...
- Quote from the website:

NIST plans to develop a new mode of the AES that is a tweakable, variable-input-length-strong pseudorandom permutation (VIL-SPRP) with a reduction proof to the security of the underlying block cipher.

Now: high-level idea of our recent proposals
Docked Double Decker [GDM19]

Building Blocks

- F_K : stream cipher
- H_L : universal hash

Construction

- Feistel-like structure
- Outer lanes of fixed size
- Inner lane of variable size

Goals

- Instantiation using components as used in NIST standardized schemes:
 - AES [DR02, DR20]
 - Operations in binary extension fields, e.g., as in GHASH [MV04]

Goals

- Instantiation using components as used in NIST standardized schemes:
 - AES [DR02, DR20]
 - Operations in binary extension fields, e.g., as in GHASH [MV04]
- Present birthday bound secure *ddd-AES* and beyond birthday bound secure *bbb-ddd-AES* that seamlessly fit NIST's accordion idea

Goals

- Instantiation using components as used in NIST standardized schemes:
 - AES [DR02, DR20]
 - Operations in binary extension fields, e.g., as in GHASH [MV04]
- Present birthday bound secure *ddd-AES* and beyond birthday bound secure *bbb-ddd-AES* that seamlessly fit NIST's accordion idea

Hurdles

- AES is not a tweakable blockcipher
- AES is rather small (circular reasoning?)
- AES in typical stream cipher modes only gives birthday bound security

ddd-AES

- H_L instantiated using Polyval (as in GCM-SIV)
- F_K instantiated as variant of CTR: tweak used to randomize inputs to AES_K

ddd-AES

- H_L instantiated using Polyval (as in GCM-SIV)
- F_K instantiated as variant of CTR: tweak used to randomize inputs to AES_K

bbb-ddd-AES

- H_L instantiated using Polyval (as in GCM-SIV)
- F_K instantiated as variant of CENC: tweak used to randomize inputs to AES_K

ddd-AES

- H_L instantiated using Polyval (as in GCM-SIV)
- F_K instantiated as variant of CTR: tweak used to randomize inputs to AES_K

bbb-ddd-AES

- H_L instantiated using Polyval (as in GCM-SIV)
- F_K instantiated as variant of CENC: tweak used to randomize inputs to AES_K

Instantiations turn out to be very competitive and well parallelizable

Implementation Design of *bbb-ddd-AES* (512-Bit Message)

Implementation Design of *bbb-ddd-AES* (512-Bit Message)

Provable Security in Symmetric Cryptography

- Basic modes proved secure using quite simple ideas
- More sophisticated modes require nice tricks in graph theory
- Often this boils down to trying to upper or lower bound solutions

Provable Security in Symmetric Cryptography

- Basic modes proved secure using quite simple ideas
- More sophisticated modes require nice tricks in graph theory
- Often this boils down to trying to upper or lower bound solutions

Current Directions in Provable Security

- Difficulties in beyond birthday bound security
- Accordion modes
- Arithmetization-oriented modes

Provable Security in Symmetric Cryptography

- Basic modes proved secure using quite simple ideas
- More sophisticated modes require nice tricks in graph theory
- Often this boils down to trying to upper or lower bound solutions

Current Directions in Provable Security

- Difficulties in beyond birthday bound security
- Accordion modes
- Arithmetization-oriented modes

Thank you for your attention!

References i

- Wei Dai, Viet Tung Hoang, and Stefano Tessaro.

Information-Theoretic Indistinguishability via the Chi-Squared Method.

In Jonathan Katz and Hovav Shacham, editors, *Advances in Cryptology - CRYPTO 2017 - 37th Annual International Cryptology Conference, Santa Barbara, CA, USA, August 20-24, 2017, Proceedings, Part III*, volume 10403 of *Lecture Notes in Computer Science*, pages 497–523. Springer, 2017.

Christoph Dobraunig, Krystian Matusiewicz, Bart Mennink, and Alexander Tereschenko. Efficient Instances of Docked Double Decker With AES, and Application to Authenticated Encryption.

Cryptology ePrint Archive, Report 2024/084, 2024. https://eprint.iacr.org/2024/084.

References ii

- Joan Daemen and Vincent Rijmen.

The Design of Rijndael: AES - The Advanced Encryption Standard.

Information Security and Cryptography. Springer, 2002.

🥫 Joan Daemen and Vincent Rijmen.

The Design of Rijndael - The Advanced Encryption Standard (AES), Second Edition.

Information Security and Cryptography. Springer, 2020.

 Aldo Gunsing, Joan Daemen, and Bart Mennink.
Deck-Based Wide Block Cipher Modes and an Exposition of the Blinded Keyed Hashing Model.

IACR Trans. Symmetric Cryptol., 2019(4):1–22, 2019.

References iii

- Tetsu Iwata, Bart Mennink, and Damian Vizár.

CENC is Optimally Secure.

Cryptology ePrint Archive, Report 2016/1087, 2016. http://eprint.iacr.org/2016/1087.

Tetsu Iwata.

New Blockcipher Modes of Operation with Beyond the Birthday Bound Security.

In Matthew J. B. Robshaw, editor, *Fast Software Encryption, 13th International Workshop, FSE 2006, Graz, Austria, March 15-17, 2006, Revised Selected Papers,* volume 4047 of *Lecture Notes in Computer Science,* pages 310–327. Springer, 2006.

References iv

David A. McGrew and John Viega.

The Security and Performance of the Galois/Counter Mode (GCM) of Operation. In Anne Canteaut and Kapalee Viswanathan, editors, *Progress in Cryptology -INDOCRYPT 2004, 5th International Conference on Cryptology in India, Chennai, India, December 20-22, 2004, Proceedings*, volume 3348 of *Lecture Notes in Computer Science*, pages 343–355. Springer, 2004.

🥫 Jacques Patarin.

Luby-Rackoff: 7 Rounds Are Enough for $2^{n(1-\epsilon)}$ Security.

In Dan Boneh, editor, Advances in Cryptology - CRYPTO 2003, 23rd Annual International Cryptology Conference, Santa Barbara, California, USA, August 17-21, 2003, Proceedings, volume 2729 of Lecture Notes in Computer Science, pages 513–529. Springer, 2003.

References v

Jacques Patarin.

A Proof of Security in ${\cal O}(2^n)$ for the Xor of Two Random Permutations.

In Reihaneh Safavi-Naini, editor, *Information Theoretic Security, Third International Conference, ICITS 2008, Calgary, Canada, August 10-13, 2008, Proceedings*, volume 5155 of *Lecture Notes in Computer Science*, pages 232–248. Springer, 2008.