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Keyed Symmetric Cryptography



General Setting

A ←−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ B

−−−→

←
−−−

• Two parties, Alice and Bob, communicate over a public channel

• They have agreed on a joint key and use it to transmit data

• A malicious party, Eve, may try to exploit/disturb/. . . the communication

• In symmetric cryptography, we are concerned with two main security properties:

• Confidentiality (or data privacy): Eve cannot learn anything about data
• Authenticity: Eve cannot manipulate the data

In this presentation I will focus on confidentiality
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One-Time Pad Encryption

Encryption:

M = 1 1 1 1 0 0 1 0 1 1 0 0 0 1 0

K = 0 1 0 1 1 1 0 0 0 1 1 0 1 1 0
⊕

C = 1 0 1 0 1 1 1 0 1 0 1 0 1 0 0

Decryption:

C = 1 0 1 0 1 1 1 0 1 0 1 0 1 0 0

K = 0 1 0 1 1 1 0 0 0 1 1 0 1 1 0
⊕

M = 1 1 1 1 0 0 1 0 1 1 0 0 0 1 0
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Stream Encryption

Properties of One-Time Pad

• One-time pad is a type of stream encryption

• Perfect secrecy (against an attacker that has no knowledge about the key)

• Given C, an attacker correctly guesses M with probability 1/2|K|

• Key must be as long as the plaintext!

Stream Ciphers

• Generate long keystream Z from short key K

• Much more practical!

• Security degrades:

1. Key guessing still succeeds with probability 1/2|K| but now with shorter key

2. The stream cipher mechanism is another focal point of attack
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Stream Cipher: Vigenère (≈ 1553, Wikipedia)

the
UHU stic
stream
cipher

K Z = K∥K∥K∥ · · ·

• Key guessing:

• Exhaustive key search succeeds with probability Pr (success) = 1/2|K|

• Ciphertext Only Attack:

• Long ciphertexts leak info via letter frequencies

• Known Plaintext Attack:

• Knowledge of short plaintext sequence reveals full keystream

We need something more sophisticated!
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How to Model Security?



Modern Stream Ciphers

stream
cipher

D, ℓ

K

Z = z1z2 . . . zℓ\

n

\
k

\

∗

• Using key K, diversifier D, and length ℓ, keystream Z of length ℓ is generated

• The diversifier must be different for each message that is transmitted

• Example: data streams, e.g., pay TV and telephone, often split data in relatively

short, numbered, frames. The frame number may serve as diversifier:

Ci = Mi ⊕ SC(K, i, |Mi|)

When is a stream cipher strong enough?
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Stream Cipher Security, Intuition (1/3)

stream
cipher

D, ℓ

K

Z = z1z2 . . . zℓ\

n

\
k

\

∗

• Kerckhoffs principle: security should be based on secrecy of K

• Thus: attacker knows the algorithm SC

• Attacker can also learn some amount of input-output combinations of SCK

• Intuitively, these data do not expose any irregularities (except for repetition)

• SCK should behave like a random oracle
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Intermezzo: Random Oracle

D Z

. . . . . .

. . . . . .

. . . . . .

. . . . . .

Random Oracle

• A database of input-output tuples

• Initially empty

• New query (D, ℓ):

• If D is not in the database:

• generate ℓ random bits Z
• add (D,Z) to the list
• return Z

• If D is in the database,

look at corresponding Z:

• If |Z| ≥ ℓ:

return first ℓ bits of Z

• If |Z| < ℓ:

generate ℓ− |Z| random bits Z ′, append Z ′ to Z, return Z∥Z ′

• update (D,Z) in the list

8 / 40
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Stream Cipher Security, Intuition (2/3)

real world ideal world

SCK
stream cipher

RO
random oracle

• We thus want to “compare” SCK with a random oracle RO

• We model a distinguisher D that is given oracle access to either of the worlds

• We toss a coin:

• head: D is given oracle access to SCK

• tail: D is given oracle access to RO

• D does a priori not know which oracle it is given access to
• D can now make queries (D, ℓ) to receive Z
• At the end, D has to guess the outcome of the toss coin (head/tail)

9 / 40



Stream Cipher Security, Intuition (2/3)

real world ideal world

SCK
stream cipher

RO
random oracle

distinguisher D

• We thus want to “compare” SCK with a random oracle RO

• We model a distinguisher D that is given oracle access to either of the worlds

• We toss a coin:

• head: D is given oracle access to SCK

• tail: D is given oracle access to RO

• D does a priori not know which oracle it is given access to
• D can now make queries (D, ℓ) to receive Z
• At the end, D has to guess the outcome of the toss coin (head/tail)

9 / 40



Stream Cipher Security, Intuition (2/3)

real world ideal world

SCK
stream cipher

RO
random oracle

distinguisher D

• We thus want to “compare” SCK with a random oracle RO

• We model a distinguisher D that is given oracle access to either of the worlds

• We toss a coin:

• head: D is given oracle access to SCK

• tail: D is given oracle access to RO

• D does a priori not know which oracle it is given access to

• D can now make queries (D, ℓ) to receive Z
• At the end, D has to guess the outcome of the toss coin (head/tail)

9 / 40



Stream Cipher Security, Intuition (2/3)

real world ideal world

SCK
stream cipher

RO
random oracle

distinguisher D

(D, ℓ;Z)

• We thus want to “compare” SCK with a random oracle RO

• We model a distinguisher D that is given oracle access to either of the worlds

• We toss a coin:

• head: D is given oracle access to SCK

• tail: D is given oracle access to RO

• D does a priori not know which oracle it is given access to
• D can now make queries (D, ℓ) to receive Z

• At the end, D has to guess the outcome of the toss coin (head/tail)

9 / 40



Stream Cipher Security, Intuition (2/3)

real world ideal world

SCK
stream cipher

RO
random oracle

distinguisher D

(D, ℓ;Z)

• We thus want to “compare” SCK with a random oracle RO

• We model a distinguisher D that is given oracle access to either of the worlds

• We toss a coin:

• head: D is given oracle access to SCK

• tail: D is given oracle access to RO

• D does a priori not know which oracle it is given access to
• D can now make queries (D, ℓ) to receive Z
• At the end, D has to guess the outcome of the toss coin (head/tail)

9 / 40



Stream Cipher Security, Intuition (3/3)

real world ideal world

SCK
stream cipher

RO
random oracle

distinguisher D

(D, ℓ;Z)

• Denote D’s success probability in correctly guessing head/tail by Pr (success)

• D can always guess and succeeds with probability ≥ 1/2, so we scale the

probability to D’s advantage:

Adv(D) = 2 ·Pr (success)− 1

= Pr
(
DSCK returns head

)
−Pr

(
DRO returns head

)

• D is limited by certain constraints

• Data (or online) complexity q: total cost of queries D can make
• Computation (or time) complexity t: everything that D can do “on its own”
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Stream Cipher Security, Formal

real world ideal world

SCK
stream cipher

RO
random oracle

distinguisher D

(D, ℓ;Z)

• Two oracles: SCK (for secret key K) and RO (secret)

• Distinguisher D has query access to one of these

• D tries to determine which oracle it communicates with

• Its advantage is defined as:

Advprf
SC (D) = ∆D (SCK ; RO) =

∣∣Pr
(
DSCK = 1

)
−Pr

(
DRO = 1

)∣∣
• Advprf

SC (q, t): maximum advantage over any distinguisher with complexity q, t
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Generic Stream Cipher Design (1/2)

• Classical approach: LFSRs strengthened with non-linear component

• Modern approach: building construction from smaller cryptographic primitive

• Suppose (for the sake of argument):

• we know how to build a strong stream cipher F with fixed-length output
• we want to build a stream cipher with variable-length output

· · · FD′

K ′

Z ′\

128

\
k

\

128
· · ·D, ℓ

K

Z = z1z2 . . . zℓ\

96

\
k

\

∗
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Generic Stream Cipher Design (2/2)

Design

• Feed K to primitive

• Evaluate primitive as often as needed, with D

concatenated with counter

• Concatenate outputs:

Z = Z1 ∥ Z2 ∥ Z3 ∥ · · ·

Security

• If FK is hard to distinguish from a RO′

• Then construction is hard to distinguish from RO

• For the purists: Advprf
SC[F ](q, t) ≤ Advprf

F (q, t′)

F
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how to easily construct a function
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Block Ciphers

EM

K

C\

n

\
k

\

n

E−1C

K

M\

n

\
k

\

n

• Using key K, message M is bijectively transformed to ciphertext C

• Key, plaintext, and ciphertext are typically of fixed size

• For fixed key, EK is invertible and the inverse is denoted as E−1
K

• Example [DR02]:

AES-128 : {0, 1}128 × {0, 1}128 → {0, 1}128

(K,M) 7→ C

• A good block cipher should behave like a random permutation
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Block Cipher Security

real world ideal world

EK
block cipher

p
random permutation

distinguisher D

(M ;C)

• Two oracles: EK (for secret key K) and p (secret)

• Distinguisher D has query access to one of these

• D tries to determine which oracle it communicates with

• Its advantage is defined as:

Advprp
E (D) = ∆D (EK ; p) =

∣∣Pr
(
DEK = 1

)
−Pr (Dp = 1)

∣∣
• Advprp

E (q, t): maximum advantage over any D with query/time complexity q/t

15 / 40



Block Cipher Security

real world ideal world

EK
block cipher

p
random permutation

distinguisher D

(M ;C)

• Two oracles: EK (for secret key K) and p (secret)

• Distinguisher D has query access to one of these

• D tries to determine which oracle it communicates with

• Its advantage is defined as:

Advprp
E (D) = ∆D (EK ; p) =

∣∣Pr
(
DEK = 1

)
−Pr (Dp = 1)

∣∣
• Advprp

E (q, t): maximum advantage over any D with query/time complexity q/t

15 / 40



Block Cipher Security

real world ideal world

EK
block cipher

p
random permutation

distinguisher D

(M ;C)

• Two oracles: EK (for secret key K) and p (secret)

• Distinguisher D has query access to one of these

• D tries to determine which oracle it communicates with

• Its advantage is defined as:

Advprp
E (D) = ∆D (EK ; p) =

∣∣Pr
(
DEK = 1

)
−Pr (Dp = 1)

∣∣
• Advprp

E (q, t): maximum advantage over any D with query/time complexity q/t

15 / 40



Block Cipher Security

real world ideal world

EK
block cipher

p
random permutation

distinguisher D

(M ;C)

• Two oracles: EK (for secret key K) and p (secret)

• Distinguisher D has query access to one of these

• D tries to determine which oracle it communicates with

• Its advantage is defined as:

Advprp
E (D) = ∆D (EK ; p) =

∣∣Pr
(
DEK = 1

)
−Pr (Dp = 1)

∣∣

• Advprp
E (q, t): maximum advantage over any D with query/time complexity q/t

15 / 40



Block Cipher Security

real world ideal world

EK
block cipher

p
random permutation

distinguisher D

(M ;C)

• Two oracles: EK (for secret key K) and p (secret)

• Distinguisher D has query access to one of these

• D tries to determine which oracle it communicates with

• Its advantage is defined as:

Advprp
E (D) = ∆D (EK ; p) =

∣∣Pr
(
DEK = 1

)
−Pr (Dp = 1)

∣∣
• Advprp

E (q, t): maximum advantage over any D with query/time complexity q/t

15 / 40



Counter Mode Encryption



Counter (CTR) Mode

EK EK EK EK· · ·

N∥⟨1⟩ N∥⟨2⟩ N∥⟨3⟩ N∥⟨ℓ⟩· · ·

M1 M2 M3 Mℓ

C1 C2 C3 Cℓ· · ·

Features

• Stream-based encryption mode

• Fully parallelizable (encryption and decryption) and extremely simple

• Decryption needs no E−1
K

Security

• “Hopefully” secure as long as N is never repeated and EK is a secure PRP

• Let us investigate that!
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Security of Counter Mode Based on AES

• Let us consider counter mode based on AES: CTR[AESK ]

AESK AESK AESK AESK· · ·

N∥⟨1⟩ N∥⟨2⟩ N∥⟨3⟩ N∥⟨ℓ⟩· · ·

M1 M2 M3 Mℓ

C1 C2 C3 Cℓ· · ·

• We focus on the keystream generation portion

• Assumptions

• Distinguisher never repeats nonce N
• AES itself is sufficiently secure: Advprp

AES(q, t) is small
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Security of Counter Mode Based on AES: Model

real world ideal world

CTR[AESK]
counter mode with AES

RO
random oracle

distinguisher D

(N,M ;C)

• Two oracles: CTR[AESK] (for secret key K) and RO (secret)

• Distinguisher D has query access to one of these

• D tries to determine which oracle it communicates with

• Its advantage is defined as:

Advprf
CTR[AES](D) = ∆D (CTR[AESK ] ; RO) =

∣∣∣Pr
(
DCTR[AESK ] = 1

)
−Pr

(
DRO = 1

)∣∣∣
• Advprf

CTR[AES](q, t): maximum advantage over any D with q/t blocks/time
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Proof: Overview

real world ideal world

CTR[AESK ]
counter mode with AES

RO
random oracle

distinguisher D

(N,M ;C) (N,M ;C)

• For any (fixed) distinguisher D (later, we supremize over all), we have to bound:

Advprf
CTR[AES](D) = ∆D (CTR[AESK ] ; RO) =

∣∣∣Pr
(
DCTR[AESK ] = 1

)
−Pr

(
DRO = 1

)∣∣∣

• We add intermediate worlds CTR[p] and CTR[f ] for random p and f

• By the triangle inequality:

∆D (CTR[AESK ] ; RO) ≤ ∆D (CTR[AESK ] ; CTR[p]) + ∆D (CTR[p] ; CTR[f ]) + ∆D (CTR[f ] ; RO)

19 / 40



Proof: Overview

real world intermediate 1 intermediate 2 ideal world
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Proof: From CTR[AESK ] to CTR[p]

• D’s goal: distinguish CTR[AESK ] from CTR[p]

• We replace D by a distinguisher D′ that has more power

• D′’s goal: distinguish AESK from p

• D′ simulates the oracles of D:
• Once D makes its final guess, D′ makes the same guess

• D′ success probability turns out to be at least that of D:
∆D (CTR[AESK ] ; CTR[p]) ≤ ∆D′ (AESK ; p)

• But we have seen this distance before:

∆D′ (AESK ; p) = Advprp
AES(D′) ≤ Advprp

AES(q, t
′)

(t′ slightly larger than t)

AESK p

D′

• ℓ = ⌈|M |/n⌉
• for i = 1, . . . , ℓ:

query Xi = N∥⟨i⟩ to get Yi

• return first |M | bits of
C = Y1∥ . . . ∥Yℓ ⊕M

D

X Y X Y

N,M C
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Proof: From CTR[p] to CTR[f ] (1/2)

• D’s goal: distinguish CTR[p] from CTR[f ]

• We replace D by a distinguisher D′ that has more power

• D′’s goal: distinguish p from f

• D′ simulates the oracles of D:
• Once D makes its final guess, D′ makes the same guess

• D′ success probability turns out to be at least that of D:
∆D (CTR[p] ; CTR[f ]) ≤ ∆D′ (p ; f)

• This is a well-known distance, called the RP-RF switch

p f

D′

• ℓ = ⌈|M |/n⌉
• for i = 1, . . . , ℓ:

query Xi = N∥⟨i⟩ to get Yi

• return first |M | bits of
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Proof: From CTR[p] to CTR[f ] (2/2)

real world ideal world

p
random permutation

f
random function

distinguisher D′

• Distinguisher D′ gets q random n-bit samples:

• real world: without replacement
• ideal world: with replacement

• The two worlds can only be distinguished if f ever outputs colliding samples

• This happens with probability at most
(
q
2

)
/2n

• Hence: ∆D′ (p ; f) ≤
(
q
2

)
/2n
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Proof: From CTR[f ] to RO

f f f f· · ·

N∥⟨1⟩ N∥⟨2⟩ N∥⟨3⟩ N∥⟨ℓ⟩· · ·

M1 M2 M3 Mℓ

C1 C2 C3 Cℓ· · ·

RO

N

M

C

distinguisher D

(N,M ;C)

• In real world: f is a random function that is never evaluated for repeated N∥⟨i⟩
• In ideal world: RO is a random oracle that is never evaluated for repeated N

• Hence: ∆D (CTR[f ] ; RO) = 0
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Proof: Conclusion

• Recall goal: bounding Advprf
CTR[AES](D) for any D querying q blocks in t time

• From the triangle inequality and bounds on the three individual terms:

Advprf
CTR[AES](D) = ∆D (CTR[AESK ] ; RO)

≤ ∆D (CTR[AESK ] ; CTR[p]) + ∆D (CTR[p] ; CTR[f ]) + ∆D (CTR[f ] ; RO)

≤ Advprp
AES(q, t

′) +

(
q

2

)
/2n + 0

• As this reasoning holds for all distinguishers D querying q blocks in t time, we

obtain:

Advprf
CTR[AES](q, t) ≤ Advprp

AES(q, t
′) +

(
q

2

)
/2n
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Beyond Birthday Bound Security



Birthday Paradox

For a random selection of 23 people, with a prob-

ability at least 50% two of them share the same

birthday

General Birthday Paradox

• Consider space S = {0, 1}n

• Randomly draw q elements from S
• Expected number of collisions:

Ex [collisions] =

(
q

2

)
/2n

• Important phenomenon in cryptography
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Counter Mode Based on Pseudorandom Permutation

N∥⟨1⟩ N∥⟨2⟩ N∥⟨ℓ⟩

EK EK
· · · · · · EK

M1

C1

M2

C2

Mℓ

Cℓ

• Security bound:

Advprf
CTR[E](q, t) ≤ Advprp

E (q, t′) +

(
q

2

)
/2n

• CTR[E] is secure as long as:

• EK is a secure PRP
• Number of encrypted blocks q ≪ 2n/2
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Counter Mode Based on Pseudorandom Function

N∥⟨1⟩ N∥⟨2⟩ N∥⟨ℓ⟩

FK FK
· · · · · · FK

M1

C1

M2

C2

Mℓ

Cℓ

• Security bound:

Advprf
CTR[F ](q, t) ≤ Advprf

F (q, t′)

• CTR[F ] is secure as long as FK is a secure PRF

• Birthday bound security loss disappeared
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Counter Mode Based on XoP

· · · · · ·EK EK EK EK EK EK

N∥⟨1⟩ N∥⟨2⟩ N∥⟨3⟩ N∥⟨4⟩ N∥⟨2ℓ−1⟩ N∥⟨2ℓ⟩

M1

C1

M2

C2

Mℓ

Cℓ

• Security bound [Pat08, DHT17]:

Advprf
CTR[XoP](q, t) ≤ Advprf

XoP(q, t
′)

≤ Advprp
E (2q, t′′) + q/2n

• Beyond birthday bound but 2x as expensive as CTR[E]
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CENC by Iwata [Iwa06]

· · · · · · · · ·EK EK EK EK EK EK EK EK

N∥⟨1⟩ N∥⟨2⟩ N∥⟨1⟩ N∥⟨3⟩ N∥⟨1⟩ N∥⟨w+1⟩ N∥⟨w+2⟩N∥⟨w+3⟩

M1

C1

M2

C2

Mw

Cw

Mw+1

Cw+1

• One subkey used for w ≥ 1 encryptions

• Almost as expensive as CTR[E]

• Security bound [IMV16]:

Advprf
CTR[XoP[w]](q, t) ≤ Advprf

XoP[w](q, t
′)

≤ Advprp
E ((w + 1)q, t′′) + wq/2n

• Security of XoP and XoP[w] can be proven using mirror theory [Pat03]
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Accordion Modes



Block Ciphers

EM
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• Message M encrypted to ciphertext C with secret key K

• Fixed block size

• In order to encrypt variable sized messages, we need a mode of operation

• These modes require a nonce
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Wide Block Ciphers
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• Alternatively, we can design a wide block cipher

• A wide block cipher is a block cipher with a variable block size

• Every part of the output (ideally) depends on every part of the input
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Tweakable Wide Block Ciphers
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• A tweakable wide block cipher additionally has a tweak

• Tweak W public, ciphertext completely changes with a different tweak

• Useful for e.g. disk encryption, where every sector gets its own tweak
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NIST’s Incentive to Develop Accordion Mode

• March 2024: NIST announced quest for tweakable wide block ciphers

• There is a workshop right now aimed to discuss ideas on requirements, designs,

security goals, targets, . . .

• Quote from the website:

NIST plans to develop a new mode of the AES that is a tweakable,

variable-input-length-strong pseudorandom permutation (VIL-SPRP) with a

reduction proof to the security of the underlying block cipher.

Now: high-level idea of our recent proposals
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Docked Double Decker [GDM19]

HL

FK

HL

∗
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W

0001

0010

FK

Building Blocks

• FK : stream cipher

• HL: universal hash

Construction

• Feistel-like structure

• Outer lanes of fixed size

• Inner lane of variable size
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Goals and Hurdles

Goals

• Instantiation using components as used in NIST standardized schemes:

• AES [DR02, DR20]
• Operations in binary extension fields, e.g., as in GHASH [MV04]

• Present birthday bound secure ddd -AES and beyond birthday bound secure

bbb-ddd -AES that seamlessly fit NIST’s accordion idea

Hurdles

• AES is not a tweakable blockcipher

• AES is rather small (circular reasoning?)

• AES in typical stream cipher modes only gives birthday bound security
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Efficient Instantiations of Docked Double Decker [DMMT24]

ddd-AES

• HL instantiated using Polyval (as in GCM-SIV)

• FK instantiated as variant of CTR: tweak used to randomize inputs to AESK

bbb-ddd-AES

• HL instantiated using Polyval (as in GCM-SIV)

• FK instantiated as variant of CENC: tweak used to randomize inputs to AESK

Instantiations turn out to be very competitive and well parallelizable
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Implementation Design of ddd-AES (512-Bit Message)
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Implementation Design of bbb-ddd-AES (512-Bit Message)
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Conclusion

Provable Security in Symmetric Cryptography

• Basic modes proved secure using quite simple ideas

• More sophisticated modes require nice tricks in graph theory

• Often this boils down to trying to upper or lower bound solutions

Current Directions in Provable Security

• Difficulties in beyond birthday bound security

• Accordion modes

• Arithmetization-oriented modes

Thank you for your attention!
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