
Security of Encryption Modes and an Exposition of Proof

Techniques

Bart Mennink

Radboud University (The Netherlands)

WCC 2024

June 21, 2024

1 / 40

Keyed Symmetric Cryptography

General Setting

A ←−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ B

−−−→

←
−−−

• Two parties, Alice and Bob, communicate over a public channel

• They have agreed on a joint key and use it to transmit data

• A malicious party, Eve, may try to exploit/disturb/. . . the communication

• In symmetric cryptography, we are concerned with two main security properties:

• Confidentiality (or data privacy): Eve cannot learn anything about data
• Authenticity: Eve cannot manipulate the data

In this presentation I will focus on confidentiality

2 / 40

General Setting

A ←−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ B−−−→

←
−−−

• Two parties, Alice and Bob, communicate over a public channel

• They have agreed on a joint key and use it to transmit data

• A malicious party, Eve, may try to exploit/disturb/. . . the communication

• In symmetric cryptography, we are concerned with two main security properties:

• Confidentiality (or data privacy): Eve cannot learn anything about data
• Authenticity: Eve cannot manipulate the data

In this presentation I will focus on confidentiality

2 / 40

General Setting

A ←−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ B−−−→

←
−−−

• Two parties, Alice and Bob, communicate over a public channel

• They have agreed on a joint key and use it to transmit data

• A malicious party, Eve, may try to exploit/disturb/. . . the communication

• In symmetric cryptography, we are concerned with two main security properties:

• Confidentiality (or data privacy): Eve cannot learn anything about data

• Authenticity: Eve cannot manipulate the data

In this presentation I will focus on confidentiality

2 / 40

General Setting

A ←−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ B−−−→

←
−−−

• Two parties, Alice and Bob, communicate over a public channel

• They have agreed on a joint key and use it to transmit data

• A malicious party, Eve, may try to exploit/disturb/. . . the communication

• In symmetric cryptography, we are concerned with two main security properties:

• Confidentiality (or data privacy): Eve cannot learn anything about data
• Authenticity: Eve cannot manipulate the data

In this presentation I will focus on confidentiality

2 / 40

General Setting

A ←−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ B−−−→

←
−−−

• Two parties, Alice and Bob, communicate over a public channel

• They have agreed on a joint key and use it to transmit data

• A malicious party, Eve, may try to exploit/disturb/. . . the communication

• In symmetric cryptography, we are concerned with two main security properties:

• Confidentiality (or data privacy): Eve cannot learn anything about data
• Authenticity: Eve cannot manipulate the data

In this presentation I will focus on confidentiality
2 / 40

One-Time Pad Encryption

Encryption:

M = 1 1 1 1 0 0 1 0 1 1 0 0 0 1 0

K = 0 1 0 1 1 1 0 0 0 1 1 0 1 1 0
⊕

C = 1 0 1 0 1 1 1 0 1 0 1 0 1 0 0

Decryption:

C = 1 0 1 0 1 1 1 0 1 0 1 0 1 0 0

K = 0 1 0 1 1 1 0 0 0 1 1 0 1 1 0
⊕

M = 1 1 1 1 0 0 1 0 1 1 0 0 0 1 0

3 / 40

One-Time Pad Encryption

Encryption:

M = 1 1 1 1 0 0 1 0 1 1 0 0 0 1 0

K = 0 1 0 1 1 1 0 0 0 1 1 0 1 1 0
⊕

C = 1 0 1 0 1 1 1 0 1 0 1 0 1 0 0

Decryption:

C = 1 0 1 0 1 1 1 0 1 0 1 0 1 0 0

K = 0 1 0 1 1 1 0 0 0 1 1 0 1 1 0
⊕

M = 1 1 1 1 0 0 1 0 1 1 0 0 0 1 0

3 / 40

One-Time Pad Encryption

Encryption:

M = 1 1 1 1 0 0 1 0 1 1 0 0 0 1 0

K = 0 1 0 1 1 1 0 0 0 1 1 0 1 1 0
⊕

C = 1 0 1 0 1 1 1 0 1 0 1 0 1 0 0

Decryption:

C = 1 0 1 0 1 1 1 0 1 0 1 0 1 0 0

K = 0 1 0 1 1 1 0 0 0 1 1 0 1 1 0
⊕

M = 1 1 1 1 0 0 1 0 1 1 0 0 0 1 0

3 / 40

One-Time Pad Encryption

Encryption:

M = 1 1 1 1 0 0 1 0 1 1 0 0 0 1 0

K = 0 1 0 1 1 1 0 0 0 1 1 0 1 1 0
⊕

C = 1 0 1 0 1 1 1 0 1 0 1 0 1 0 0

Decryption:

C = 1 0 1 0 1 1 1 0 1 0 1 0 1 0 0

K = 0 1 0 1 1 1 0 0 0 1 1 0 1 1 0
⊕

M = 1 1 1 1 0 0 1 0 1 1 0 0 0 1 0

3 / 40

Stream Encryption

Properties of One-Time Pad

• One-time pad is a type of stream encryption

• Perfect secrecy (against an attacker that has no knowledge about the key)

• Given C, an attacker correctly guesses M with probability 1/2|K|

• Key must be as long as the plaintext!

Stream Ciphers

• Generate long keystream Z from short key K

• Much more practical!

• Security degrades:

1. Key guessing still succeeds with probability 1/2|K| but now with shorter key

2. The stream cipher mechanism is another focal point of attack

4 / 40

Stream Encryption

Properties of One-Time Pad

• One-time pad is a type of stream encryption

• Perfect secrecy (against an attacker that has no knowledge about the key)

• Given C, an attacker correctly guesses M with probability 1/2|K|

• Key must be as long as the plaintext!

Stream Ciphers

• Generate long keystream Z from short key K

• Much more practical!

• Security degrades:

1. Key guessing still succeeds with probability 1/2|K| but now with shorter key

2. The stream cipher mechanism is another focal point of attack

4 / 40

Stream Encryption

Properties of One-Time Pad

• One-time pad is a type of stream encryption

• Perfect secrecy (against an attacker that has no knowledge about the key)

• Given C, an attacker correctly guesses M with probability 1/2|K|

• Key must be as long as the plaintext!

Stream Ciphers

• Generate long keystream Z from short key K

• Much more practical!

• Security degrades:

1. Key guessing still succeeds with probability 1/2|K| but now with shorter key

2. The stream cipher mechanism is another focal point of attack

4 / 40

Stream Encryption

Properties of One-Time Pad

• One-time pad is a type of stream encryption

• Perfect secrecy (against an attacker that has no knowledge about the key)

• Given C, an attacker correctly guesses M with probability 1/2|K|

• Key must be as long as the plaintext!

Stream Ciphers

• Generate long keystream Z from short key K

• Much more practical!

• Security degrades:

1. Key guessing still succeeds with probability 1/2|K| but now with shorter key

2. The stream cipher mechanism is another focal point of attack

4 / 40

Stream Encryption

Properties of One-Time Pad

• One-time pad is a type of stream encryption

• Perfect secrecy (against an attacker that has no knowledge about the key)

• Given C, an attacker correctly guesses M with probability 1/2|K|

• Key must be as long as the plaintext!

Stream Ciphers

• Generate long keystream Z from short key K

• Much more practical!

• Security degrades:

1. Key guessing still succeeds with probability 1/2|K| but now with shorter key

2. The stream cipher mechanism is another focal point of attack

4 / 40

Stream Encryption

Properties of One-Time Pad

• One-time pad is a type of stream encryption

• Perfect secrecy (against an attacker that has no knowledge about the key)

• Given C, an attacker correctly guesses M with probability 1/2|K|

• Key must be as long as the plaintext!

Stream Ciphers

• Generate long keystream Z from short key K

• Much more practical!

• Security degrades:

1. Key guessing still succeeds with probability 1/2|K| but now with shorter key

2. The stream cipher mechanism is another focal point of attack

4 / 40

Stream Cipher: Vigenère (≈ 1553, Wikipedia)

the
UHU stic
stream
cipher

K Z = K∥K∥K∥ · · ·

• Key guessing:

• Exhaustive key search succeeds with probability Pr (success) = 1/2|K|

• Ciphertext Only Attack:

• Long ciphertexts leak info via letter frequencies

• Known Plaintext Attack:

• Knowledge of short plaintext sequence reveals full keystream

We need something more sophisticated!

5 / 40

Stream Cipher: Vigenère (≈ 1553, Wikipedia)

the
UHU stic
stream
cipher

K Z = K∥K∥K∥ · · ·

• Key guessing:

• Exhaustive key search succeeds with probability Pr (success) = 1/2|K|

• Ciphertext Only Attack:

• Long ciphertexts leak info via letter frequencies

• Known Plaintext Attack:

• Knowledge of short plaintext sequence reveals full keystream

We need something more sophisticated!

5 / 40

Stream Cipher: Vigenère (≈ 1553, Wikipedia)

the
UHU stic
stream
cipher

K Z = K∥K∥K∥ · · ·

• Key guessing:

• Exhaustive key search succeeds with probability Pr (success) = 1/2|K|

• Ciphertext Only Attack:

• Long ciphertexts leak info via letter frequencies

• Known Plaintext Attack:

• Knowledge of short plaintext sequence reveals full keystream

We need something more sophisticated!

5 / 40

Stream Cipher: Vigenère (≈ 1553, Wikipedia)

the
UHU stic
stream
cipher

K Z = K∥K∥K∥ · · ·

• Key guessing:

• Exhaustive key search succeeds with probability Pr (success) = 1/2|K|

• Ciphertext Only Attack:

• Long ciphertexts leak info via letter frequencies

• Known Plaintext Attack:

• Knowledge of short plaintext sequence reveals full keystream

We need something more sophisticated!

5 / 40

Stream Cipher: Vigenère (≈ 1553, Wikipedia)

the
UHU stic
stream
cipher

K Z = K∥K∥K∥ · · ·

• Key guessing:

• Exhaustive key search succeeds with probability Pr (success) = 1/2|K|

• Ciphertext Only Attack:

• Long ciphertexts leak info via letter frequencies

• Known Plaintext Attack:

• Knowledge of short plaintext sequence reveals full keystream

We need something more sophisticated!
5 / 40

How to Model Security?

Modern Stream Ciphers

stream
cipher

D, ℓ

K

Z = z1z2 . . . zℓ\

n

\
k

\

∗

• Using key K, diversifier D, and length ℓ, keystream Z of length ℓ is generated

• The diversifier must be different for each message that is transmitted

• Example: data streams, e.g., pay TV and telephone, often split data in relatively

short, numbered, frames. The frame number may serve as diversifier:

Ci = Mi ⊕ SC(K, i, |Mi|)

When is a stream cipher strong enough?

6 / 40

Modern Stream Ciphers

stream
cipher

D, ℓ

K

Z = z1z2 . . . zℓ\

n

\
k

\

∗

• Using key K, diversifier D, and length ℓ, keystream Z of length ℓ is generated

• The diversifier must be different for each message that is transmitted

• Example: data streams, e.g., pay TV and telephone, often split data in relatively

short, numbered, frames. The frame number may serve as diversifier:

Ci = Mi ⊕ SC(K, i, |Mi|)

When is a stream cipher strong enough?

6 / 40

Modern Stream Ciphers

stream
cipher

D, ℓ

K

Z = z1z2 . . . zℓ\

n

\
k

\

∗

• Using key K, diversifier D, and length ℓ, keystream Z of length ℓ is generated

• The diversifier must be different for each message that is transmitted

• Example: data streams, e.g., pay TV and telephone, often split data in relatively

short, numbered, frames. The frame number may serve as diversifier:

Ci = Mi ⊕ SC(K, i, |Mi|)

When is a stream cipher strong enough?

6 / 40

Modern Stream Ciphers

stream
cipher

D, ℓ

K

Z = z1z2 . . . zℓ\

n

\
k

\

∗

• Using key K, diversifier D, and length ℓ, keystream Z of length ℓ is generated

• The diversifier must be different for each message that is transmitted

• Example: data streams, e.g., pay TV and telephone, often split data in relatively

short, numbered, frames. The frame number may serve as diversifier:

Ci = Mi ⊕ SC(K, i, |Mi|)

When is a stream cipher strong enough?

6 / 40

Stream Cipher Security, Intuition (1/3)

stream
cipher

D, ℓ

K

Z = z1z2 . . . zℓ\

n

\
k

\

∗

• Kerckhoffs principle: security should be based on secrecy of K

• Thus: attacker knows the algorithm SC

• Attacker can also learn some amount of input-output combinations of SCK

• Intuitively, these data do not expose any irregularities (except for repetition)

• SCK should behave like a random oracle

7 / 40

Stream Cipher Security, Intuition (1/3)

stream
cipher

D, ℓ

K

Z = z1z2 . . . zℓ\

n

\
k

\

∗

• Kerckhoffs principle: security should be based on secrecy of K

• Thus: attacker knows the algorithm SC

• Attacker can also learn some amount of input-output combinations of SCK

• Intuitively, these data do not expose any irregularities (except for repetition)

• SCK should behave like a random oracle

7 / 40

Stream Cipher Security, Intuition (1/3)

stream
cipher

D, ℓ

K

Z = z1z2 . . . zℓ\

n

\
k

\

∗

• Kerckhoffs principle: security should be based on secrecy of K

• Thus: attacker knows the algorithm SC

• Attacker can also learn some amount of input-output combinations of SCK

• Intuitively, these data do not expose any irregularities (except for repetition)

• SCK should behave like a random oracle

7 / 40

Intermezzo: Random Oracle

D Z

.

.

.

.

Random Oracle

• A database of input-output tuples

• Initially empty

• New query (D, ℓ):

• If D is not in the database:

• generate ℓ random bits Z
• add (D,Z) to the list
• return Z

• If D is in the database,

look at corresponding Z:

• If |Z| ≥ ℓ:

return first ℓ bits of Z

• If |Z| < ℓ:

generate ℓ− |Z| random bits Z ′, append Z ′ to Z, return Z∥Z ′

• update (D,Z) in the list

8 / 40

Intermezzo: Random Oracle

D Z

.

.

.

.

Random Oracle

• A database of input-output tuples

• Initially empty

• New query (D, ℓ):

• If D is not in the database:

• generate ℓ random bits Z
• add (D,Z) to the list
• return Z

• If D is in the database,

look at corresponding Z:

• If |Z| ≥ ℓ:

return first ℓ bits of Z

• If |Z| < ℓ:

generate ℓ− |Z| random bits Z ′, append Z ′ to Z, return Z∥Z ′

• update (D,Z) in the list

8 / 40

Intermezzo: Random Oracle

D Z

.

.

.

.

Random Oracle

• A database of input-output tuples

• Initially empty

• New query (D, ℓ):

• If D is not in the database:

• generate ℓ random bits Z
• add (D,Z) to the list
• return Z

• If D is in the database,

look at corresponding Z:

• If |Z| ≥ ℓ:

return first ℓ bits of Z

• If |Z| < ℓ:

generate ℓ− |Z| random bits Z ′, append Z ′ to Z, return Z∥Z ′

• update (D,Z) in the list

8 / 40

Intermezzo: Random Oracle

D Z

1100 101011101010101

.

.

.

Random Oracle

• A database of input-output tuples

• Initially empty

• New query (D, ℓ):

• If D is not in the database:

• generate ℓ random bits Z
• add (D,Z) to the list
• return Z

• If D is in the database,

look at corresponding Z:

• If |Z| ≥ ℓ:

return first ℓ bits of Z

• If |Z| < ℓ:

generate ℓ− |Z| random bits Z ′, append Z ′ to Z, return Z∥Z ′

• update (D,Z) in the list

8 / 40

Intermezzo: Random Oracle

D Z

1100 101011101010101

1111010101101101 110101

.

.

Random Oracle

• A database of input-output tuples

• Initially empty

• New query (D, ℓ):

• If D is not in the database:

• generate ℓ random bits Z
• add (D,Z) to the list
• return Z

• If D is in the database,

look at corresponding Z:

• If |Z| ≥ ℓ:

return first ℓ bits of Z

• If |Z| < ℓ:

generate ℓ− |Z| random bits Z ′, append Z ′ to Z, return Z∥Z ′

• update (D,Z) in the list

8 / 40

Intermezzo: Random Oracle

D Z

1100 101011101010101

1111010101101101 110101

001000011100 101011010111010101011

.

Random Oracle

• A database of input-output tuples

• Initially empty

• New query (D, ℓ):

• If D is not in the database:

• generate ℓ random bits Z
• add (D,Z) to the list
• return Z

• If D is in the database,

look at corresponding Z:

• If |Z| ≥ ℓ:

return first ℓ bits of Z

• If |Z| < ℓ:

generate ℓ− |Z| random bits Z ′, append Z ′ to Z, return Z∥Z ′

• update (D,Z) in the list

8 / 40

Intermezzo: Random Oracle

D Z

1100 101011101010101

1111010101101101 110101

001000011100 101011010111010101011

.

Random Oracle

• A database of input-output tuples

• Initially empty

• New query (D, ℓ):

• If D is not in the database:

• generate ℓ random bits Z
• add (D,Z) to the list
• return Z

• If D is in the database, look at corresponding Z:

• If |Z| ≥ ℓ:

return first ℓ bits of Z

• If |Z| < ℓ:

generate ℓ− |Z| random bits Z ′, append Z ′ to Z, return Z∥Z ′

• update (D,Z) in the list

8 / 40

Intermezzo: Random Oracle

D Z

1100 101011101010101

1111010101101101 110101

001000011100 101011010111010101011

.

Random Oracle

• A database of input-output tuples

• Initially empty

• New query (D, ℓ):

• If D is not in the database:

• generate ℓ random bits Z
• add (D,Z) to the list
• return Z

• If D is in the database, look at corresponding Z:

• If |Z| ≥ ℓ: return first ℓ bits of Z
• If |Z| < ℓ:

generate ℓ− |Z| random bits Z ′, append Z ′ to Z, return Z∥Z ′

• update (D,Z) in the list

8 / 40

Intermezzo: Random Oracle

D Z

1100 101011101010101

1111010101101101 110101

001000011100 101011010111010101011

.

Random Oracle

• A database of input-output tuples

• Initially empty

• New query (D, ℓ):

• If D is not in the database:

• generate ℓ random bits Z
• add (D,Z) to the list
• return Z

• If D is in the database, look at corresponding Z:

• If |Z| ≥ ℓ: return first ℓ bits of Z
• If |Z| < ℓ:

generate ℓ− |Z| random bits Z ′, append Z ′ to Z, return Z∥Z ′

• update (D,Z) in the list

8 / 40

Intermezzo: Random Oracle

D Z

1100 101011101010101

1111010101101101 110101

001000011100 101011010111010101011

.

Random Oracle

• A database of input-output tuples

• Initially empty

• New query (D, ℓ):

• If D is not in the database:

• generate ℓ random bits Z
• add (D,Z) to the list
• return Z

• If D is in the database, look at corresponding Z:

• If |Z| ≥ ℓ: return first ℓ bits of Z
• If |Z| < ℓ: generate ℓ− |Z| random bits Z ′, append Z ′ to Z, return Z∥Z ′

• update (D,Z) in the list

8 / 40

Intermezzo: Random Oracle

D Z

1100 101011101010101

1111010101101101 1101011101111101101

001000011100 101011010111010101011

.

Random Oracle

• A database of input-output tuples

• Initially empty

• New query (D, ℓ):

• If D is not in the database:

• generate ℓ random bits Z
• add (D,Z) to the list
• return Z

• If D is in the database, look at corresponding Z:

• If |Z| ≥ ℓ: return first ℓ bits of Z
• If |Z| < ℓ: generate ℓ− |Z| random bits Z ′, append Z ′ to Z, return Z∥Z ′

• update (D,Z) in the list

8 / 40

Intermezzo: Random Oracle

D Z

1100 101011101010101

1111010101101101 1101011101111101101

001000011100 101011010111010101011

.

Random Oracle

• A database of input-output tuples

• Initially empty

• New query (D, ℓ):

• If D is not in the database:

• generate ℓ random bits Z
• add (D,Z) to the list
• return Z

• If D is in the database, look at corresponding Z:

• If |Z| ≥ ℓ: return first ℓ bits of Z
• If |Z| < ℓ: generate ℓ− |Z| random bits Z ′, append Z ′ to Z, return Z∥Z ′

• update (D,Z) in the list

8 / 40

Stream Cipher Security, Intuition (2/3)

real world ideal world

SCK
stream cipher

RO
random oracle

• We thus want to “compare” SCK with a random oracle RO

• We model a distinguisher D that is given oracle access to either of the worlds

• We toss a coin:

• head: D is given oracle access to SCK

• tail: D is given oracle access to RO

• D does a priori not know which oracle it is given access to
• D can now make queries (D, ℓ) to receive Z
• At the end, D has to guess the outcome of the toss coin (head/tail)

9 / 40

Stream Cipher Security, Intuition (2/3)

real world ideal world

SCK
stream cipher

RO
random oracle

distinguisher D

• We thus want to “compare” SCK with a random oracle RO

• We model a distinguisher D that is given oracle access to either of the worlds

• We toss a coin:

• head: D is given oracle access to SCK

• tail: D is given oracle access to RO

• D does a priori not know which oracle it is given access to
• D can now make queries (D, ℓ) to receive Z
• At the end, D has to guess the outcome of the toss coin (head/tail)

9 / 40

Stream Cipher Security, Intuition (2/3)

real world ideal world

SCK
stream cipher

RO
random oracle

distinguisher D

• We thus want to “compare” SCK with a random oracle RO

• We model a distinguisher D that is given oracle access to either of the worlds

• We toss a coin:

• head: D is given oracle access to SCK

• tail: D is given oracle access to RO

• D does a priori not know which oracle it is given access to

• D can now make queries (D, ℓ) to receive Z
• At the end, D has to guess the outcome of the toss coin (head/tail)

9 / 40

Stream Cipher Security, Intuition (2/3)

real world ideal world

SCK
stream cipher

RO
random oracle

distinguisher D

(D, ℓ;Z)

• We thus want to “compare” SCK with a random oracle RO

• We model a distinguisher D that is given oracle access to either of the worlds

• We toss a coin:

• head: D is given oracle access to SCK

• tail: D is given oracle access to RO

• D does a priori not know which oracle it is given access to
• D can now make queries (D, ℓ) to receive Z

• At the end, D has to guess the outcome of the toss coin (head/tail)

9 / 40

Stream Cipher Security, Intuition (2/3)

real world ideal world

SCK
stream cipher

RO
random oracle

distinguisher D

(D, ℓ;Z)

• We thus want to “compare” SCK with a random oracle RO

• We model a distinguisher D that is given oracle access to either of the worlds

• We toss a coin:

• head: D is given oracle access to SCK

• tail: D is given oracle access to RO

• D does a priori not know which oracle it is given access to
• D can now make queries (D, ℓ) to receive Z
• At the end, D has to guess the outcome of the toss coin (head/tail)

9 / 40

Stream Cipher Security, Intuition (3/3)

real world ideal world

SCK
stream cipher

RO
random oracle

distinguisher D

(D, ℓ;Z)

• Denote D’s success probability in correctly guessing head/tail by Pr (success)

• D can always guess and succeeds with probability ≥ 1/2, so we scale the

probability to D’s advantage:

Adv(D) = 2 ·Pr (success)− 1

= Pr
(
DSCK returns head

)
−Pr

(
DRO returns head

)

• D is limited by certain constraints

• Data (or online) complexity q: total cost of queries D can make
• Computation (or time) complexity t: everything that D can do “on its own”

10 / 40

Stream Cipher Security, Intuition (3/3)

real world ideal world

SCK
stream cipher

RO
random oracle

distinguisher D

(D, ℓ;Z)

• Denote D’s success probability in correctly guessing head/tail by Pr (success)

• D can always guess and succeeds with probability ≥ 1/2, so we scale the

probability to D’s advantage:

Adv(D) = 2 ·Pr (success)− 1

= Pr
(
DSCK returns head

)
−Pr

(
DRO returns head

)
• D is limited by certain constraints

• Data (or online) complexity q: total cost of queries D can make
• Computation (or time) complexity t: everything that D can do “on its own”

10 / 40

Stream Cipher Security, Intuition (3/3)

real world ideal world

SCK
stream cipher

RO
random oracle

distinguisher D

(D, ℓ;Z)

• Denote D’s success probability in correctly guessing head/tail by Pr (success)

• D can always guess and succeeds with probability ≥ 1/2, so we scale the

probability to D’s advantage:

Adv(D) = 2 ·Pr (success)− 1

= Pr
(
DSCK returns head

)
−Pr

(
DRO returns head

)

• D is limited by certain constraints

• Data (or online) complexity q: total cost of queries D can make
• Computation (or time) complexity t: everything that D can do “on its own”

10 / 40

Stream Cipher Security, Intuition (3/3)

real world ideal world

SCK
stream cipher

RO
random oracle

distinguisher D

(D, ℓ;Z)

• Denote D’s success probability in correctly guessing head/tail by Pr (success)

• D can always guess and succeeds with probability ≥ 1/2, so we scale the

probability to D’s advantage:

Adv(D) = 2 ·Pr (success)− 1

= Pr
(
DSCK returns head

)
−Pr

(
DRO returns head

)
• D is limited by certain constraints

• Data (or online) complexity q: total cost of queries D can make
• Computation (or time) complexity t: everything that D can do “on its own”

10 / 40

Stream Cipher Security, Intuition (3/3)

real world ideal world

SCK
stream cipher

RO
random oracle

distinguisher D

(D, ℓ;Z)

• Denote D’s success probability in correctly guessing head/tail by Pr (success)

• D can always guess and succeeds with probability ≥ 1/2, so we scale the

probability to D’s advantage:

Adv(D) = 2 ·Pr (success)− 1

= Pr
(
DSCK returns head

)
−Pr

(
DRO returns head

)
• D is limited by certain constraints

• Data (or online) complexity q: total cost of queries D can make
• Computation (or time) complexity t: everything that D can do “on its own”

10 / 40

Stream Cipher Security, Formal

real world ideal world

SCK
stream cipher

RO
random oracle

distinguisher D

(D, ℓ;Z)

• Two oracles: SCK (for secret key K) and RO (secret)

• Distinguisher D has query access to one of these

• D tries to determine which oracle it communicates with

• Its advantage is defined as:

Advprf
SC (D) = ∆D (SCK ; RO) =

∣∣Pr
(
DSCK = 1

)
−Pr

(
DRO = 1

)∣∣
• Advprf

SC (q, t): maximum advantage over any distinguisher with complexity q, t

11 / 40

Stream Cipher Security, Formal

real world ideal world

SCK
stream cipher

RO
random oracle

distinguisher D

(D, ℓ;Z)

• Two oracles: SCK (for secret key K) and RO (secret)

• Distinguisher D has query access to one of these

• D tries to determine which oracle it communicates with

• Its advantage is defined as:

Advprf
SC (D) = ∆D (SCK ; RO) =

∣∣Pr
(
DSCK = 1

)
−Pr

(
DRO = 1

)∣∣
• Advprf

SC (q, t): maximum advantage over any distinguisher with complexity q, t

11 / 40

Stream Cipher Security, Formal

real world ideal world

SCK
stream cipher

RO
random oracle

distinguisher D

(D, ℓ;Z)

• Two oracles: SCK (for secret key K) and RO (secret)

• Distinguisher D has query access to one of these

• D tries to determine which oracle it communicates with

• Its advantage is defined as:

Advprf
SC (D) = ∆D (SCK ; RO) =

∣∣Pr
(
DSCK = 1

)
−Pr

(
DRO = 1

)∣∣
• Advprf

SC (q, t): maximum advantage over any distinguisher with complexity q, t

11 / 40

Stream Cipher Security, Formal

real world ideal world

SCK
stream cipher

RO
random oracle

distinguisher D

(D, ℓ;Z)

• Two oracles: SCK (for secret key K) and RO (secret)

• Distinguisher D has query access to one of these

• D tries to determine which oracle it communicates with

• Its advantage is defined as:

Advprf
SC (D) = ∆D (SCK ; RO) =

∣∣Pr
(
DSCK = 1

)
−Pr

(
DRO = 1

)∣∣

• Advprf
SC (q, t): maximum advantage over any distinguisher with complexity q, t

11 / 40

Stream Cipher Security, Formal

real world ideal world

SCK
stream cipher

RO
random oracle

distinguisher D

(D, ℓ;Z)

• Two oracles: SCK (for secret key K) and RO (secret)

• Distinguisher D has query access to one of these

• D tries to determine which oracle it communicates with

• Its advantage is defined as:

Advprf
SC (D) = ∆D (SCK ; RO) =

∣∣Pr
(
DSCK = 1

)
−Pr

(
DRO = 1

)∣∣
• Advprf

SC (q, t): maximum advantage over any distinguisher with complexity q, t

11 / 40

Generic Stream Cipher Design

Generic Stream Cipher Design (1/2)

• Classical approach: LFSRs strengthened with non-linear component

• Modern approach: building construction from smaller cryptographic primitive

• Suppose (for the sake of argument):

• we know how to build a strong stream cipher F with fixed-length output
• we want to build a stream cipher with variable-length output

· · · FD′

K ′

Z ′\

128

\
k

\

128
· · ·D, ℓ

K

Z = z1z2 . . . zℓ\

96

\
k

\

∗

12 / 40

Generic Stream Cipher Design (1/2)

• Classical approach: LFSRs strengthened with non-linear component

• Modern approach: building construction from smaller cryptographic primitive

• Suppose (for the sake of argument):

• we know how to build a strong stream cipher F with fixed-length output
• we want to build a stream cipher with variable-length output

· · · FD′

K ′

Z ′\

128

\
k

\

128
· · ·D, ℓ

K

Z = z1z2 . . . zℓ\

96

\
k

\

∗

12 / 40

Generic Stream Cipher Design (2/2)

Design

• Feed K to primitive

• Evaluate primitive as often as needed, with D

concatenated with counter

• Concatenate outputs:

Z = Z1 ∥ Z2 ∥ Z3 ∥ · · ·

Security

• If FK is hard to distinguish from a RO′

• Then construction is hard to distinguish from RO

• For the purists: Advprf
SC[F](q, t) ≤ Advprf

F (q, t′)

F

D∥⟨0⟩32

K

Z1

\

128

\
k

\

128

F

D∥⟨1⟩32

K

Z2

\

128

\
k

\

128

F

D∥⟨2⟩32

K

Z3

\

128

\
k

\

128

...

13 / 40

Unfortunately, we do not know

how to easily construct a function

FD′

K ′

Z ′\

128

\
k

\

128

that behaves like a RO′

Generic Stream Cipher Design (2/2)

Design

• Feed K to primitive

• Evaluate primitive as often as needed, with D

concatenated with counter

• Concatenate outputs:

Z = Z1 ∥ Z2 ∥ Z3 ∥ · · ·

Security

• If FK is hard to distinguish from a RO′

• Then construction is hard to distinguish from RO

• For the purists: Advprf
SC[F](q, t) ≤ Advprf

F (q, t′)

FD∥⟨0⟩32

K

Z1

\

128

\
k

\

128

FD∥⟨1⟩32

K

Z2

\

128

\
k

\

128

FD∥⟨2⟩32

K

Z3

\

128

\
k

\

128

...

13 / 40

Unfortunately, we do not know

how to easily construct a function

FD′

K ′

Z ′\

128

\
k

\

128

that behaves like a RO′

Generic Stream Cipher Design (2/2)

Design

• Feed K to primitive

• Evaluate primitive as often as needed, with D

concatenated with counter

• Concatenate outputs:

Z = Z1 ∥ Z2 ∥ Z3 ∥ · · ·

Security

• If FK is hard to distinguish from a RO′

• Then construction is hard to distinguish from RO

• For the purists: Advprf
SC[F](q, t) ≤ Advprf

F (q, t′)

FD∥⟨0⟩32

K

Z1

\

128

\
k

\

128

FD∥⟨1⟩32

K

Z2

\

128

\
k

\

128

FD∥⟨2⟩32

K

Z3

\

128

\
k

\

128

...

13 / 40

Unfortunately, we do not know

how to easily construct a function

FD′

K ′

Z ′\

128

\
k

\

128

that behaves like a RO′

Generic Stream Cipher Design (2/2)

Design

• Feed K to primitive

• Evaluate primitive as often as needed, with D

concatenated with counter

• Concatenate outputs:

Z = Z1 ∥ Z2 ∥ Z3 ∥ · · ·

Security

• If FK is hard to distinguish from a RO′

• Then construction is hard to distinguish from RO

• For the purists: Advprf
SC[F](q, t) ≤ Advprf

F (q, t′)

FD∥⟨0⟩32

K

Z1

\

128

\
k

\

128

FD∥⟨1⟩32

K

Z2

\

128

\
k

\

128

FD∥⟨2⟩32

K

Z3

\

128

\
k

\

128

...

13 / 40

Unfortunately, we do not know

how to easily construct a function

FD′

K ′

Z ′\

128

\
k

\

128

that behaves like a RO′

Generic Stream Cipher Design (2/2)

Design

• Feed K to primitive

• Evaluate primitive as often as needed, with D

concatenated with counter

• Concatenate outputs:

Z = Z1 ∥ Z2 ∥ Z3 ∥ · · ·

Security

• If FK is hard to distinguish from a RO′

• Then construction is hard to distinguish from RO

• For the purists: Advprf
SC[F](q, t) ≤ Advprf

F (q, t′)

RO′D∥⟨0⟩32 Z1

\

128

\

128

RO′D∥⟨1⟩32 Z2

\

128

\

128

RO′D∥⟨2⟩32 Z3

\

128

\

128

...

13 / 40

Unfortunately, we do not know

how to easily construct a function

FD′

K ′

Z ′\

128

\
k

\

128

that behaves like a RO′

Generic Stream Cipher Design (2/2)

Design

• Feed K to primitive

• Evaluate primitive as often as needed, with D

concatenated with counter

• Concatenate outputs:

Z = Z1 ∥ Z2 ∥ Z3 ∥ · · ·

Security

• If FK is hard to distinguish from a RO′

• Then construction is hard to distinguish from RO

• For the purists: Advprf
SC[F](q, t) ≤ Advprf

F (q, t′)

RO′D∥⟨0⟩32 Z1

\

128

\

128

RO′D∥⟨1⟩32 Z2

\

128

\

128

RO′D∥⟨2⟩32 Z3

\

128

\

128

...

13 / 40

Unfortunately, we do not know

how to easily construct a function

FD′

K ′

Z ′\

128

\
k

\

128

that behaves like a RO′

Generic Stream Cipher Design (2/2)

Design

• Feed K to primitive

• Evaluate primitive as often as needed, with D

concatenated with counter

• Concatenate outputs:

Z = Z1 ∥ Z2 ∥ Z3 ∥ · · ·

Security

• If FK is hard to distinguish from a RO′

• Then construction is hard to distinguish from RO

• For the purists: Advprf
SC[F](q, t) ≤ Advprf

F (q, t′)

RO′D∥⟨0⟩32 Z1

\

128

\

128

RO′D∥⟨1⟩32 Z2

\

128

\

128

RO′D∥⟨2⟩32 Z3

\

128

\

128

...

13 / 40

Unfortunately, we do not know

how to easily construct a function

FD′

K ′

Z ′\

128

\
k

\

128

that behaves like a RO′

Generic Stream Cipher Design (2/2)

Design

• Feed K to primitive

• Evaluate primitive as often as needed, with D

concatenated with counter

• Concatenate outputs:

Z = Z1 ∥ Z2 ∥ Z3 ∥ · · ·

Security

• If FK is hard to distinguish from a RO′

• Then construction is hard to distinguish from RO

• For the purists: Advprf
SC[F](q, t) ≤ Advprf

F (q, t′)

RO′D∥⟨0⟩32 Z1

\

128

\

128

RO′D∥⟨1⟩32 Z2

\

128

\

128

RO′D∥⟨2⟩32 Z3

\

128

\

128

...

13 / 40

Unfortunately, we do not know

how to easily construct a function

FD′

K ′

Z ′\

128

\
k

\

128

that behaves like a RO′

Block Ciphers

Block Ciphers

EM

K

C\

n

\
k

\

n

E−1C

K

M\

n

\
k

\

n

• Using key K, message M is bijectively transformed to ciphertext C

• Key, plaintext, and ciphertext are typically of fixed size

• For fixed key, EK is invertible and the inverse is denoted as E−1
K

• Example [DR02]:

AES-128 : {0, 1}128 × {0, 1}128 → {0, 1}128

(K,M) 7→ C

• A good block cipher should behave like a random permutation

14 / 40

Block Ciphers

EM

K

C\

n

\
k

\

n E−1C

K

M\

n

\
k

\

n

• Using key K, message M is bijectively transformed to ciphertext C

• Key, plaintext, and ciphertext are typically of fixed size

• For fixed key, EK is invertible and the inverse is denoted as E−1
K

• Example [DR02]:

AES-128 : {0, 1}128 × {0, 1}128 → {0, 1}128

(K,M) 7→ C

• A good block cipher should behave like a random permutation

14 / 40

Block Ciphers

EM

K

C\

n

\
k

\

n E−1C

K

M\

n

\
k

\

n

• Using key K, message M is bijectively transformed to ciphertext C

• Key, plaintext, and ciphertext are typically of fixed size

• For fixed key, EK is invertible and the inverse is denoted as E−1
K

• Example [DR02]:

AES-128 : {0, 1}128 × {0, 1}128 → {0, 1}128

(K,M) 7→ C

• A good block cipher should behave like a random permutation

14 / 40

Block Ciphers

EM

K

C\

n

\
k

\

n E−1C

K

M\

n

\
k

\

n

• Using key K, message M is bijectively transformed to ciphertext C

• Key, plaintext, and ciphertext are typically of fixed size

• For fixed key, EK is invertible and the inverse is denoted as E−1
K

• Example [DR02]:

AES-128 : {0, 1}128 × {0, 1}128 → {0, 1}128

(K,M) 7→ C

• A good block cipher should behave like a random permutation

14 / 40

Block Cipher Security

real world ideal world

EK
block cipher

p
random permutation

distinguisher D

(M ;C)

• Two oracles: EK (for secret key K) and p (secret)

• Distinguisher D has query access to one of these

• D tries to determine which oracle it communicates with

• Its advantage is defined as:

Advprp
E (D) = ∆D (EK ; p) =

∣∣Pr
(
DEK = 1

)
−Pr (Dp = 1)

∣∣
• Advprp

E (q, t): maximum advantage over any D with query/time complexity q/t

15 / 40

Block Cipher Security

real world ideal world

EK
block cipher

p
random permutation

distinguisher D

(M ;C)

• Two oracles: EK (for secret key K) and p (secret)

• Distinguisher D has query access to one of these

• D tries to determine which oracle it communicates with

• Its advantage is defined as:

Advprp
E (D) = ∆D (EK ; p) =

∣∣Pr
(
DEK = 1

)
−Pr (Dp = 1)

∣∣
• Advprp

E (q, t): maximum advantage over any D with query/time complexity q/t

15 / 40

Block Cipher Security

real world ideal world

EK
block cipher

p
random permutation

distinguisher D

(M ;C)

• Two oracles: EK (for secret key K) and p (secret)

• Distinguisher D has query access to one of these

• D tries to determine which oracle it communicates with

• Its advantage is defined as:

Advprp
E (D) = ∆D (EK ; p) =

∣∣Pr
(
DEK = 1

)
−Pr (Dp = 1)

∣∣
• Advprp

E (q, t): maximum advantage over any D with query/time complexity q/t

15 / 40

Block Cipher Security

real world ideal world

EK
block cipher

p
random permutation

distinguisher D

(M ;C)

• Two oracles: EK (for secret key K) and p (secret)

• Distinguisher D has query access to one of these

• D tries to determine which oracle it communicates with

• Its advantage is defined as:

Advprp
E (D) = ∆D (EK ; p) =

∣∣Pr
(
DEK = 1

)
−Pr (Dp = 1)

∣∣

• Advprp
E (q, t): maximum advantage over any D with query/time complexity q/t

15 / 40

Block Cipher Security

real world ideal world

EK
block cipher

p
random permutation

distinguisher D

(M ;C)

• Two oracles: EK (for secret key K) and p (secret)

• Distinguisher D has query access to one of these

• D tries to determine which oracle it communicates with

• Its advantage is defined as:

Advprp
E (D) = ∆D (EK ; p) =

∣∣Pr
(
DEK = 1

)
−Pr (Dp = 1)

∣∣
• Advprp

E (q, t): maximum advantage over any D with query/time complexity q/t

15 / 40

Counter Mode Encryption

Counter (CTR) Mode

EK EK EK EK· · ·

N∥⟨1⟩ N∥⟨2⟩ N∥⟨3⟩ N∥⟨ℓ⟩· · ·

M1 M2 M3 Mℓ

C1 C2 C3 Cℓ· · ·

Features

• Stream-based encryption mode

• Fully parallelizable (encryption and decryption) and extremely simple

• Decryption needs no E−1
K

Security

• “Hopefully” secure as long as N is never repeated and EK is a secure PRP

• Let us investigate that!

16 / 40

Counter (CTR) Mode

EK EK EK EK· · ·

N∥⟨1⟩ N∥⟨2⟩ N∥⟨3⟩ N∥⟨ℓ⟩· · ·

M1 M2 M3 Mℓ

C1 C2 C3 Cℓ· · ·

Features

• Stream-based encryption mode

• Fully parallelizable (encryption and decryption) and extremely simple

• Decryption needs no E−1
K

Security

• “Hopefully” secure as long as N is never repeated and EK is a secure PRP

• Let us investigate that!

16 / 40

Counter (CTR) Mode

EK EK EK EK· · ·

N∥⟨1⟩ N∥⟨2⟩ N∥⟨3⟩ N∥⟨ℓ⟩· · ·

M1 M2 M3 Mℓ

C1 C2 C3 Cℓ· · ·

Features

• Stream-based encryption mode

• Fully parallelizable (encryption and decryption) and extremely simple

• Decryption needs no E−1
K

Security

• “Hopefully” secure as long as N is never repeated and EK is a secure PRP

• Let us investigate that!

16 / 40

Security of Counter Mode Based on AES

• Let us consider counter mode based on AES: CTR[AESK]

AESK AESK AESK AESK· · ·

N∥⟨1⟩ N∥⟨2⟩ N∥⟨3⟩ N∥⟨ℓ⟩· · ·

M1 M2 M3 Mℓ

C1 C2 C3 Cℓ· · ·

• We focus on the keystream generation portion

• Assumptions

• Distinguisher never repeats nonce N
• AES itself is sufficiently secure: Advprp

AES(q, t) is small

17 / 40

Security of Counter Mode Based on AES

• Let us consider counter mode based on AES: CTR[AESK]

AESK AESK AESK AESK· · ·

N∥⟨1⟩ N∥⟨2⟩ N∥⟨3⟩ N∥⟨ℓ⟩· · ·

M1 M2 M3 Mℓ

C1 C2 C3 Cℓ· · ·

• We focus on the keystream generation portion

• Assumptions

• Distinguisher never repeats nonce N
• AES itself is sufficiently secure: Advprp

AES(q, t) is small

17 / 40

Security of Counter Mode Based on AES

• Let us consider counter mode based on AES: CTR[AESK]

AESK AESK AESK AESK· · ·

N∥⟨1⟩ N∥⟨2⟩ N∥⟨3⟩ N∥⟨ℓ⟩· · ·

M1 M2 M3 Mℓ

C1 C2 C3 Cℓ· · ·

• We focus on the keystream generation portion

• Assumptions

• Distinguisher never repeats nonce N
• AES itself is sufficiently secure: Advprp

AES(q, t) is small

17 / 40

Security of Counter Mode Based on AES: Model

real world ideal world

CTR[AESK]
counter mode with AES

RO
random oracle

distinguisher D

(N,M ;C)

• Two oracles: CTR[AESK] (for secret key K) and RO (secret)

• Distinguisher D has query access to one of these

• D tries to determine which oracle it communicates with

• Its advantage is defined as:

Advprf
CTR[AES](D) = ∆D (CTR[AESK] ; RO) =

∣∣∣Pr
(
DCTR[AESK] = 1

)
−Pr

(
DRO = 1

)∣∣∣
• Advprf

CTR[AES](q, t): maximum advantage over any D with q/t blocks/time

18 / 40

Security of Counter Mode Based on AES: Model

real world ideal world

CTR[AESK]
counter mode with AES

RO
random oracle

distinguisher D

(N,M ;C)

• Two oracles: CTR[AESK] (for secret key K) and RO (secret)

• Distinguisher D has query access to one of these

• D tries to determine which oracle it communicates with

• Its advantage is defined as:

Advprf
CTR[AES](D) = ∆D (CTR[AESK] ; RO) =

∣∣∣Pr
(
DCTR[AESK] = 1

)
−Pr

(
DRO = 1

)∣∣∣
• Advprf

CTR[AES](q, t): maximum advantage over any D with q/t blocks/time

18 / 40

Security of Counter Mode Based on AES: Model

real world ideal world

CTR[AESK]
counter mode with AES

RO
random oracle

distinguisher D

(N,M ;C)

• Two oracles: CTR[AESK] (for secret key K) and RO (secret)

• Distinguisher D has query access to one of these

• D tries to determine which oracle it communicates with

• Its advantage is defined as:

Advprf
CTR[AES](D) = ∆D (CTR[AESK] ; RO) =

∣∣∣Pr
(
DCTR[AESK] = 1

)
−Pr

(
DRO = 1

)∣∣∣
• Advprf

CTR[AES](q, t): maximum advantage over any D with q/t blocks/time

18 / 40

Security of Counter Mode Based on AES: Model

real world ideal world

CTR[AESK]
counter mode with AES

RO
random oracle

distinguisher D

(N,M ;C)

• Two oracles: CTR[AESK] (for secret key K) and RO (secret)

• Distinguisher D has query access to one of these

• D tries to determine which oracle it communicates with

• Its advantage is defined as:

Advprf
CTR[AES](D) = ∆D (CTR[AESK] ; RO) =

∣∣∣Pr
(
DCTR[AESK] = 1

)
−Pr

(
DRO = 1

)∣∣∣

• Advprf
CTR[AES](q, t): maximum advantage over any D with q/t blocks/time

18 / 40

Security of Counter Mode Based on AES: Model

real world ideal world

CTR[AESK]
counter mode with AES

RO
random oracle

distinguisher D

(N,M ;C)

• Two oracles: CTR[AESK] (for secret key K) and RO (secret)

• Distinguisher D has query access to one of these

• D tries to determine which oracle it communicates with

• Its advantage is defined as:

Advprf
CTR[AES](D) = ∆D (CTR[AESK] ; RO) =

∣∣∣Pr
(
DCTR[AESK] = 1

)
−Pr

(
DRO = 1

)∣∣∣
• Advprf

CTR[AES](q, t): maximum advantage over any D with q/t blocks/time

18 / 40

Proof: Overview

real world ideal world

CTR[AESK]
counter mode with AES

RO
random oracle

distinguisher D

(N,M ;C) (N,M ;C)

• For any (fixed) distinguisher D (later, we supremize over all), we have to bound:

Advprf
CTR[AES](D) = ∆D (CTR[AESK] ; RO) =

∣∣∣Pr
(
DCTR[AESK] = 1

)
−Pr

(
DRO = 1

)∣∣∣

• We add intermediate worlds CTR[p] and CTR[f] for random p and f

• By the triangle inequality:

∆D (CTR[AESK] ; RO) ≤ ∆D (CTR[AESK] ; CTR[p]) + ∆D (CTR[p] ; CTR[f]) + ∆D (CTR[f] ; RO)

19 / 40

Proof: Overview

real world intermediate 1 intermediate 2 ideal world

CTR[AESK]
counter mode with AES

CTR[p]
CTR with permutation

CTR[f]
CTR with function

RO
random oracle

distinguisher D

(N,M ;C) (N,M ;C)

• For any (fixed) distinguisher D (later, we supremize over all), we have to bound:

Advprf
CTR[AES](D) = ∆D (CTR[AESK] ; RO) =

∣∣∣Pr
(
DCTR[AESK] = 1

)
−Pr

(
DRO = 1

)∣∣∣
• We add intermediate worlds CTR[p] and CTR[f] for random p and f

• By the triangle inequality:

∆D (CTR[AESK] ; RO) ≤ ∆D (CTR[AESK] ; CTR[p]) + ∆D (CTR[p] ; CTR[f]) + ∆D (CTR[f] ; RO)

19 / 40

Proof: Overview

real world intermediate 1 intermediate 2 ideal world

CTR[AESK]
counter mode with AES

CTR[p]
CTR with permutation

CTR[f]
CTR with function

RO
random oracle

distinguisher D

(N,M ;C) (N,M ;C)

• For any (fixed) distinguisher D (later, we supremize over all), we have to bound:

Advprf
CTR[AES](D) = ∆D (CTR[AESK] ; RO) =

∣∣∣Pr
(
DCTR[AESK] = 1

)
−Pr

(
DRO = 1

)∣∣∣
• We add intermediate worlds CTR[p] and CTR[f] for random p and f

• By the triangle inequality:

∆D (CTR[AESK] ; RO) ≤ ∆D (CTR[AESK] ; CTR[p]) + ∆D (CTR[p] ; CTR[f]) + ∆D (CTR[f] ; RO)

19 / 40

Proof: Overview

real world intermediate 1 intermediate 2 ideal world

CTR[AESK]
counter mode with AES

CTR[p]
CTR with permutation

CTR[f]
CTR with function

RO
random oracle

distinguisher D

(N,M ;C)

distinguisher D

(N,M ;C)

distinguisher D

(N,M ;C)

• For any (fixed) distinguisher D (later, we supremize over all), we have to bound:

Advprf
CTR[AES](D) = ∆D (CTR[AESK] ; RO) =

∣∣∣Pr
(
DCTR[AESK] = 1

)
−Pr

(
DRO = 1

)∣∣∣
• We add intermediate worlds CTR[p] and CTR[f] for random p and f

• By the triangle inequality:

∆D (CTR[AESK] ; RO) ≤ ∆D (CTR[AESK] ; CTR[p]) + ∆D (CTR[p] ; CTR[f]) + ∆D (CTR[f] ; RO)

19 / 40

Proof: From CTR[AESK] to CTR[p]

• D’s goal: distinguish CTR[AESK] from CTR[p]

• We replace D by a distinguisher D′ that has more power

• D′’s goal: distinguish AESK from p

• D′ simulates the oracles of D:
• Once D makes its final guess, D′ makes the same guess

• D′ success probability turns out to be at least that of D:
∆D (CTR[AESK] ; CTR[p]) ≤ ∆D′ (AESK ; p)

• But we have seen this distance before:

∆D′ (AESK ; p) = Advprp
AES(D′) ≤ Advprp

AES(q, t
′)

(t′ slightly larger than t)

AESK p

D′

• ℓ = ⌈|M |/n⌉
• for i = 1, . . . , ℓ:

query Xi = N∥⟨i⟩ to get Yi

• return first |M | bits of
C = Y1∥ . . . ∥Yℓ ⊕M

D

X Y X Y

N,M C

20 / 40

Proof: From CTR[AESK] to CTR[p]

• D’s goal: distinguish CTR[AESK] from CTR[p]

• We replace D by a distinguisher D′ that has more power

• D′’s goal: distinguish AESK from p

• D′ simulates the oracles of D:
• Once D makes its final guess, D′ makes the same guess

• D′ success probability turns out to be at least that of D:
∆D (CTR[AESK] ; CTR[p]) ≤ ∆D′ (AESK ; p)

• But we have seen this distance before:

∆D′ (AESK ; p) = Advprp
AES(D′) ≤ Advprp

AES(q, t
′)

(t′ slightly larger than t)

AESK p

D′

• ℓ = ⌈|M |/n⌉
• for i = 1, . . . , ℓ:

query Xi = N∥⟨i⟩ to get Yi

• return first |M | bits of
C = Y1∥ . . . ∥Yℓ ⊕M

D

X Y X Y

N,M C

20 / 40

Proof: From CTR[AESK] to CTR[p]

• D’s goal: distinguish CTR[AESK] from CTR[p]

• We replace D by a distinguisher D′ that has more power

• D′’s goal: distinguish AESK from p

• D′ simulates the oracles of D:
• Once D makes its final guess, D′ makes the same guess

• D′ success probability turns out to be at least that of D:
∆D (CTR[AESK] ; CTR[p]) ≤ ∆D′ (AESK ; p)

• But we have seen this distance before:

∆D′ (AESK ; p) = Advprp
AES(D′) ≤ Advprp

AES(q, t
′)

(t′ slightly larger than t)

AESK p

D′

• ℓ = ⌈|M |/n⌉
• for i = 1, . . . , ℓ:

query Xi = N∥⟨i⟩ to get Yi

• return first |M | bits of
C = Y1∥ . . . ∥Yℓ ⊕M

D

X Y X Y

N,M C

20 / 40

Proof: From CTR[AESK] to CTR[p]

• D’s goal: distinguish CTR[AESK] from CTR[p]

• We replace D by a distinguisher D′ that has more power

• D′’s goal: distinguish AESK from p

• D′ simulates the oracles of D:
• Once D makes its final guess, D′ makes the same guess

• D′ success probability turns out to be at least that of D:
∆D (CTR[AESK] ; CTR[p]) ≤ ∆D′ (AESK ; p)

• But we have seen this distance before:

∆D′ (AESK ; p) = Advprp
AES(D′) ≤ Advprp

AES(q, t
′)

(t′ slightly larger than t)

AESK p

D′

• ℓ = ⌈|M |/n⌉
• for i = 1, . . . , ℓ:

query Xi = N∥⟨i⟩ to get Yi

• return first |M | bits of
C = Y1∥ . . . ∥Yℓ ⊕M

D

X Y X Y

N,M C

20 / 40

Proof: From CTR[AESK] to CTR[p]

• D’s goal: distinguish CTR[AESK] from CTR[p]

• We replace D by a distinguisher D′ that has more power

• D′’s goal: distinguish AESK from p

• D′ simulates the oracles of D:
• Once D makes its final guess, D′ makes the same guess

• D′ success probability turns out to be at least that of D:
∆D (CTR[AESK] ; CTR[p]) ≤ ∆D′ (AESK ; p)

• But we have seen this distance before:

∆D′ (AESK ; p) = Advprp
AES(D′) ≤ Advprp

AES(q, t
′)

(t′ slightly larger than t)

AESK p

D′

• ℓ = ⌈|M |/n⌉
• for i = 1, . . . , ℓ:

query Xi = N∥⟨i⟩ to get Yi

• return first |M | bits of
C = Y1∥ . . . ∥Yℓ ⊕M

D

X Y X Y

N,M C

20 / 40

Proof: From CTR[AESK] to CTR[p]

• D’s goal: distinguish CTR[AESK] from CTR[p]

• We replace D by a distinguisher D′ that has more power

• D′’s goal: distinguish AESK from p

• D′ simulates the oracles of D:
• Once D makes its final guess, D′ makes the same guess

• D′ success probability turns out to be at least that of D:
∆D (CTR[AESK] ; CTR[p]) ≤ ∆D′ (AESK ; p)

• But we have seen this distance before:

∆D′ (AESK ; p) = Advprp
AES(D′) ≤ Advprp

AES(q, t
′)

(t′ slightly larger than t)

AESK p

D′

• ℓ = ⌈|M |/n⌉
• for i = 1, . . . , ℓ:

query Xi = N∥⟨i⟩ to get Yi

• return first |M | bits of
C = Y1∥ . . . ∥Yℓ ⊕M

D

X Y X Y

N,M C

20 / 40

Proof: From CTR[p] to CTR[f] (1/2)

• D’s goal: distinguish CTR[p] from CTR[f]

• We replace D by a distinguisher D′ that has more power

• D′’s goal: distinguish p from f

• D′ simulates the oracles of D:
• Once D makes its final guess, D′ makes the same guess

• D′ success probability turns out to be at least that of D:
∆D (CTR[p] ; CTR[f]) ≤ ∆D′ (p ; f)

• This is a well-known distance, called the RP-RF switch

p f

D′

• ℓ = ⌈|M |/n⌉
• for i = 1, . . . , ℓ:

query Xi = N∥⟨i⟩ to get Yi

• return first |M | bits of
C = Y1∥ . . . ∥Yℓ ⊕M

D

X Y X Y

N,M C

21 / 40

Proof: From CTR[p] to CTR[f] (1/2)

• D’s goal: distinguish CTR[p] from CTR[f]

• We replace D by a distinguisher D′ that has more power

• D′’s goal: distinguish p from f

• D′ simulates the oracles of D:
• Once D makes its final guess, D′ makes the same guess

• D′ success probability turns out to be at least that of D:
∆D (CTR[p] ; CTR[f]) ≤ ∆D′ (p ; f)

• This is a well-known distance, called the RP-RF switch

p f

D′

• ℓ = ⌈|M |/n⌉
• for i = 1, . . . , ℓ:

query Xi = N∥⟨i⟩ to get Yi

• return first |M | bits of
C = Y1∥ . . . ∥Yℓ ⊕M

D

X Y X Y

N,M C

21 / 40

Proof: From CTR[p] to CTR[f] (1/2)

• D’s goal: distinguish CTR[p] from CTR[f]

• We replace D by a distinguisher D′ that has more power

• D′’s goal: distinguish p from f

• D′ simulates the oracles of D:
• Once D makes its final guess, D′ makes the same guess

• D′ success probability turns out to be at least that of D:
∆D (CTR[p] ; CTR[f]) ≤ ∆D′ (p ; f)

• This is a well-known distance, called the RP-RF switch

p f

D′

• ℓ = ⌈|M |/n⌉
• for i = 1, . . . , ℓ:

query Xi = N∥⟨i⟩ to get Yi

• return first |M | bits of
C = Y1∥ . . . ∥Yℓ ⊕M

D

X Y X Y

N,M C

21 / 40

Proof: From CTR[p] to CTR[f] (1/2)

• D’s goal: distinguish CTR[p] from CTR[f]

• We replace D by a distinguisher D′ that has more power

• D′’s goal: distinguish p from f

• D′ simulates the oracles of D:
• Once D makes its final guess, D′ makes the same guess

• D′ success probability turns out to be at least that of D:
∆D (CTR[p] ; CTR[f]) ≤ ∆D′ (p ; f)

• This is a well-known distance, called the RP-RF switch

p f

D′

• ℓ = ⌈|M |/n⌉
• for i = 1, . . . , ℓ:

query Xi = N∥⟨i⟩ to get Yi

• return first |M | bits of
C = Y1∥ . . . ∥Yℓ ⊕M

D

X Y X Y

N,M C

21 / 40

Proof: From CTR[p] to CTR[f] (1/2)

• D’s goal: distinguish CTR[p] from CTR[f]

• We replace D by a distinguisher D′ that has more power

• D′’s goal: distinguish p from f

• D′ simulates the oracles of D:
• Once D makes its final guess, D′ makes the same guess

• D′ success probability turns out to be at least that of D:
∆D (CTR[p] ; CTR[f]) ≤ ∆D′ (p ; f)

• This is a well-known distance, called the RP-RF switch

p f

D′

• ℓ = ⌈|M |/n⌉
• for i = 1, . . . , ℓ:

query Xi = N∥⟨i⟩ to get Yi

• return first |M | bits of
C = Y1∥ . . . ∥Yℓ ⊕M

D

X Y X Y

N,M C

21 / 40

Proof: From CTR[p] to CTR[f] (1/2)

• D’s goal: distinguish CTR[p] from CTR[f]

• We replace D by a distinguisher D′ that has more power

• D′’s goal: distinguish p from f

• D′ simulates the oracles of D:
• Once D makes its final guess, D′ makes the same guess

• D′ success probability turns out to be at least that of D:
∆D (CTR[p] ; CTR[f]) ≤ ∆D′ (p ; f)

• This is a well-known distance, called the RP-RF switch

p f

D′

• ℓ = ⌈|M |/n⌉
• for i = 1, . . . , ℓ:

query Xi = N∥⟨i⟩ to get Yi

• return first |M | bits of
C = Y1∥ . . . ∥Yℓ ⊕M

D

X Y X Y

N,M C

21 / 40

Proof: From CTR[p] to CTR[f] (2/2)

real world ideal world

p
random permutation

f
random function

distinguisher D′

• Distinguisher D′ gets q random n-bit samples:

• real world: without replacement
• ideal world: with replacement

• The two worlds can only be distinguished if f ever outputs colliding samples

• This happens with probability at most
(
q
2

)
/2n

• Hence: ∆D′ (p ; f) ≤
(
q
2

)
/2n

22 / 40

Proof: From CTR[p] to CTR[f] (2/2)

real world ideal world

p
random permutation

f
random function

distinguisher D′

• Distinguisher D′ gets q random n-bit samples:

• real world: without replacement
• ideal world: with replacement

• The two worlds can only be distinguished if f ever outputs colliding samples

• This happens with probability at most
(
q
2

)
/2n

• Hence: ∆D′ (p ; f) ≤
(
q
2

)
/2n

22 / 40

Proof: From CTR[p] to CTR[f] (2/2)

real world ideal world

p
random permutation

f
random function

distinguisher D′

• Distinguisher D′ gets q random n-bit samples:

• real world: without replacement
• ideal world: with replacement

• The two worlds can only be distinguished if f ever outputs colliding samples

• This happens with probability at most
(
q
2

)
/2n

• Hence: ∆D′ (p ; f) ≤
(
q
2

)
/2n

22 / 40

Proof: From CTR[p] to CTR[f] (2/2)

real world ideal world

p
random permutation

f
random function

distinguisher D′

• Distinguisher D′ gets q random n-bit samples:

• real world: without replacement
• ideal world: with replacement

• The two worlds can only be distinguished if f ever outputs colliding samples

• This happens with probability at most
(
q
2

)
/2n

• Hence: ∆D′ (p ; f) ≤
(
q
2

)
/2n

22 / 40

Proof: From CTR[f] to RO

f f f f· · ·

N∥⟨1⟩ N∥⟨2⟩ N∥⟨3⟩ N∥⟨ℓ⟩· · ·

M1 M2 M3 Mℓ

C1 C2 C3 Cℓ· · ·

RO

N

M

C

distinguisher D

(N,M ;C)

• In real world: f is a random function that is never evaluated for repeated N∥⟨i⟩
• In ideal world: RO is a random oracle that is never evaluated for repeated N

• Hence: ∆D (CTR[f] ; RO) = 0

23 / 40

Proof: From CTR[f] to RO

f f f f· · ·

N∥⟨1⟩ N∥⟨2⟩ N∥⟨3⟩ N∥⟨ℓ⟩· · ·

M1 M2 M3 Mℓ

C1 C2 C3 Cℓ· · ·

RO

N

M

C

distinguisher D

(N,M ;C)

• In real world: f is a random function that is never evaluated for repeated N∥⟨i⟩
• In ideal world: RO is a random oracle that is never evaluated for repeated N

• Hence: ∆D (CTR[f] ; RO) = 0

23 / 40

Proof: Conclusion

• Recall goal: bounding Advprf
CTR[AES](D) for any D querying q blocks in t time

• From the triangle inequality and bounds on the three individual terms:

Advprf
CTR[AES](D) = ∆D (CTR[AESK] ; RO)

≤ ∆D (CTR[AESK] ; CTR[p]) + ∆D (CTR[p] ; CTR[f]) + ∆D (CTR[f] ; RO)

≤ Advprp
AES(q, t

′) +

(
q

2

)
/2n + 0

• As this reasoning holds for all distinguishers D querying q blocks in t time, we

obtain:

Advprf
CTR[AES](q, t) ≤ Advprp

AES(q, t
′) +

(
q

2

)
/2n

24 / 40

Proof: Conclusion

• Recall goal: bounding Advprf
CTR[AES](D) for any D querying q blocks in t time

• From the triangle inequality and bounds on the three individual terms:

Advprf
CTR[AES](D) = ∆D (CTR[AESK] ; RO)

≤ ∆D (CTR[AESK] ; CTR[p]) + ∆D (CTR[p] ; CTR[f]) + ∆D (CTR[f] ; RO)

≤ Advprp
AES(q, t

′) +

(
q

2

)
/2n + 0

• As this reasoning holds for all distinguishers D querying q blocks in t time, we

obtain:

Advprf
CTR[AES](q, t) ≤ Advprp

AES(q, t
′) +

(
q

2

)
/2n

24 / 40

Proof: Conclusion

• Recall goal: bounding Advprf
CTR[AES](D) for any D querying q blocks in t time

• From the triangle inequality and bounds on the three individual terms:

Advprf
CTR[AES](D) = ∆D (CTR[AESK] ; RO)

≤ ∆D (CTR[AESK] ; CTR[p]) + ∆D (CTR[p] ; CTR[f]) + ∆D (CTR[f] ; RO)

≤ Advprp
AES(q, t

′) +

(
q

2

)
/2n + 0

• As this reasoning holds for all distinguishers D querying q blocks in t time, we

obtain:

Advprf
CTR[AES](q, t) ≤ Advprp

AES(q, t
′) +

(
q

2

)
/2n

24 / 40

Beyond Birthday Bound Security

Birthday Paradox

For a random selection of 23 people, with a prob-

ability at least 50% two of them share the same

birthday

General Birthday Paradox

• Consider space S = {0, 1}n

• Randomly draw q elements from S
• Expected number of collisions:

Ex [collisions] =

(
q

2

)
/2n

• Important phenomenon in cryptography

25 / 40

Birthday Paradox

For a random selection of 23 people, with a prob-

ability at least 50% two of them share the same

birthday

General Birthday Paradox

• Consider space S = {0, 1}n

• Randomly draw q elements from S
• Expected number of collisions:

Ex [collisions] =

(
q

2

)
/2n

• Important phenomenon in cryptography

25 / 40

Birthday Paradox

For a random selection of 23 people, with a prob-

ability at least 50% two of them share the same

birthday

General Birthday Paradox

• Consider space S = {0, 1}n

• Randomly draw q elements from S
• Expected number of collisions:

Ex [collisions] =

(
q

2

)
/2n

• Important phenomenon in cryptography

25 / 40

Counter Mode Based on Pseudorandom Permutation

N∥⟨1⟩ N∥⟨2⟩ N∥⟨ℓ⟩

EK EK
· · · · · · EK

M1

C1

M2

C2

Mℓ

Cℓ

• Security bound:

Advprf
CTR[E](q, t) ≤ Advprp

E (q, t′) +

(
q

2

)
/2n

• CTR[E] is secure as long as:

• EK is a secure PRP
• Number of encrypted blocks q ≪ 2n/2

26 / 40

Counter Mode Based on Pseudorandom Permutation

N∥⟨1⟩ N∥⟨2⟩ N∥⟨ℓ⟩

EK EK
· · · · · · EK

M1

C1

M2

C2

Mℓ

Cℓ

• Security bound:

Advprf
CTR[E](q, t) ≤ Advprp

E (q, t′) +

(
q

2

)
/2n

• CTR[E] is secure as long as:

• EK is a secure PRP
• Number of encrypted blocks q ≪ 2n/2

26 / 40

Counter Mode Based on Pseudorandom Permutation

N∥⟨1⟩ N∥⟨2⟩ N∥⟨ℓ⟩

EK EK
· · · · · · EK

M1

C1

M2

C2

Mℓ

Cℓ

• Security bound:

Advprf
CTR[E](q, t) ≤ Advprp

E (q, t′) +

(
q

2

)
/2n

• CTR[E] is secure as long as:

• EK is a secure PRP
• Number of encrypted blocks q ≪ 2n/2

26 / 40

Counter Mode Based on Pseudorandom Permutation

N∥⟨1⟩ N∥⟨2⟩ N∥⟨ℓ⟩

EK EK
· · · · · · EK

M1

C1

M2

C2

Mℓ

Cℓ

• Mi ⊕ Ci is distinct for all q blocks

• Unlikely to happen for random string

• Distinguishing attack in q ≈ 2n/2 blocks:(
q

2

)
/2n ≲ Advprf

CTR[E](q, t)

27 / 40

Counter Mode Based on Pseudorandom Permutation

N∥⟨1⟩ N∥⟨2⟩ N∥⟨ℓ⟩

EK EK
· · · · · · EK

M1

C1

M2

C2

Mℓ

Cℓ

• Mi ⊕ Ci is distinct for all q blocks

• Unlikely to happen for random string

• Distinguishing attack in q ≈ 2n/2 blocks:(
q

2

)
/2n ≲ Advprf

CTR[E](q, t)

27 / 40

Counter Mode Based on Pseudorandom Function

N∥⟨1⟩ N∥⟨2⟩ N∥⟨ℓ⟩

FK FK
· · · · · · FK

M1

C1

M2

C2

Mℓ

Cℓ

• Security bound:

Advprf
CTR[F](q, t) ≤ Advprf

F (q, t′)

• CTR[F] is secure as long as FK is a secure PRF

• Birthday bound security loss disappeared

28 / 40

Counter Mode Based on Pseudorandom Function

N∥⟨1⟩ N∥⟨2⟩ N∥⟨ℓ⟩

FK FK
· · · · · · FK

M1

C1

M2

C2

Mℓ

Cℓ

• Security bound:

Advprf
CTR[F](q, t) ≤ Advprf

F (q, t′)

• CTR[F] is secure as long as FK is a secure PRF

• Birthday bound security loss disappeared

28 / 40

Counter Mode Based on Pseudorandom Function

N∥⟨1⟩ N∥⟨2⟩ N∥⟨ℓ⟩

FK FK
· · · · · · FK

M1

C1

M2

C2

Mℓ

Cℓ

• Security bound:

Advprf
CTR[F](q, t) ≤ Advprf

F (q, t′)

• CTR[F] is secure as long as FK is a secure PRF

• Birthday bound security loss disappeared

28 / 40

Counter Mode Based on XoP

· · · · · ·EK EK EK EK EK EK

N∥⟨1⟩ N∥⟨2⟩ N∥⟨3⟩ N∥⟨4⟩ N∥⟨2ℓ−1⟩ N∥⟨2ℓ⟩

M1

C1

M2

C2

Mℓ

Cℓ

• Security bound [Pat08, DHT17]:

Advprf
CTR[XoP](q, t) ≤ Advprf

XoP(q, t
′)

≤ Advprp
E (2q, t′′) + q/2n

• Beyond birthday bound but 2x as expensive as CTR[E]

29 / 40

Counter Mode Based on XoP

· · · · · ·EK EK EK EK EK EK

N∥⟨1⟩ N∥⟨2⟩ N∥⟨3⟩ N∥⟨4⟩ N∥⟨2ℓ−1⟩ N∥⟨2ℓ⟩

M1

C1

M2

C2

Mℓ

Cℓ

• Security bound [Pat08, DHT17]:

Advprf
CTR[XoP](q, t) ≤ Advprf

XoP(q, t
′)

≤ Advprp
E (2q, t′′) + q/2n

• Beyond birthday bound but 2x as expensive as CTR[E]

29 / 40

Counter Mode Based on XoP

· · · · · ·EK EK EK EK EK EK

N∥⟨1⟩ N∥⟨2⟩ N∥⟨3⟩ N∥⟨4⟩ N∥⟨2ℓ−1⟩ N∥⟨2ℓ⟩

M1

C1

M2

C2

Mℓ

Cℓ

• Security bound [Pat08, DHT17]:

Advprf
CTR[XoP](q, t) ≤ Advprf

XoP(q, t
′)

≤ Advprp
E (2q, t′′) + q/2n

• Beyond birthday bound but 2x as expensive as CTR[E]

29 / 40

CENC by Iwata [Iwa06]

· · · · · · · · ·EK EK EK EK EK EK EK EK

N∥⟨1⟩ N∥⟨2⟩ N∥⟨1⟩ N∥⟨3⟩ N∥⟨1⟩ N∥⟨w+1⟩ N∥⟨w+2⟩N∥⟨w+3⟩

M1

C1

M2

C2

Mw

Cw

Mw+1

Cw+1

• One subkey used for w ≥ 1 encryptions

• Almost as expensive as CTR[E]

• Security bound [IMV16]:

Advprf
CTR[XoP[w]](q, t) ≤ Advprf

XoP[w](q, t
′)

≤ Advprp
E ((w + 1)q, t′′) + wq/2n

• Security of XoP and XoP[w] can be proven using mirror theory [Pat03]

30 / 40

CENC by Iwata [Iwa06]

· · · · · · · · ·EK EK EK EK EK EK EK EK

N∥⟨1⟩ N∥⟨2⟩ N∥⟨1⟩ N∥⟨3⟩ N∥⟨1⟩ N∥⟨w+1⟩ N∥⟨w+2⟩N∥⟨w+3⟩

M1

C1

M2

C2

Mw

Cw

Mw+1

Cw+1

• One subkey used for w ≥ 1 encryptions

• Almost as expensive as CTR[E]

• Security bound [IMV16]:

Advprf
CTR[XoP[w]](q, t) ≤ Advprf

XoP[w](q, t
′)

≤ Advprp
E ((w + 1)q, t′′) + wq/2n

• Security of XoP and XoP[w] can be proven using mirror theory [Pat03]

30 / 40

CENC by Iwata [Iwa06]

· · · · · · · · ·EK EK EK EK EK EK EK EK

N∥⟨1⟩ N∥⟨2⟩ N∥⟨1⟩ N∥⟨3⟩ N∥⟨1⟩ N∥⟨w+1⟩ N∥⟨w+2⟩N∥⟨w+3⟩

M1

C1

M2

C2

Mw

Cw

Mw+1

Cw+1

• One subkey used for w ≥ 1 encryptions

• Almost as expensive as CTR[E]

• Security bound [IMV16]:

Advprf
CTR[XoP[w]](q, t) ≤ Advprf

XoP[w](q, t
′)

≤ Advprp
E ((w + 1)q, t′′) + wq/2n

• Security of XoP and XoP[w] can be proven using mirror theory [Pat03]

30 / 40

CENC by Iwata [Iwa06]

· · · · · · · · ·EK EK EK EK EK EK EK EK

N∥⟨1⟩ N∥⟨2⟩ N∥⟨1⟩ N∥⟨3⟩ N∥⟨1⟩ N∥⟨w+1⟩ N∥⟨w+2⟩N∥⟨w+3⟩

M1

C1

M2

C2

Mw

Cw

Mw+1

Cw+1

• One subkey used for w ≥ 1 encryptions

• Almost as expensive as CTR[E]

• Security bound [IMV16]:

Advprf
CTR[XoP[w]](q, t) ≤ Advprf

XoP[w](q, t
′)

≤ Advprp
E ((w + 1)q, t′′) + wq/2n

• Security of XoP and XoP[w] can be proven using mirror theory [Pat03]
30 / 40

Accordion Modes

Block Ciphers

EM

K

C\

n

\
k

\

n

• Message M encrypted to ciphertext C with secret key K

• Fixed block size

• In order to encrypt variable sized messages, we need a mode of operation

• These modes require a nonce

31 / 40

Block Ciphers

EM

K

C\

n

\
k

\

n

• Message M encrypted to ciphertext C with secret key K

• Fixed block size

• In order to encrypt variable sized messages, we need a mode of operation

• These modes require a nonce

31 / 40

Wide Block Ciphers

EM

K

C\

∗

\
k

\

∗

• Alternatively, we can design a wide block cipher

• A wide block cipher is a block cipher with a variable block size

• Every part of the output (ideally) depends on every part of the input

32 / 40

Wide Block Ciphers

EM

K

C\

∗

\
k

\

∗

• Alternatively, we can design a wide block cipher

• A wide block cipher is a block cipher with a variable block size

• Every part of the output (ideally) depends on every part of the input

32 / 40

Tweakable Wide Block Ciphers

ẼM

K

W

C\

∗

\
k

\

∗

\ w

• A tweakable wide block cipher additionally has a tweak

• Tweak W public, ciphertext completely changes with a different tweak

• Useful for e.g. disk encryption, where every sector gets its own tweak

33 / 40

Tweakable Wide Block Ciphers

ẼM

K

W

C\

∗

\
k

\

∗

\ w

• A tweakable wide block cipher additionally has a tweak

• Tweak W public, ciphertext completely changes with a different tweak

• Useful for e.g. disk encryption, where every sector gets its own tweak

33 / 40

NIST’s Incentive to Develop Accordion Mode

• March 2024: NIST announced quest for tweakable wide block ciphers

• There is a workshop right now aimed to discuss ideas on requirements, designs,

security goals, targets, . . .

• Quote from the website:

NIST plans to develop a new mode of the AES that is a tweakable,

variable-input-length-strong pseudorandom permutation (VIL-SPRP) with a

reduction proof to the security of the underlying block cipher.

Now: high-level idea of our recent proposals

34 / 40

NIST’s Incentive to Develop Accordion Mode

• March 2024: NIST announced quest for tweakable wide block ciphers

• There is a workshop right now aimed to discuss ideas on requirements, designs,

security goals, targets, . . .

• Quote from the website:

NIST plans to develop a new mode of the AES that is a tweakable,

variable-input-length-strong pseudorandom permutation (VIL-SPRP) with a

reduction proof to the security of the underlying block cipher.

Now: high-level idea of our recent proposals

34 / 40

NIST’s Incentive to Develop Accordion Mode

• March 2024: NIST announced quest for tweakable wide block ciphers

• There is a workshop right now aimed to discuss ideas on requirements, designs,

security goals, targets, . . .

• Quote from the website:

NIST plans to develop a new mode of the AES that is a tweakable,

variable-input-length-strong pseudorandom permutation (VIL-SPRP) with a

reduction proof to the security of the underlying block cipher.

Now: high-level idea of our recent proposals

34 / 40

Docked Double Decker [GDM19]

HL

FK

HL

∗

∗

n

nn

n

T U V

X Y Z

W

W

0001

0010

FK

Building Blocks

• FK : stream cipher

• HL: universal hash

Construction

• Feistel-like structure

• Outer lanes of fixed size

• Inner lane of variable size

35 / 40

Goals and Hurdles

Goals

• Instantiation using components as used in NIST standardized schemes:

• AES [DR02, DR20]
• Operations in binary extension fields, e.g., as in GHASH [MV04]

• Present birthday bound secure ddd -AES and beyond birthday bound secure

bbb-ddd -AES that seamlessly fit NIST’s accordion idea

Hurdles

• AES is not a tweakable blockcipher

• AES is rather small (circular reasoning?)

• AES in typical stream cipher modes only gives birthday bound security

36 / 40

Goals and Hurdles

Goals

• Instantiation using components as used in NIST standardized schemes:

• AES [DR02, DR20]
• Operations in binary extension fields, e.g., as in GHASH [MV04]

• Present birthday bound secure ddd -AES and beyond birthday bound secure

bbb-ddd -AES that seamlessly fit NIST’s accordion idea

Hurdles

• AES is not a tweakable blockcipher

• AES is rather small (circular reasoning?)

• AES in typical stream cipher modes only gives birthday bound security

36 / 40

Goals and Hurdles

Goals

• Instantiation using components as used in NIST standardized schemes:

• AES [DR02, DR20]
• Operations in binary extension fields, e.g., as in GHASH [MV04]

• Present birthday bound secure ddd -AES and beyond birthday bound secure

bbb-ddd -AES that seamlessly fit NIST’s accordion idea

Hurdles

• AES is not a tweakable blockcipher

• AES is rather small (circular reasoning?)

• AES in typical stream cipher modes only gives birthday bound security

36 / 40

Efficient Instantiations of Docked Double Decker [DMMT24]

ddd-AES

• HL instantiated using Polyval (as in GCM-SIV)

• FK instantiated as variant of CTR: tweak used to randomize inputs to AESK

bbb-ddd-AES

• HL instantiated using Polyval (as in GCM-SIV)

• FK instantiated as variant of CENC: tweak used to randomize inputs to AESK

Instantiations turn out to be very competitive and well parallelizable

37 / 40

Efficient Instantiations of Docked Double Decker [DMMT24]

ddd-AES

• HL instantiated using Polyval (as in GCM-SIV)

• FK instantiated as variant of CTR: tweak used to randomize inputs to AESK

bbb-ddd-AES

• HL instantiated using Polyval (as in GCM-SIV)

• FK instantiated as variant of CENC: tweak used to randomize inputs to AESK

Instantiations turn out to be very competitive and well parallelizable

37 / 40

Efficient Instantiations of Docked Double Decker [DMMT24]

ddd-AES

• HL instantiated using Polyval (as in GCM-SIV)

• FK instantiated as variant of CTR: tweak used to randomize inputs to AESK

bbb-ddd-AES

• HL instantiated using Polyval (as in GCM-SIV)

• FK instantiated as variant of CENC: tweak used to randomize inputs to AESK

Instantiations turn out to be very competitive and well parallelizable

37 / 40

Implementation Design of ddd-AES (512-Bit Message)

128 128128 128

EK

1∥W
L4

L3

L2

EKEK1

2∥W

EK2EK2EK2

L2

L3

L4

128

128

L

48

L

48

2 2

C1 C2 C3 C4

P1 P2 P3 P4

AES 1

AES 2

Mul 1

Mul 2

1 2 3 4 5 6 7 8 9 10 11

38 / 40

Implementation Design of ddd-AES (512-Bit Message)

128 128128 128

EK

1∥W
L4

L3

L2

EKEK1

2∥W

EK2EK2EK2

L2

L3

L4

128

128

L

48

L

48

2 2

C1 C2 C3 C4

P1 P2 P3 P4

AES 1

AES 2

Mul 1

Mul 2

1 2 3 4 5 6 7 8 9 10 11

38 / 40

Implementation Design of bbb-ddd-AES (512-Bit Message)

128 128128 128

EK1

1∥W∥0∗0

EK1

1∥W∥0∗1
L4

L3

L2

EK2 EK2

EK1

2∥W∥0∗0

EK1

2∥W∥0∗1

EK1

2∥W∥0∗2

EK1

2∥W∥0∗3

EK2 EK2

EK2

EK2

L2

L3

L4

128 128

128 128 128 128

L

48

L

48

P1 P2 P3 P4

C1 C2 C3 C4

AES 1

AES 2

Mul 1

Mul 2

1 2 3 4 5 6 7 8 9 10 11

39 / 40

Implementation Design of bbb-ddd-AES (512-Bit Message)

128 128128 128

EK1

1∥W∥0∗0

EK1

1∥W∥0∗1
L4

L3

L2

EK2 EK2

EK1

2∥W∥0∗0

EK1

2∥W∥0∗1

EK1

2∥W∥0∗2

EK1

2∥W∥0∗3

EK2 EK2

EK2

EK2

L2

L3

L4

128 128

128 128 128 128

L

48

L

48

P1 P2 P3 P4

C1 C2 C3 C4

AES 1

AES 2

Mul 1

Mul 2

1 2 3 4 5 6 7 8 9 10 11

39 / 40

Conclusion

Conclusion

Provable Security in Symmetric Cryptography

• Basic modes proved secure using quite simple ideas

• More sophisticated modes require nice tricks in graph theory

• Often this boils down to trying to upper or lower bound solutions

Current Directions in Provable Security

• Difficulties in beyond birthday bound security

• Accordion modes

• Arithmetization-oriented modes

Thank you for your attention!

40 / 40

Conclusion

Provable Security in Symmetric Cryptography

• Basic modes proved secure using quite simple ideas

• More sophisticated modes require nice tricks in graph theory

• Often this boils down to trying to upper or lower bound solutions

Current Directions in Provable Security

• Difficulties in beyond birthday bound security

• Accordion modes

• Arithmetization-oriented modes

Thank you for your attention!

40 / 40

Conclusion

Provable Security in Symmetric Cryptography

• Basic modes proved secure using quite simple ideas

• More sophisticated modes require nice tricks in graph theory

• Often this boils down to trying to upper or lower bound solutions

Current Directions in Provable Security

• Difficulties in beyond birthday bound security

• Accordion modes

• Arithmetization-oriented modes

Thank you for your attention!

40 / 40

References i

Wei Dai, Viet Tung Hoang, and Stefano Tessaro.

Information-Theoretic Indistinguishability via the Chi-Squared Method.

In Jonathan Katz and Hovav Shacham, editors, Advances in Cryptology - CRYPTO 2017 -

37th Annual International Cryptology Conference, Santa Barbara, CA, USA, August 20-24,

2017, Proceedings, Part III, volume 10403 of Lecture Notes in Computer Science, pages

497–523. Springer, 2017.

Christoph Dobraunig, Krystian Matusiewicz, Bart Mennink, and Alexander Tereschenko.

Efficient Instances of Docked Double Decker With AES, and Application to

Authenticated Encryption.
Cryptology ePrint Archive, Report 2024/084, 2024.

https://eprint.iacr.org/2024/084.

40 / 40

https://eprint.iacr.org/2024/084

References ii

Joan Daemen and Vincent Rijmen.

The Design of Rijndael: AES - The Advanced Encryption Standard.

Information Security and Cryptography. Springer, 2002.

Joan Daemen and Vincent Rijmen.

The Design of Rijndael - The Advanced Encryption Standard (AES), Second

Edition.

Information Security and Cryptography. Springer, 2020.

Aldo Gunsing, Joan Daemen, and Bart Mennink.

Deck-Based Wide Block Cipher Modes and an Exposition of the Blinded Keyed

Hashing Model.

IACR Trans. Symmetric Cryptol., 2019(4):1–22, 2019.

40 / 40

References iii

Tetsu Iwata, Bart Mennink, and Damian Vizár.

CENC is Optimally Secure.
Cryptology ePrint Archive, Report 2016/1087, 2016.

http://eprint.iacr.org/2016/1087.

Tetsu Iwata.

New Blockcipher Modes of Operation with Beyond the Birthday Bound Security.

In Matthew J. B. Robshaw, editor, Fast Software Encryption, 13th International

Workshop, FSE 2006, Graz, Austria, March 15-17, 2006, Revised Selected Papers, volume

4047 of Lecture Notes in Computer Science, pages 310–327. Springer, 2006.

40 / 40

http://eprint.iacr.org/2016/1087

References iv

David A. McGrew and John Viega.

The Security and Performance of the Galois/Counter Mode (GCM) of Operation.

In Anne Canteaut and Kapalee Viswanathan, editors, Progress in Cryptology -

INDOCRYPT 2004, 5th International Conference on Cryptology in India, Chennai, India,

December 20-22, 2004, Proceedings, volume 3348 of Lecture Notes in Computer Science,

pages 343–355. Springer, 2004.

Jacques Patarin.

Luby-Rackoff: 7 Rounds Are Enough for 2n(1−ϵ) Security.

In Dan Boneh, editor, Advances in Cryptology - CRYPTO 2003, 23rd Annual International

Cryptology Conference, Santa Barbara, California, USA, August 17-21, 2003, Proceedings,

volume 2729 of Lecture Notes in Computer Science, pages 513–529. Springer, 2003.

40 / 40

References v

Jacques Patarin.

A Proof of Security in O(2n) for the Xor of Two Random Permutations.

In Reihaneh Safavi-Naini, editor, Information Theoretic Security, Third International

Conference, ICITS 2008, Calgary, Canada, August 10-13, 2008, Proceedings, volume 5155

of Lecture Notes in Computer Science, pages 232–248. Springer, 2008.

40 / 40

	Keyed Symmetric Cryptography
	How to Model Security?
	Generic Stream Cipher Design
	Block Ciphers
	Counter Mode Encryption
	Beyond Birthday Bound Security
	Accordion Modes
	Conclusion

