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Linear codes

A linear code € < Fy is a linear subspace.

We denote by [n, k, d] a code if
o nis its length,
o k is its dimension,

o d is its minimum distance.
Theorem (Singleton Bound) J

d<n—k+1.

Such a code can be defined by the image of an injective map C : IFqk — .
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Locally Recoverable Codes (LRCs)

Definition
Let € c ] be a F,—linear code. The code € is locally recoverable with locality r if every symbol of a

codeword ¢ = (¢, .. ., ¢n) € € can be recovered using a subset of at most r other symbols. The
smallest such r is called the locality of the code.

Theorem

Let C be a g—ary linear code with parameters [n, k, d] with locality r. The minimum distance d of C
verifies

d<n—k-— [é} + 2. (Singleton Bound for LRCs)

The rate of such a code verifies

S|Ix
N
-

r+1
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Background

00@00000

Ex : Reed-Solomon codes

A Reed-Solomon code RS(n, k) of length n and dimension k is defined by the image of an application

Fo[x]<k — Fg

RS(n, k) :
(n k)= ¢ s (Flen),.... Flan).
where ay, ..., a, are distinct elements of F.
The minimum distance of RS(n, k) veririfes
d=n—k+1 J

These codes have locality k and (also) reach the Singleton-type bound for LRCs.
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[e]e] e}
Some known constructions

o Tamo-Barg (n < q),

LRC codes

=son curves

o LRCs from algebraic surfaces
(n < 4q),

o Tamo-Barg-Vladuts (n — ),

o Concatenated codes (n — o).

V4

"IREEV boun

The bound (46) together with the GV-type bound, r = 2, go = 32.

1 Tamo, Barg and Vladut, Locally recoverable codes on algebraic curves, 2015
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Some known constructions

o Tamo-Barg (n < q),

o LRCs from algebraic surfaces
(n < 4q),
o Tamo-Barg-Vladuts (n — o),

o Concatenated codes (n — o).

[Gopalan et. al]
/
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Fig. 2. A depiction of our achievability result (10) through the trade-off
between the rate, k/n, and relative distance, d/n, for binary codes (¢=2)
for large values of n, with locality 7 = 2. We compare this achievable rate
with our upper bounds: assuming respectively MRRW bound, Eq. (8), and
the Gilbert-Varshamov (GV) bound, Eq. (9), as the asymptotically optimal
rate for binary error-correcting codes as n — oo. If the GV bound were true
rate-distance trade-off, then our achievability scheme is quite good for large
distances.

2Cadambe and Mazumbar, Bounds on the Size of Locally Recoverable Codes, 2015
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Concatenated codes

Definition
Let
0 Cout be a ¢ — ary linear code of parameters [n, k, d] and

0 @i, be a g — ary linear code of parameters [n’, k', d’]

such that
Cout(m) = (c1,, ..., Cn),
where m € IF’;k, and ¢, ..., ¢ € F . Then the concatenated code Ceone Of Cout and Cin is defined by
Ceonc(m) = (Cin(c1) | -+ | Cin(cn)). )
Proposition

The code Ceonc is a [nn’, kk', > dd'] linear code over Fq.

Moreover, the locality of a concatenated code is given by the one of the inner code.
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! .
0 Cout be a ¢¥ — ary linear code of parameters [n, k, d],
o Ci, be a g — ary linear code of parameters [n’, k', d'] with locality r,
0 Cout(m) = (c1,...,Cn).
o ein(Ci) = (Ci,ly ceey Cl,n/)-
m
c1 (o) - Cn
Ci1 C2 - Cn @1 Q2 -+ QO Ch1 Cpn2 -+ Cpn

The code Ceonc is a [nn', kk', = dd’] g—ary linear code with locality r.
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Let

Qo
Qo
Q
Qo

q=3,

Cout 1= RS(3,2) be a ¢° — ary linear code of parameters [3,2, 2],
Cin := RS(3,2) be a g — ary linear code of parameters [3, 2, 2],
dy, dp, as € qu.

fe ]qu [X]<2

/\

f(a1) = fi € Fy[x]<2 f(a2) — f € Fq[x]<2 f(as) — fz € Fy[x]<2

SN SN

A(0)  AQ) AR £O) RO R(2) KO B(OA) B2

The code Ceonc is a [9,4, = 4] g—ary linear code with locality 2.
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New constru

O@00000

An optimal example

Let Pi(x) = x* +2x + 2, Po(x) = x* + 1, and Ps(x) = x* + x + 2,
—_— 3
and the Reed-Solomon code RS5(3,2) : Falx]<2 5

f —  (f(0),1(1),7(2)).
fe F3[X]<5
fie F3[x] fe _Fs[x] e Fs[x]

(PL(x)) (P2(x)) (P3(X))

AN A )

1(0) A(1) A(2)  £(0) (1) 22(2)  £(0) (1) £(2)

This code is a [9, 5, 3] linear code with locality 2, reaching the Singleton Bound for LRC .
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Actually, some optimal examples

The latter example generalizes to any prime power g > 3.

Proposition

Let g = 3 be a prime power. One can similarly define a [%(q2 —q),q° — q—1,3]q linear code with
locality 2, reaching the Singleton bound.

Remark : the dimension is not a multiple of the locality.
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Ba New construction
@ 0008000 )

Are these concatenated codes ?

New example Concatenated LRC example
Polynomials of degree k over Fq Polynomials of degree ko over Fgr
Evaluation modulo s degree r polynomials Evaluation at s elements of Fgr
Polynomials of degree r over F, Polynomials of degree r over Fgr
Evaluation at r + 1 elements of Fy Evaluation at r 4+ 1 elements of [,
[s(r + 1), k] linear code over Fq [s(r+ 1), kor] linear code over Fy:
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Are these concatenated codes ?

New example
Polynomials of degree k over Fq
Evaluation modulo s degree r polynomials
Polynomials of degree r over F,
Evaluation at r + 1 elements of Fy

[s(r + 1), k] linear code over Iy

Concatenated LRC example

Polynomials of degree ko over Fgr
Evaluation at s elements of Fgr
Polynomials of degree r over Fgr

Evaluation at r + 1 elements of Fy

[s(r+ 1), kor] linear code over Fy:

What are these codes ? Generalized AG-Codes !
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New constru
O000e00

Algebraic-Geometric (AG) codes

Let F/F, be a function field of genus g.

Let D and G be divisors of F, with D = P, + --- + P,, where Py, ..., P, are distinct rational places
(points) of F.

Suppose that Supp(G){P.,.... P} = &.
An AG code €(D, G) is defined by the image of an application
L(G) — F]

¢(D.6): — (F(P),....f(P).

If 2g — 2 < deg G < n, the code (D, G) has dimension
k =deg(G) —g+1

and minimum distance
d = n— deg(G).
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Generalized AG codes (GAG)3

Let F/IF, be an algebraic function field defined over F, of genus g, and
o P,..., Ps are s distinct places of F,
o G is a divisor of F such that Supp(G)({P1..... P} =,
and for 1 <i<s:
o ki = deg(P,) the degree of P,
o Cjis a [nj, ki, di]q linear code,
o m; is a fixed Fy—linear isomorphism mapping F . to Ci.
Consider the application
L£G) — F
f —  (m(f(P)),....ms(F(P))).

Definition

The image of a is called a generalized algebraic-geometric code, denoted by
CP,....,.Ps:G:Cq,...,GC).

3Xing, Niederreiter and Lam, A Generalization of Algebraic-Geometric Codes, 1999.
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truction

O®0000

Proposition

Observation : if k1 = ... = ks =: k, the code defined above has locality k. More formally,

Proposition

Let C=C(P, ..., Ps:G:C,.. ., Cs) be a generalized AG-code as in the previous slide.
If there exists r € N such that for all 1 < i < s, we have

ol<ki<r,

o n; > deg(PR;), and

o C; has locality ki,
then € has locality r.
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struction

000000

An optimal example (bis)

Let F3(x) be the rational function field. Set G = 4P.
Let Pi(x) = x* +2x + 2, Po(x) = x2 + 1, and P3(x) = x* + x + 2,

~ Fi[x]<c — T3
and the Reed-Solomon code RS(3,2) : P s (F(0), F(1), F(2))

fe L(4POO) o~ Fg[X]<5

T

Fa[x
Fa 3 f(P) — fi e 25 fe wo fre mob

AN AN AN

1(0) A(1) A(2)  £(0) R(1) 2(2)  A(0) (1) A(2)

The code C(P1, P, Ps 1 4P, : RS5(3,2),RS5(3,2), RS(3,2)) is a [9,5, 3] linear code with locality 2,

reaching the Singleton Bound for LRC .
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struction

000000

Practical proposition

Proposition

Let C=C(Py,...,Ps:G:Cy,...,Cs) be a generalized AG-code as defined previously. Suppose that
o degPr=---=degPs =r, and
0C =Ci=---=Csisaln' r d] linear code with locality r.

If2g —1 < deg(G) < rs, then C is a

[sn', deg(G) — g+ 1,2 d' (5_ {degGJ)]

r

linear code over Fyq with locality r.
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More examples : set-up

We (randomly) constructed several codes over 3 using evaluation at places of degree 2, then encoding
the evaluations with RS(3, 2) as previously.

We use the following curves.

o The rational function field F3(x), of genus 0, that contains 3 places of degree 2. Then one can
construct codes of length at most 9.

o The elliptic curve defined by the equation y? = x> 4+ x of genus 1, that contains 6 places of
degree 2. Then one can construct codes of length at most 18.

o The Klein quartic defined by the equation x* + y* + 1 = 0 of genus 3, that contains 12 places of
degree 2. Then one can construct codes of length at most 36.

This gives [3s, k, > 2 (s — [%J)] linear code with locality 2, where s is the number of places of
degree 2 used in the construction.
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results

More examples

Ayt 41

d

defect

10

10
10

4
10
10

10

12
13
14
15
16
10
11

12
13
14
15
16
17
18
11

12
13
14
15
16
17
18
19
12
13
14
15
16
17
18
19
2

0

27

30

33

36

P!

defect

d

Yo =x24x

defect

d

F3(x)

defect

d

10

10

12

10

12
13
14
15

10

12

15

18

21

24

27

20/26



Construction

Proposition

Let
o F/F, be a function field of genus g containing s places of degree r, denoted by P, .. ., =
o Cpar the g—ary single parity check code of length r + 1 and dimension r and minimum distance 2,
o G be a divisor of F of degree k + g — 1, whereg—1< k<rs—g+1,

Then, the code C(Px, . . ., 125 3 G & Cerg oo s Cpar) is a [n, k, = d] linear code over Fq with locality r,
such that
n=(r+1)s,

roa(o-]2271).

It follows that the rate of this code verifies

k> r _Eé_gfl
n r+1 2 n

where § = <

ne
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Asympto
O®000

Drinfeld-Vladut Bound

In this context, we need functions fields with a lot of places (of degree r) relatively to their genus.
The best we can expect is given by the following.

Definition (Drinfeld-Vladut Bound of order r)
Let F/F, be a function field over F; and B, (F/F;) denotes its number of places of degree r. Let

Br(q,g9) = max{B,(F/F, | F/F,) is a function field over F; of genus g}.

Then,

B:(q.9)

. 1,
lim sup < —(q2 —1).
g—>+00 r

/

o r=1: (classical) Drinfeld-Vladut Bound.
o Example : Garcia-Stichtenoth recursively defined tower of function fields.*

4Garcia and Stichtenoth, A tower of Artin-Schreier extensions of function fields attaining the Drinfeld-Viadut bound, 1995.
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Asymptotic study

ooce

Asymptotic study

Ballet and Rolland® studied the descent of the tower of Garcia-Stichtenoth to the field of constant F,.
The authors also proved that these towers reach the Drinfeld-Vladut bound at order 2.

This allows us to prove the existence of infinite families of linear code with locality 2.

Proposition

Let g > 3 be a prime power. Then, Construction 1 provides an infinite family of linear code with

locality 2 verifying
k 2 q
—z2-|1—-—5—""—)—0.
n 3( q2—q—2) g

5Ballet and Rolland, Families of curves over any finite field attaining the generalized Drinfeld-Vladut bound, 2011.
23/96



Comparison with concatenated codes

GAG-construction

F/Fq
P, Ps places of degree r

g—1l<k<rs—g+1
degG=k+g—-1

[s(r+ 1) k2(s = [=5=2])]

if g>3and r=2:

k 2
£22(1- 72%5) -8

n

Concatenated construction

F/Fqr
P,..., Ps rational places

g—1l<ky<rs—g+1
degG =ko+9—1

[s(r+1),k=kr2(s=5—g+1)]

ks r _rs_ rg=1)
n2r+1 25 n

ifg=3and2|r:

k r r+1 1
> L (1 -2 —
n/rl< 2 q571>
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Asymptotic study
(o] J

Comparison with known-results

—— Gilbert-Varshamov
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Asymptotic study

Possible further developments

o Improvements (places of other degrees, multiplicities, use other "subcodes”,..)
o Hierarchical LRCs ?

o Question : can we use this construction to obtain code of any dimension k € N 7
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otic study

Possible further developments

o Improvements (places of other degrees, multiplicities, use other "subcodes”,..)
o Hierarchical LRCs ?

o Question : can we use this construction to obtain code of any dimension k € N 7

Thanks for your attention!
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