Workshop on Coding and Cryptography

Perugia, Italy, the 06/20/2024.

Introducing locality in a generalization of AG-codes

Bastien Pacifico ECo, LIRMM, Montpellier.

Linear codes

A linear code $\mathcal{C} \subset \mathbb{F}_q^n$ is a linear subspace.

We denote by [n, k, d] a code if

- n is its length,
- k is its dimension,
- *d* is its minimum distance.

Theorem (Singleton Bound)

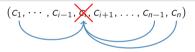
 $d \leq n-k+1.$

Such a code can be defined by the image of an injective map $\mathcal{C}: \mathbb{F}_q^k \longrightarrow \mathbb{F}_q^n$.

Locally Recoverable Codes (LRCs)

Definition

Let $\mathcal{C} \subset \mathbb{F}_q^n$ be a \mathbb{F}_q -linear code. The code \mathcal{C} is locally recoverable with locality r if every symbol of a codeword $c = (c_1, \ldots, c_n) \in \mathcal{C}$ can be recovered using a subset of at most r other symbols. The smallest such r is called the locality of the code.



Theorem

Let C be a q-ary linear code with parameters [n, k, d] with locality r. The minimum distance d of C verifies

$$d \leq n-k-\left[\frac{k}{r}\right]+2.$$
 (Singleton Bound for LRCs)

The rate of such a code verifies

$$\frac{k}{n} \leqslant \frac{r}{r+1}$$

Ex : Reed-Solomon codes

Background

A Reed-Solomon code RS(n, k) of length n and dimension k is defined by the image of an application

$$RS(n,k): \begin{array}{ccc} \mathbb{F}_{q}[x]_{< k} & \longrightarrow & \mathbb{F}_{q}^{n} \\ f & \longmapsto & (f(\alpha_{1}), \dots, f(\alpha_{n})), \end{array}$$

where $\alpha_1, \ldots, \alpha_n$ are distinct elements of \mathbb{F}_q .

The minimum distance of RS(n, k) veririfes

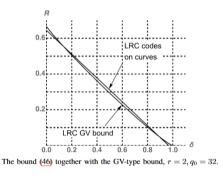
$$d=n-k+1.$$

These codes have locality k and (also) reach the Singleton-type bound for LRCs.

Some known constructions

Background

- Tamo-Barg $(n \leq q)$,
- LRCs from algebraic surfaces (n ≤ 4q),
- Tamo-Barg-Vladuts $(n \mapsto \infty)$,
- Concatenated codes $(n \mapsto \infty)$.



1

¹Tamo, Barg and Vladut, Locally recoverable codes on algebraic curves, 2015

Some known constructions

Background

- Tamo-Barg $(n \leq q)$,
- LRCs from algebraic surfaces (n ≤ 4q),
- Tamo-Barg-Vladuts $(n \mapsto \infty)$,
- Concatenated codes $(n \mapsto \infty)$.

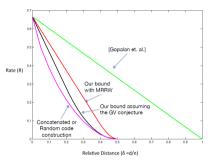


Fig. 2. A depiction of our achievability result (10) through the trade-off between the *rate*, k/n, and *relative distance*, d/n, for binary codes (q=2) for large values of n, with locality r = 2. We compare this achievable rate with our upper bounds: assuming respectively MRRW bound, Eq. (8), and the Gilbert-Varshamov (GV) bound, Eq. (9), as the asymptotically optimal rate for binary error-correcting codes as $n \to \infty$. If the GV bound were true rate-distance trade-off, then our achievability scheme is quite good for large distances.

²Cadambe and Mazumbar, Bounds on the Size of Locally Recoverable Codes, 2015

Concatenated codes

Definition

Let

• \mathcal{C}_{out} be a $q^{k'} - ary$ linear code of parameters [n, k, d] and

• \mathcal{C}_{in} be a q - ary linear code of parameters [n', k', d']

such that

 $\mathcal{C}_{out}(m) = (c_1, \ldots, c_n),$

where $m \in \mathbb{F}_{a^{k'}}^k$ and $c_1, \ldots, c_n \in \mathbb{F}_{a^{k'}}$. Then the concatenated code \mathcal{C}_{conc} of \mathcal{C}_{out} and \mathcal{C}_{in} is defined by

$$\mathcal{C}_{conc}(m) = (\mathcal{C}_{in}(c_1) \mid \cdots \mid \mathcal{C}_{in}(c_n)).$$

Proposition

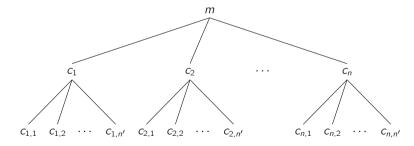
The code \mathcal{C}_{conc} is a $[nn', kk', \ge dd']$ linear code over \mathbb{F}_q .

Moreover, the locality of a concatenated code is given by the one of the inner code.

Concatenated LRCs

Let

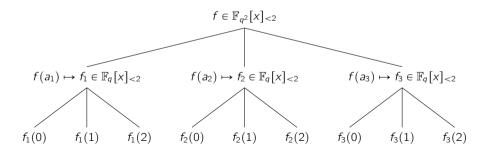
- \mathcal{C}_{out} be a $q^{k'} ary$ linear code of parameters [n, k, d],
- C_{in} be a q ary linear code of parameters [n', k', d'] with locality r,
- $\mathcal{C}_{out}(m) = (c_1, \ldots, c_n).$
- $\mathcal{C}_{in}(c_i) = (c_{i,1}, \ldots, c_{i,n'}).$



The code \mathcal{C}_{conc} is a $[nn', kk', \ge dd']$ q-ary linear code with locality r.

A concatenated LRC using RS codes

Let • $q \ge 3$, • $C_{out} := RS(3, 2)$ be a $q^2 - ary$ linear code of parameters [3, 2, 2], • $C_{in} := RS(3, 2)$ be a q - ary linear code of parameters [3, 2, 2], • $a_1, a_2, a_3 \in \mathbb{F}_{q^2}$.

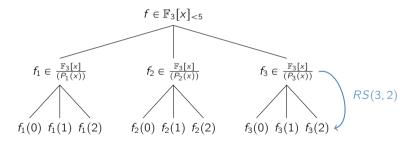


The code \mathcal{C}_{conc} is a [9, 4, \ge 4] q-ary linear code with locality 2.

New construction

An optimal example

Let
$$P_1(x) = x^2 + 2x + 2$$
, $P_2(x) = x^2 + 1$, and $P_3(x) = x^2 + x + 2$,
and the Reed-Solomon code $RS(3,2)$: $\begin{array}{c} \mathbb{F}_3[x]_{<2} \longrightarrow \mathbb{F}_3^3\\ f \longmapsto (f(0), f(1), f(2)). \end{array}$



This code is a [9, 5, 3] linear code with locality 2, reaching the Singleton Bound for LRC .

Actually, some optimal examples

The latter example generalizes to any prime power $q \ge 3$.

Proposition

Let $q \ge 3$ be a prime power. One can similarly define a $\left[\frac{3}{2}(q^2 - q), q^2 - q - 1, 3\right]_q$ linear code with locality 2, reaching the Singleton bound.

Remark : the dimension is not a multiple of the locality.

Are these concatenated codes ?

New example	Concatenated LRC example
Polynomials of degree k over \mathbb{F}_q	Polynomials of degree k_0 over \mathbb{F}_{q^r}
Evaluation modulo s degree r polynomials	Evaluation at s elements of \mathbb{F}_{q^r}
Polynomials of degree r over \mathbb{F}_q	Polynomials of degree r over \mathbb{F}_{q^r}
Evaluation at $r+1$ elements of \mathbb{F}_q	Evaluation at $r+1$ elements of \mathbb{F}_q
$[s(r+1), k]$ linear code over \mathbb{F}_q	$[s(r+1), \frac{k_0r}{r}]$ linear code over \mathbb{F}_q :

Are these concatenated codes ?

ł

New example	Concatenated LRC example
Polynomials of degree k over \mathbb{F}_q	Polynomials of degree k_0 over \mathbb{F}_{q^r}
Evaluation modulo s degree r polynomials	Evaluation at s elements of \mathbb{F}_{q^r}
Polynomials of degree r over \mathbb{F}_q	Polynomials of degree r over \mathbb{F}_{q^r}
Evaluation at $r+1$ elements of \mathbb{F}_q	Evaluation at $r+1$ elements of \mathbb{F}_q
$[s(r+1), k]$ linear code over \mathbb{F}_q	$[s(r+1), \frac{k_0r}{r}]$ linear code over \mathbb{F}_q :

What are these codes ?

Are these concatenated codes ?

New example	Concatenated LRC example
Polynomials of degree k over \mathbb{F}_q	Polynomials of degree k_0 over \mathbb{F}_{q^r}
Evaluation modulo s degree r polynomials	Evaluation at s elements of \mathbb{F}_{q^r}
Polynomials of degree r over \mathbb{F}_q	Polynomials of degree r over \mathbb{F}_{q^r}
Evaluation at $r+1$ elements of \mathbb{F}_q	Evaluation at $r+1$ elements of \mathbb{F}_q
$[s(r+1), k]$ linear code over \mathbb{F}_q	$[s(r+1), \frac{k_0r}{r}]$ linear code over \mathbb{F}_q :

What are these codes ? Generalized AG-Codes !

Algebraic-Geometric (AG) codes

Let F/\mathbb{F}_q be a function field of genus g. Let \mathcal{D} and G be divisors of F, with $\mathcal{D} = P_1 + \cdots + P_n$, where P_1, \ldots, P_n are distinct rational places (points) of F.

Suppose that $Supp(G) \bigcap \{P_1, \ldots, P_n\} = \emptyset$.

An AG code $\mathcal{C}(\mathcal{D}, G)$ is defined by the image of an application

$$\mathcal{C}(\mathcal{D},G): \begin{array}{ccc} \mathcal{L}(G) & \longrightarrow & \mathbb{F}_q^n \\ f & \longmapsto & (f(P_1),\ldots,f(P_n)) \end{array}$$

If $2g - 2 < \deg G < n$, the code $\mathcal{C}(\mathcal{D}, G)$ has dimension

$$k = \deg(G) - g + 1$$

and minimum distance

$$d \ge n - \deg(G)$$

Generalized AG codes $(GAG)^3$

Let F/\mathbb{F}_q be an algebraic function field defined over \mathbb{F}_q of genus g, and

- P_1, \ldots, P_s are s distinct places of F,
- G is a divisor of F such that $Supp(G) \cap \{P_1, \ldots, P_s\} = \emptyset$,

and for $1 \leq i \leq s$:

- $k_i = \deg(P_i)$ the degree of P_i ,
- C_i is a $[n_i, k_i, d_i]_q$ linear code,
- π_i is a fixed \mathbb{F}_q -linear isomorphism mapping $\mathbb{F}_{a^{k_i}}$ to C_i .

Consider the application

$$\alpha : \begin{array}{ccc} \mathcal{L}(G) & \longrightarrow & \mathbb{F}_q^n \\ f & \longmapsto & (\pi_1(f(P_1)), \dots, \pi_s(f(P_s))) \end{array}$$

Definition

The image of α is called a generalized algebraic-geometric code, denoted by $C(P_1, \ldots, P_s : G : C_1, \ldots, C_s)$.

³Xing, Niederreiter and Lam, A Generalization of Algebraic-Geometric Codes, 1999.

Proposition

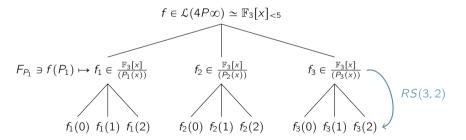
Observation : if $k_1 = \ldots = k_s =: k$, the code defined above has locality k. More formally,

Proposition

Let $\mathcal{C} = C(P_1, \ldots, P_s : G : C_1, \ldots, C_s)$ be a generalized AG-code as in the previous slide. If there exists $r \in \mathbb{N}$ such that for all $1 \le i \le s$, we have • $1 < k_i \le r$, • $n_i > \deg(P_i)$, and • C_i has locality k_i , then \mathcal{C} has locality r.

An optimal example (bis)

Let $\mathbb{F}_3(x)$ be the rational function field. Set $G = 4P_{\infty}$. Let $P_1(x) = x^2 + 2x + 2$, $P_2(x) = x^2 + 1$, and $P_3(x) = x^2 + x + 2$, and the Reed-Solomon code RS(3,2): $\begin{array}{ccc} \mathbb{F}_3[x]_{<2} & \longrightarrow & \mathbb{F}_3^3\\ f & \longmapsto & (f(0), f(1), f(2)) \end{array}$.



The code $C(P_1, P_2, P_3 : 4P_{\infty} : RS(3, 2), RS(3, 2), RS(3, 2))$ is a [9, 5, 3] linear code with locality 2, reaching the Singleton Bound for LRC.

Practical proposition

Proposition

Let $\mathcal{C} = C(P_1, \dots, P_s : G : C_1, \dots, C_s)$ be a generalized AG-code as defined previously. Suppose that • deg $P_1 = \dots = \deg P_s = r$, and • $\mathcal{C}' = C_1 = \dots = C_s$ is a [n', r, d'] linear code with locality r. If $2g - 1 \leq \deg(G) < rs$, then \mathcal{C} is a $[sn', \deg(G) - g + 1, \geq d'\left(s - \left\lfloor \frac{\deg G}{r} \right\rfloor\right)]$

linear code over \mathbb{F}_q with locality r.

More examples : set-up

We (randomly) constructed several codes over \mathbb{F}_3 using evaluation at places of degree 2, then encoding the evaluations with RS(3, 2) as previously.

We use the following curves.

- The rational function field $\mathbb{F}_3(x)$, of genus 0, that contains 3 places of degree 2. Then one can construct codes of length at most 9.
- The elliptic curve defined by the equation $y^2 = x^3 + x$ of genus 1, that contains 6 places of degree 2. Then one can construct codes of length at most 18.
- The Klein quartic defined by the equation $x^4 + y^4 + 1 = 0$ of genus 3, that contains 12 places of degree 2. Then one can construct codes of length at most 36.

This gives $[3s, k] \ge 2(s - \lfloor \frac{k+g-1}{2} \rfloor)$ linear code with locality 2, where s is the number of places of degree 2 used in the construction.

More examples : results

		F	^r 3(x)	$y^{2} =$	x ³ + x	x ⁴ +	$y^4 + 1$		Г
n	k	d	defect	d	defect	d	defect	n	t
	3	4	2	4	2	4	2		t
9	4	4	1	4	1	4	1		
	5	3	0	3	0	3	0	27	
	4	-	-	5	3	6	2 2 1		
12	5	-	-	4	3 2 2	4	2		
	6	-	-	3	2	4	1		T
	5	-	-	6	3	6 5 4	3		
15	6	-	-	4	4	5	3 2		
	7	-	-	4	2 2		2		
	8	-	-	3	2	4	1	30	
	6	-	-	6	5	6	5 3 4		
	7	-	-	6	3	6	3		L
18	8	-	-	4	4	4			L
	9	-	-	4	2 3	4	2 2		
	10	-	-	2	3	3			Г
	7	-	-	-	-	8	4		
	8	-	-	-	-	6 5 4	5		L
21	9	-	-	-	-	5	4		
	10	-	-	-	-		4	33	
	11	-	-	-	-	4	2 1		
	12	-	-	-	-	4			
	8	-	-	-	-	8 7 6 6	6 5 3		
	9	-	-	-	-	7	5		
	10	-	-	-	-	6	5		
24	11	-	-	-	-		3		
	12	-	-	-	-	4	4		L
	13	-	-	-	-	4	2		
	14	-	-	-	-	3 3	2 2 1	36	
	15	-	-	-	-				
	9	-	-	-	-	8 8 7	7		
27	10	-	-	-	-	8	6		1
	11	-	-	-	-	7	5		

n	k	d	defect
	12	6	5
27	13	6	3
	14	4	4
	15	4	2
	16	3	2 2 7 7 7 7
	10	10	7
	11	8	7
	12	7	7
	13	7	5
30	14	6	5
	15	6	3
	16	4	4
	17	4	2
	18	3	2 8 7
	11	10	8
	12	10	7
	13	8	7
	14	8	6
33	15	6	6
	16	6	5
	17	5	4
	18	4	4
	19	4	2
	12	10	10
36	13	10	8
	14	8	9
	15	8	7
	16	6	8
	17	6	6
	18	5	6
	19	4	5
	20	4	4

 $x^4 + y^4 + 1$

Construction

Proposition

Let

• F/\mathbb{F}_q be a function field of genus g containing s places of degree r, denoted by P_1, \ldots, P_s ,

• C_{par} the q-ary single parity check code of length r + 1 and dimension r and minimum distance 2,

• G be a divisor of F of degree k + g - 1, where g - 1 < k < rs - g + 1,

Then, the code $C(P_1, \ldots, P_s : G : \mathcal{C}_{par}, \ldots, \mathcal{C}_{par})$ is a $[n, k, \ge d]$ linear code over \mathbb{F}_q with locality r, such that

$$n = (r+1)s,$$

$$d \ge 2\left(s - \left\lfloor \frac{k+g-1}{r} \right\rfloor\right)$$

It follows that the rate of this code verifies

$$\frac{k}{n} \ge \frac{r}{r+1} - \frac{r}{2}\delta - \frac{g-1}{n},$$

where $\delta = \frac{d}{n}$.

Drinfeld-Vladut Bound

In this context, we need functions fields with a lot of places (of degree r) relatively to their genus. The best we can expect is given by the following.

Definition (Drinfeld-Vladut Bound of order r)

Let F/\mathbb{F}_q be a function field over \mathbb{F}_q and $B_r(F/\mathbb{F}_q)$ denotes its number of places of degree r. Let

 $B_r(q,g) = \max\{B_r(F/\mathbb{F}_q \mid F/\mathbb{F}_q) \text{ is a function field over } \mathbb{F}_q \text{ of genus } g\}.$

Then,

$$\limsup_{g \longrightarrow +\infty} \frac{B_r(q,g)}{g} \leqslant \frac{1}{r}(q^{\frac{r}{2}}-1).$$

• r = 1: (classical) Drinfeld-Vladut Bound.

• Example : Garcia-Stichtenoth recursively defined tower of function fields.⁴

⁴Garcia and Stichtenoth, A tower of Artin-Schreier extensions of function fields attaining the Drinfeld-Vladut bound, 1995.

Asymptotic study

Ballet and Rolland⁵ studied the descent of the tower of Garcia-Stichtenoth to the field of constant \mathbb{F}_q .

The authors also proved that these towers reach the Drinfeld-Vladut bound at order 2.

This allows us to prove the existence of infinite families of linear code with locality 2.

Proposition

Let q > 3 be a prime power. Then, Construction 1 provides an infinite family of linear code with locality 2 verifying

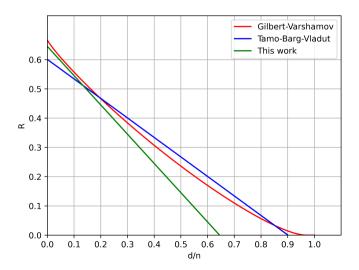
$$\frac{k}{n} \ge \frac{2}{3} \left(1 - \frac{q}{q^2 - q - 2} \right) - \delta.$$

⁵Ballet and Rolland, Families of curves over any finite field attaining the generalized Drinfeld-Vladut bound, 2011.

Comparison with concatenated codes

GAG-construction	Concatenated construction
F/\mathbb{F}_q P_1,\ldots,P_s places of degree r	F/\mathbb{F}_{q^r} P_1,\ldots,P_s rational places
$g - 1 < k < rs - g + 1$ $\deg G = k + g - 1$	$g-1 < k_0 < rs-g+1$ $\deg G = k_0 + g - 1$
$\left[s(r+1), k, 2\left(s - \left\lfloor \frac{k+g-1}{r} \right\rfloor\right)\right]$	$[s(r+1), k = k_0 r, 2(s - \frac{k}{r} - g + 1)]$
$\frac{k}{n} \ge \frac{r}{r+1} - \frac{r}{2}\delta - \frac{g-1}{n}$	$\frac{k}{n} \ge \frac{r}{r+1} - \frac{r}{2}\delta - \frac{r(g-1)}{n}$
if $q > 3$ and $r = 2$: $\frac{k}{n} \ge \frac{2}{3} \left(1 - \frac{q}{q^2 - q - 2}\right) - \delta$	if $q \ge 3$ and $2 \mid r$: $\frac{k}{n} \ge \frac{r}{r+1} \left(1 - \frac{r+1}{2}\delta - \frac{1}{q^{\frac{r}{2}} - 1} \right)$

Comparison with known-results



Possible further developments

- Improvements (places of other degrees, multiplicities, use other "subcodes",..)
- Hierarchical LRCs ?
- Question : can we use this construction to obtain code of any dimension $k \in \mathbb{N}$?

Possible further developments

- Improvements (places of other degrees, multiplicities, use other "subcodes",..)
- Hierarchical LRCs ?
- Question : can we use this construction to obtain code of any dimension $k \in \mathbb{N}$?

Thanks for your attention!