Workshop on Coding and Cryptography

Perugia, Italy, the 06/20/2024.

Introducing locality in a generalization of AG-codes

Bastien Pacifico ECo, LIRMM, Montpellier.

Linear codes

A linear code $\mathcal{C} \subset \mathbb{F}_q^n$ is a linear subspace.

We denote by $[n, k, d]$ a code if

- \circ *n* is its length,
- \bullet k is its dimension.
- \bullet d is its minimum distance.

Theorem (Singleton Bound)

 $d \leq n - k + 1$.

Such a code can be defined by the image of an injective map $\mathcal{C}: \mathbb{F}_q^k \longrightarrow \mathbb{F}_q^n$.

Locally Recoverable Codes (LRCs)

Definition

Let $\mathcal{C} \subset \mathbb{F}_q^n$ be a \mathbb{F}_q —linear code. The code $\mathcal C$ is locally recoverable with locality r if every symbol of a codeword $c = (c_1, \ldots, c_n) \in \mathcal{C}$ can be recovered using a subset of at most r other symbols. The smallest such r is called the locality of the code.

Theorem

Let C be a q-ary linear code with parameters $[n, k, d]$ with locality r. The minimum distance d of C verifies R l.

$$
d \leq n - k - \left\lceil \frac{k}{r} \right\rceil + 2. \quad \text{(Singleton Bound for LRCs)}
$$

The rate of such a code verifies

$$
\frac{k}{n} \leqslant \frac{r}{r+1}
$$

A Reed-Solomon code $RS(n, k)$ of length n and dimension k is defined by the image of an application

$$
RS(n, k): \begin{array}{ccc}\mathbb{F}_q[X]_{< k} & \longrightarrow & \mathbb{F}_q^n \\
f & \longmapsto & \big(f(\alpha_1), \ldots, f(\alpha_n)\big)\n\end{array}
$$

where $\alpha_1, \ldots, \alpha_n$ are distinct elements of \mathbb{F}_q .

The minimum distance of $RS(n, k)$ veririfes

$$
d=n-k+1.
$$

These codes have locality k and (also) reach the Singleton-type bound for LRCs.

Some known constructions

- \circ Tamo-Barg $(n \leq q)$,
- LRCs from algebraic surfaces $(n \leq 4q)$,
- \circ Tamo-Barg-Vladuts $(n \mapsto \infty)$,
- \circ Concatenated codes $(n \mapsto \infty)$.

¹Tamo, Barg and Vladut, Locally recoverable codes on algebraic curves, 2015

Some known constructions

- \bullet Tamo-Barg $(n \leq q)$,
- LRCs from algebraic surfaces $(n \leqslant 4q)$,
- \circ Tamo-Barg-Vladuts $(n \mapsto \infty)$,
- Concatenated codes $(n \mapsto \infty)$.

Fig. 2. A depiction of our achievability result (10) through the trade-off between the *rate*, k/n , and *relative distance*, d/n , for binary codes ($q=2$) for large values of n, with locality $r = 2$. We compare this achievable rate with our upper bounds: assuming respectively MRRW bound, Eq. (8), and the Gilbert-Varshamov (GV) bound, Eq. (9), as the asymptotically optimal rate for binary error-correcting codes as $n \to \infty$. If the GV bound were true rate-distance trade-off, then our achievability scheme is quite good for large distances.

 \mathcal{L}

²Cadambe and Mazumbar, Bounds on the Size of Locally Recoverable Codes, 2015

Concatenated codes

Definition

Let

 \mathcal{C}_{out} be a $q^{k'} - ary$ linear code of parameters $[n, k, d]$ and

 \mathcal{C}_{in} be a $q = ary$ linear code of parameters $[n', k', d']$

such that

 $\mathcal{C}_{\text{out}}(m) = (c_1, \ldots, c_n).$

where $m\in \mathbb{F}_{q^{k'}}^k$ and $c_1,\ldots,c_n\in \mathbb{F}_{q^{k'}}$. Then the concatenated code $\mathcal{C}_{\text{conc}}$ of \mathcal{C}_{out} and \mathcal{C}_{in} is defined by

$$
\mathcal{C}_{\text{conc}}(m) = (\mathcal{C}_{\text{in}}(c_1) \mid \cdots \mid \mathcal{C}_{\text{in}}(c_n)).
$$

Proposition

The code C_{conc} is a [nn', kk', $\geq d d'$] linear code over \mathbb{F}_q .

Moreover, the locality of a concatenated code is given by the one of the inner code.

Concatenated LRCs

Let

- \mathcal{C}_{out} be a $q^{k'} ary$ linear code of parameters $[n, k, d]$,
- \mathcal{C}_{in} be a q ary linear code of parameters $[n', k', d']$ with locality r,
- $C_{\text{out}}(m) = (c_1, \ldots, c_n).$
- $C_{\text{in}}(c_i) = (c_{i,1}, \ldots, c_{i, n'}).$

The code C_{conc} is a $\left[nn', kk', \geq dd' \right] q$ ary linear code with locality r.

A concatenated LRC using RS codes

Let $q \ge 3$, $C_{\text{out}} := \text{RS}(3, 2)$ be a $q^2 - ary$ linear code of parameters $[3, 2, 2]$, $C_{\text{in}} := RS(3, 2)$ be a $q - ary$ linear code of parameters [3, 2, 2], $a_1, a_2, a_3 \in \mathbb{F}_{q^2}$.

The code $\mathcal{C}_{\text{conc}}$ is a [9, 4, ≥ 4] q-ary linear code with locality 2.

New construction

An optimal example

Let
$$
P_1(x) = x^2 + 2x + 2
$$
, $P_2(x) = x^2 + 1$, and $P_3(x) = x^2 + x + 2$,
and the Reed-Solomon code $RS(3, 2):$ $\begin{array}{ccc}\n\mathbb{F}_3[x]_{<2} & \longrightarrow & \mathbb{F}_3^3 \\
\longmapsto & (f(0), f(1), f(2)).\n\end{array}$

This code is a $[9, 5, 3]$ linear code with locality 2, reaching the Singleton Bound for LRC.

Actually, some optimal examples

The latter example generalizes to any prime power $q \ge 3$.

Proposition

Let $q \geqslant 3$ be a prime power. One can similarly define a $[\frac{3}{2}(q^2-q), q^2-q-1, 3]_q$ linear code with locality 2, reaching the Singleton bound.

Remark : the dimension is not a multiple of the locality.

Are these concatenated codes ?

Are these concatenated codes ?

What are these codes ?

Are these concatenated codes ?

What are these codes ? Generalized AG-Codes !

Algebraic-Geometric (AG) codes

Let F/\mathbb{F}_q be a function field of genus q. Let D and G be divisors of F, with $D = P_1 + \cdots + P_n$, where P_1, \ldots, P_n are distinct rational places (points) of F . \overline{a}

Suppose that $Supp(G)$ $\{P_1,\ldots,P_n\}=\emptyset$.

An AG code $\mathcal{C}(\mathcal{D}, G)$ is defined by the image of an application

$$
\mathcal{C}(\mathcal{D}, G): \begin{array}{ccc} \mathcal{L}(G) & \longrightarrow & \mathbb{F}_q^n \\ f & \longmapsto & (f(P_1), \ldots, f(P_n)). \end{array}
$$

If $2q - 2 <$ deg $G < n$, the code $C(D, G)$ has dimension

$$
k=\deg(G)-g+1
$$

and minimum distance

$$
d \geq n - \deg(G).
$$

Generalized AG codes (GAG)³

Let F/\mathbb{F}_q be an algebraic function field defined over \mathbb{F}_q of genus g, and

 \bullet P_1, \ldots, P_s are s distinct places of F.

```
G is a divisor of F such that Supp(G)\overline{a}\{P_1,\ldots,P_s\}=\varnothing,
```
and for $1 \le i \le s$:

- $k_i = \text{deg}(P_i)$ the degree of P_i ,
- C_i is a $[n_i, k_i, d_i]_q$ linear code,
- π_i is a fixed \mathbb{F}_q —linear isomorphism mapping $\mathbb{F}_{q^{k_i}}$ to C_i .

Consider the application

$$
\alpha \; : \; \begin{array}{rcl} \mathcal{L}(G) & \longrightarrow & \mathbb{F}_q^n \\ f & \longmapsto & (\pi_1(f(P_1)), \ldots, \pi_s(f(P_s))). \end{array}
$$

.

Definition

The image of α is called a generalized algebraic-geometric code, denoted by $C(P_1, \ldots, P_s : G : C_1, \ldots, C_s).$

³Xing, Niederreiter and Lam, A Generalization of Algebraic-Geometric Codes, 1999.

Observation : if $k_1 = \ldots = k_s = k$, the code defined above has locality k. More formally,

Proposition

Let $C = C(P_1, \ldots, P_s : G : C_1, \ldots, C_s)$ be a generalized AG-code as in the previous slide. If there exists $r \in \mathbb{N}$ such that for all $1 \leq i \leq s$, we have $0 \ 1 < k_i \leq r$. \bullet n_i > deg(P_i), and \circ C_i has locality k_i , then C has locality r.

An optimal example (bis)

Let $\mathbb{F}_3(x)$ be the rational function field. Set $G = 4P_\infty$. Let $P_1(x) = x^2 + 2x + 2$, $P_2(x) = x^2 + 1$, and $P_3(x) = x^2 + x + 2$, and the Reed-Solomon code $RS(3, 2)$: $\begin{array}{ccc}\n\mathbb{F}_3[X]_{<2} & \longrightarrow & \mathbb{F}_3^3 \\
\longmapsto & \begin{array}{ccc}(f(0), f(1), f(2))\end{array}.\n\end{array}$

The code $C(P_1, P_2, P_3 : 4P_{\infty} : RS(3, 2), RS(3, 2), RS(3, 2))$ is a [9, 5, 3] linear code with locality 2, reaching the Singleton Bound for LRC .

Practical proposition

Proposition

Let
$$
C = C(P_1, ..., P_s : G : C_1, ..., C_s)
$$
 be a generalized AG-code as defined previously. Suppose that
\n• deg $P_1 = \cdots = \deg P_s = r$, and
\n• $C' = C_1 = \cdots = C_s$ is a $[n', r, d']$ linear code with locality r.
\nIf $2g - 1 \leq deg(G) < rs$, then C is a
\n $[sn', deg(G) - g + 1, \geq d' (s - \left\lfloor \frac{deg G}{r} \right\rfloor)]$

linear code over \mathbb{F}_q with locality r.

We (randomly) constructed several codes over \mathbb{F}_3 using evaluation at places of degree 2, then encoding the evaluations with $RS(3, 2)$ as previously.

We use the following curves.

- \circ The rational function field $\mathbb{F}_3(x)$, of genus 0, that contains 3 places of degree 2. Then one can construct codes of length at most 9.
- The elliptic curve defined by the equation $y^2 = x^3 + x$ of genus 1, that contains 6 places of degree 2. Then one can construct codes of length at most 18.
- The Klein quartic defined by the equation $x^4 + y^4 + 1 = 0$ of genus 3, that contains 12 places of degree 2. Then one can construct codes of length at most 36.

This gives $[3s, k \geq 2]$ $s \frac{k+g-1}{2}$] linear code with locality 2, where s is the number of places of degree 2 used in the construction.

More examples : results

20/26

Construction

Proposition

Let

 \circ F/ \mathbb{F}_q be a function field of genus g containing s places of degree r, denoted by P_1, \ldots, P_s ,

 \circ \mathcal{C}_{par} the q-ary single parity check code of length $r + 1$ and dimension r and minimum distance 2,

 \circ G be a divisor of F of degree $k + q - 1$, where $q - 1 < k < rs - q + 1$,

Then, the code $C(P_1, \ldots, P_s : G : \mathcal{C}_{par}, \ldots, \mathcal{C}_{par})$ is a $[n, k \geq d]$ linear code over \mathbb{F}_q with locality r, such that

$$
n = (r + 1)s,
$$

$$
d \ge 2\left(s - \left\lfloor \frac{k+g-1}{r} \right\rfloor\right)
$$

.

It follows that the rate of this code verifies

$$
\frac{k}{n} \geqslant \frac{r}{r+1} - \frac{r}{2}\delta - \frac{g-1}{n},
$$

where $\delta = \frac{d}{n}$.

Drinfeld-Vladut Bound

In this context, we need functions fields with a lot of places (of degree r) relatively to their genus. The best we can expect is given by the following.

Definition (Drinfeld-Vladut Bound of order r)

Let $F/{\mathbb F}_q$ be a function field over ${\mathbb F}_q$ and $B_r(F/{\mathbb F}_q)$ denotes its number of places of degree r. Let

 $B_r(q, q) = \max\{B_r(F/{\mathbb{F}}_q | F/{\mathbb{F}}_q)$ is a function field over ${\mathbb{F}}_q$ of genus q.

Then,

$$
\limsup_{g \to +\infty} \frac{B_r(q, g)}{g} \leq \frac{1}{r} (q^{\frac{r}{2}} - 1).
$$

 \bullet $r = 1$: (classical) Drinfeld-Vladut Bound.

 \bullet Example : Garcia-Stichtenoth recursively defined tower of function fields.⁴

⁴Garcia and Stichtenoth, A tower of Artin-Schreier extensions of function fields attaining the Drinfeld-Vladut bound, 1995.

Ballet and Rolland⁵ studied the descent of the tower of Garcia-Stichtenoth to the field of constant \mathbb{F}_q .

The authors also proved that these towers reach the Drinfeld-Vladut bound at order 2.

This allows us to prove the existence of infinite families of linear code with locality 2.

Proposition

Let $q > 3$ be a prime power. Then, Construction 1 provides an infinite family of linear code with locality 2 verifying ˆ ˙

$$
\frac{k}{n} \geqslant \frac{2}{3} \left(1 - \frac{q}{q^2 - q - 2} \right) - \delta.
$$

⁵Ballet and Rolland, Families of curves over any finite field attaining the generalized Drinfeld-Vladut bound, 2011.

[Background](#page-1-0) **[Asymptotic study](#page-22-0) and the construction** [New construction](#page-9-0) Asymptotic study and the construction Asymptotic study

Comparison with concatenated codes

Comparison with known-results

Possible further developments

- Improvements (places of other degrees, multiplicities, use other "subcodes"...)
- **Hierarchical LRCs ?**
- \bullet Question : can we use this construction to obtain code of any dimension $k \in \mathbb{N}$?

Possible further developments

- Improvements (places of other degrees, multiplicities, use other "subcodes",..)
- **e** Hierarchical LRCs ?
- \bullet Question : can we use this construction to obtain code of any dimension $k \in \mathbb{N}$?

Thanks for your attention!