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Notation

In this presetation,
𝔽𝑞 denotes the 𝑞-element finite field;
[𝑛] = {1, 2, … , 𝑛};
given a vector s, we denote by 𝑠𝑗 its 𝑗-th component.
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Error-correction codes

A [𝑛, 𝑘]𝑞 error-correction code 𝐶 is a 𝑘-dimensional subspace of 𝔽𝑛
𝑞 .

An
encoder of the code 𝐶 is a linear bijection 𝜖 ∶ 𝔽𝑘

𝑞 → 𝐶 which maps the
message word 𝑚 ∈ 𝔽𝑘

𝑞 to a corresponding code word 𝑚𝐺 ∈ 𝐶, where
𝐺 ∈ Mat𝑘,𝑛(𝔽𝑞). We call 𝐺 the generator matrix for 𝐶.

An important parameter of 𝐶 is its Hamming distance
𝑑 = min{𝑤(𝑢) ∣ 𝑢 ∈ 𝐶\{0}} where 𝑤(𝑢) equals the number of non-zero
components of 𝑢. If 𝑑 is known, we also call 𝐶 an [𝑛, 𝑘, 𝑑]𝑞
error-correction code.
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PIR Codes

A Private Information Retrieval (PIR) scheme stores a database in
encoded form on a multi-server distributed data storage system in such a
way that a user can extract a bit of information from the database without
leaking information about which particular bit the user was interested in.

PIR codes are a way to make this process more efficient by only storing a
part of the data in each server while still allowing for the scheme to work.

So PIR codes are used to reduce the storage overhead in the classic PIR
scheme.
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PIR Codes

Definition (PIR Codes)
Given a (one-to-one) encoder map 𝜖 ∶ 𝔽𝑘

𝑞 → 𝔽𝑛
𝑞 , a set of positions

𝐼 = (𝑖1, … , 𝑖𝑠) ⊆ [𝑛] is called a recovery set for the 𝑗-th data symbol if the
restriction c𝐼 = (𝑐𝑖1

, 𝑐𝑖2
, … , 𝑐𝑖𝑠

) of a codeword c = 𝜖(𝑎) uniquely
determines the 𝑗-th data symbol 𝑎𝑗. The encoder map 𝜖 is a 𝑡-PIR code if
there exists for every 𝑗 ∈ [𝑘] a collection of 𝑡 disjoint recovery sets for the
𝑗-th data symbol.

We say that a 𝑘 × 𝑛 matrix G with entries from 𝔽𝑞 is a (linear) 𝑡-PIR code
if the corresponding encoder 𝜖 ∶ a⊤ → a⊤G is 𝑡-PIR. In that case we say
that G generates a 𝑡-PIR code, or that G is 𝑡-PIR.

Note that being 𝑡-PIR is a property of the encoder of the code.
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PIR Codes

Example
Let 𝑞 = 2, and let 𝐶 be the binary linear code with (linear) encoder
𝜖 ∶ a⊤ → a⊤G, where

G = (1 0 1 1
0 1 1 0) .

Then the first data symbol has recovery sets {1}, {2, 3}, {4} and the
second data symbol has recovery sets {2} and {1, 3}. As it’s easy to see
that the second data symbol cannot have three recovery sets, G is 2-PIR.
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UEP Codes

The higher the distance of the error-correction code, the more protected
the message.

An unequal error protection (UEP) code is an error-correction code where
some bits of the message word may be more protected than others and
can sometimes be recovered independently.

Example
We can define the encoder 𝜖 to map (𝑎, 𝑏) to (𝑎, 𝑎, 𝑎, 𝑏). Now, clearly the
first coordinate is more protected than the second.
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UEP Codes

In 1978, Dunning and Robins introduced the concept of a separation
vector as a generalization of distance in order to characterize the error
protection capability of UEP codes.

Definition
For an encoder 𝜖 ∶ 𝔽𝑘

𝑞 → 𝔽𝑛
𝑞 , define the separation vector s(𝜖) ∈ ℤ𝑘

+ by
defining for each 𝑗 ∈ [𝑘]

𝑠𝑗(𝜖) = min{𝑑(𝜖(a), 𝜖(a′)) ∣ a, a′ ∈ 𝔽𝑘
𝑞 , 𝑎𝑗 ≠ 𝑎′

𝑗}.

Given a separation vector s(𝜖), we can decode the 𝑖-th data symbol
correctly by decoding to the nearest codeword if at most ⌊(𝑠𝑖(𝜖) − 1)/2⌋
errors have occurred.
We denote by s(G) the separation vector of a linear code encoded with
the generating matrix G.

Henk D.L. Hollmann, Martin Puškin and Ago-Erik Riet (University of Tartu)PIR Codes, Unequal-Data-Demand Codes, and the Griesmer Bound2024 8 / 22



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

UEP Codes

In 1978, Dunning and Robins introduced the concept of a separation
vector as a generalization of distance in order to characterize the error
protection capability of UEP codes.

Definition
For an encoder 𝜖 ∶ 𝔽𝑘

𝑞 → 𝔽𝑛
𝑞 , define the separation vector s(𝜖) ∈ ℤ𝑘

+ by
defining for each 𝑗 ∈ [𝑘]

𝑠𝑗(𝜖) = min{𝑑(𝜖(a), 𝜖(a′)) ∣ a, a′ ∈ 𝔽𝑘
𝑞 , 𝑎𝑗 ≠ 𝑎′

𝑗}.

Given a separation vector s(𝜖), we can decode the 𝑖-th data symbol
correctly by decoding to the nearest codeword if at most ⌊(𝑠𝑖(𝜖) − 1)/2⌋
errors have occurred.
We denote by s(G) the separation vector of a linear code encoded with
the generating matrix G.

Henk D.L. Hollmann, Martin Puškin and Ago-Erik Riet (University of Tartu)PIR Codes, Unequal-Data-Demand Codes, and the Griesmer Bound2024 8 / 22



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

UEP Codes

In 1978, Dunning and Robins introduced the concept of a separation
vector as a generalization of distance in order to characterize the error
protection capability of UEP codes.

Definition
For an encoder 𝜖 ∶ 𝔽𝑘

𝑞 → 𝔽𝑛
𝑞 , define the separation vector s(𝜖) ∈ ℤ𝑘

+ by
defining for each 𝑗 ∈ [𝑘]

𝑠𝑗(𝜖) = min{𝑑(𝜖(a), 𝜖(a′)) ∣ a, a′ ∈ 𝔽𝑘
𝑞 , 𝑎𝑗 ≠ 𝑎′

𝑗}.

Given a separation vector s(𝜖), we can decode the 𝑖-th data symbol
correctly by decoding to the nearest codeword if at most ⌊(𝑠𝑖(𝜖) − 1)/2⌋
errors have occurred.

We denote by s(G) the separation vector of a linear code encoded with
the generating matrix G.

Henk D.L. Hollmann, Martin Puškin and Ago-Erik Riet (University of Tartu)PIR Codes, Unequal-Data-Demand Codes, and the Griesmer Bound2024 8 / 22



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

UEP Codes

In 1978, Dunning and Robins introduced the concept of a separation
vector as a generalization of distance in order to characterize the error
protection capability of UEP codes.

Definition
For an encoder 𝜖 ∶ 𝔽𝑘

𝑞 → 𝔽𝑛
𝑞 , define the separation vector s(𝜖) ∈ ℤ𝑘

+ by
defining for each 𝑗 ∈ [𝑘]

𝑠𝑗(𝜖) = min{𝑑(𝜖(a), 𝜖(a′)) ∣ a, a′ ∈ 𝔽𝑘
𝑞 , 𝑎𝑗 ≠ 𝑎′

𝑗}.

Given a separation vector s(𝜖), we can decode the 𝑖-th data symbol
correctly by decoding to the nearest codeword if at most ⌊(𝑠𝑖(𝜖) − 1)/2⌋
errors have occurred.
We denote by s(G) the separation vector of a linear code encoded with
the generating matrix G.

Henk D.L. Hollmann, Martin Puškin and Ago-Erik Riet (University of Tartu)PIR Codes, Unequal-Data-Demand Codes, and the Griesmer Bound2024 8 / 22



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

UEP Codes

Example
We can concatenate an [𝑛1, 𝑞𝑘1 , 𝑑1]𝑞 code and an [𝑛2, 𝑞𝑘2 , 𝑑2]𝑞 code 𝐶2 to
form a UEP code with codewords (c1, c2), 𝑐𝑖 ∈ 𝐶𝑖 and a separation vector
s(𝜖) for which

𝑠𝑖(𝜖) ≥ {𝑑1 if 𝑖 is among the first 𝑛1 positions,
𝑑2 if 𝑖 is among the last 𝑛2 positions.
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UEP Codes

Example
For a code with the separation vector (3, 2), the trivial construction has
length 5 as it needs two repetition codes with the encoder 𝜖(𝑎, 𝑏) = 𝑎𝑎𝑎𝑏𝑏
(𝑎, 𝑏 ∈ 𝔽𝑞).
Now consider the linear UEP code generated by the matrix G:

(1 0 1 1
0 1 1 0) .

This has the separation vector (3, 2) but its length is only 4.
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UDD Codes

𝑡-PIR codes are designed so that up to 𝑡 users can obtain each a particular
data symbol from data that is stored in encoded form on a number of
servers, where every server can be read off at most once.

Unequal-Data-Demand (UDD) codes enable a similar scenario, but now for
the situation where some parts of the data are in higher demand than
other parts.
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UDD Codes

Definition
Let 𝑇 = (𝑡1, … , 𝑡𝑘) where 𝑡1, … , 𝑡𝑘 ∈ ℤ with 𝑡1 ≥ … ≥ 𝑡𝑘 ≥ 0. An UDD
𝑇 -PIR code of length 𝑛 is an encoder 𝜖 ∶ 𝔽𝑘

𝑄 → 𝔽𝑛
𝑞 where the 𝑗-th data

symbol has at least 𝑡𝑗 mutually disjoint recovery sets for all 𝑗 ∈ [𝑘].

We say that a 𝑘 × 𝑛 matrix G with entries from 𝔽𝑞 is a linear 𝑇 -PIR code
if the corresponding encoder 𝜖 ∶ a⊤ → a⊤G is 𝑇 -PIR. In that case we say
that G generates a 𝑇 -PIR code.

We can once again get a trivial construction by concatenating 𝑡𝑗-PIR
codes. But the same matrix G as before provides an example where this is
not optimal.
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Griesmer Bound
It is well known that the associated code of a 𝑡-PIR code has distance
𝑑 ≥ 𝑡. A stronger result is
Theorem
Let 𝐶 be a [𝑛, 𝑞𝑘, 𝑑]𝑞 code with encoder 𝜖 ∶ 𝔽𝑘

𝑞 → 𝔽𝑛
𝑞 and the separation

vector s(𝜖). If 𝜖 is an UDD 𝑇 -PIR code, where 𝑇 = (𝑡1, … , 𝑡𝑘) with
𝑡1 ≥ … ≥ 𝑡𝑘 ≥ 0, then 𝑠𝑗(𝜖) ≥ 𝑡𝑗 for all 𝑗 ∈ [𝑘].

The Griesmer bound for linear UEP codes now directly yields the following
for UDD codes.
Theorem (Griesmer Bound for UDD codes)
Suppose that the 𝑘 × 𝑛 matrix G over 𝔽𝑞 generates a linear UDD 𝑇 -PIR
code, where 𝑇 = (𝑡1, … , 𝑡𝑘) with 𝑡1 ≥ … ≥ 𝑡𝑘 ≥ 0. Then

𝑛 ≥
𝑘

∑
𝑗=1

⌈ 𝑡𝑗
𝑞𝑗−1 ⌉ .
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An ILP Problem Related to PIR Codes

It would be nice to have an argument that would prove all these
Griesmer-type bounds simultaneously, in a uniform way. We will set up an
integer linear programming problem to achieve this.
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An ILP Problem Related to PIR Codes
The hyperplanes in 𝔽𝑘

𝑞 and the collection of vectors 𝒫𝑘 of the form
h = (0, … , 0, 1, …) are in a one-to-one correspondence. The hyperplane
corresponding to the vector h ∈ 𝒫𝑘 is h⊥ ∶= {a ∈ 𝔽𝑘

𝑞 ∶ ⟨a, h⟩ = 0}.

For h ∈ 𝒫𝑘, define

𝜈(h) = min{𝑗 ∈ [𝑘] ∶ ℎ𝑗 ≠ 0}.

An immediate consequence of the definition is that h𝜈(h) = 1.

Theorem
Let G be a 𝑘 × 𝑛 matrix over 𝔽𝑞 that generates a UDD 𝑇 -PIR code,
where 𝑇 = (𝑡1, … , 𝑡𝑘) with 𝑡1 ≥ … ≥ 𝑡𝑘 ≥ 0. Suppose G has 𝑛i columns
equal to i, i ∈ 𝔽𝑘

𝑞 . Then for all h ∈ 𝒫𝑘, we have

∑
⟨i,h⟩≠0

𝑛i ≥ 𝑡𝜈(h).
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An ILP Problem Related to PIR Codes

So for 𝑇 = (𝑡1, … , 𝑡𝑘) ∈ ℤ𝑘 with 𝑡1 ≥ … ≥ 𝑡𝑘 ≥ 0, define 𝜈(𝑇 ) to be the
solution the following ILP problem:

𝐼𝐿𝑃(𝑇 )∶

⎧{{{
⎨{{{⎩

𝑛i ∈ ℤ, 𝑛i ≥ 0 (i ∈ 𝔽𝑘
𝑞\{0})

∑
{i ∶ ⟨i,h⟩≠0}

𝑛i ≥ 𝑡𝜈(h) (h ∈ 𝒫𝑘)

minimize 𝑛 = ∑
i∈𝔽𝑘𝑞 \{0}

𝑛i.

According to the previous theorem, if G generates a UDD 𝑇 -PIR code
with 𝑇 = (𝑡1, … , 𝑡𝑘) and 𝑡1 ≥ … ≥ 𝑡𝑘 ≥ 0, then 𝑛 ≥ 𝑛 − 𝑛0 ≥ 𝜈(𝑇 ). For
an optimal solution, we of course take 𝑛0 = 0.
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An ILP Problem Related to PIR Codes

Example
Let 𝑞 = 2 and 𝑘 = 2 and let 𝑇 = (𝑡1, 𝑡2) ∈ ℤ2 with 𝑡1 ≥ 𝑡2 ≥ 0. Associate
the numbers 1, 2, 3 with the vectors (1, 0), (0, 1), and (1, 1), respectively.
The ILP is the problem to minimize 𝑛 = 𝑛1 + 𝑛2 + 𝑛3, where 𝑛𝑖 ≥ 0 is an
integer (𝑖 ∈ [3]) under the conditions

𝑛1 + 𝑛3 ≥ 𝑡1,
𝑛2 + 𝑛3 ≥ 𝑡2,
𝑛1 + 𝑛2 ≥ 𝑡1.

Here the inequalities correspond to the hyperplanes (1, 0)⊤, (0, 1)⊤, and
(1, 1)⊤, respectively. It is not difficult to see that the minimum value for 𝑛
under these conditions equals 𝑡1 + ⌈𝑡2

2 ⌉.
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A Lower Bound for the ILP Problem

Theorem
Let 𝜈(𝑇 ) be the optimal solution to our ILP problem, where G is a 𝑘 × 𝑛
matrix over 𝔽𝑞 and 𝑇 = (𝑡1, … , 𝑡𝑘) with 𝑡1 ≥ … ≥ 𝑡𝑘 ≥ 0. Then

𝜈(𝑇 ) ≥
𝑘

∑
𝑗=1

⌈ 𝑡𝑗
𝑞𝑗−1 ⌉ .

Proof idea. Induction on the dimension 𝑘.
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The Griesmer Bound for Linear Error Correction Codes
from the ILP Problem

The Griesmer bound for linear codes can also be proved by our ILP
argument.

Assume that G = [g1, … , g𝑛] is a 𝑘 × 𝑛 matrix over 𝔽𝑞 that generates a
𝑘-dimensional 𝑞-ary linear code of length 𝑛 with minimum distance 𝑑.

Suppose that G has 𝑛i columns equal to i (i ∈ 𝔽𝑘
𝑞).

Let h⊥ be a hyperplane (h ∈ 𝔽𝑘
𝑞\{0}). Consider c⊤ ∶= h⊤G. Then 𝑐𝑗 = 0

iff h⊤g𝑗 = 0, so 𝑤(c) = ∑
⟨h,i⟩≠0

𝑛i.

It follows that ∑
⟨h,i⟩≠0

𝑛i ≥ 𝑑 for every h ∈ 𝔽𝑘
𝑞\{0}.
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The Griesmer Bound for linear UEP Codes from the ILP
Problem

Suppose that the linear UEP code is generated by a 𝑘 × 𝑛 matrix G over
𝔽𝑞. Then the separation vector (𝑠1, … , 𝑠𝑘) of the code is given by

𝑠𝑗 = 𝑠𝑗(G) = min{𝑤(h⊤G) ∶ ℎ𝑗 ≠ 0},

𝑗 ∈ [𝑘].

Suppose that the rows of G are ordered in such a way that 𝑠1 ≥ … ≥ 𝑠𝑘
and that G has 𝑛i columns equal to i (i ∈ 𝔽𝑘

𝑞).

Then, if h ∈ 𝒫𝑘 with 𝜈(h) = 𝑗, we have

∑
⟨h,i⟩≠0

𝑛i = |{𝑙 ∈ [𝑛] ∶ h⊤g𝑙 ≠ 0}| = 𝑤(h⊤G) ≥ 𝑠𝑗 = 𝑠𝜈(h).
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The Griesmer Bound for linear UEP Codes from the ILP
Problem

Conversely, let (𝑛i)i∈𝔽𝑞\{0} be a feasible solution to our ILP and
𝑛 = ∑ 𝑛i.

Consider two code words c = a⊤G and c′ = b⊤G in the code 𝐶
generated by G, and let h = a − b. Then 𝑑(c, c′) = 𝑤(h⊤G) ≥ 𝑡𝑗 if
ℎ𝑗 ≠ 0. So we can conclude that 𝑠𝑗(𝐶) ≥ 𝑡𝑗 for all 𝑗.

So the ILP problem is equivalent to finding a linear UEP code with the
smallest length for which s ≥ (𝑡1, … , 𝑡𝑘).
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Thank you!
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