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How it started
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Omran Ahmadis Observation

x5 + x2 + 1

x5 + x3 + 1

x5 + x3 + x2 + x + 1

x5 + x4 + x2 + x + 1

x5 + x4 + x3 + x + 1

x5 + x4 + x3 + x2 + 1

• Focus on the coefficients before x and xn−1 of a polynomial of
degree n

• Always the case for n odd
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n even

x6 + x + 1

x6 + x3 + 1

x6 + x5 + 1

x6 + x4 + x2 + x + 1

x6 + x4 + x3 + x + 1

x6 + x5 + x2 + x + 1

x6 + x5 + x4 + x + 1

x6 + x5 + x3 + x2 + 1

x6 + x5 + x4 + x2 + 1
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n even

x6 + x + 1

x6 + x3 + 1

x6 + x5 + 1

x6 + x4 + x2 + x + 1

x6 + x4 + x3 + x + 1

x6 + x5 + x2 + x + 1

x6 + x5 + x4 + x + 1

x6 + x5 + x3 + x2 + 1

x6 + x5 + x4 + x2 + 1
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Robert Grangers Result

Let ai (f ) be the i-th coefficient of the polynomial f , then

Sa,b(n) := {f ∈ F2[x ] | f irreducible and an−1(f ) = a, a1(f ) = b}.

Theorem (R. Granger)

|S1,1(n)| − |S0,0(n)| =

{
0, n is odd

|S1,∗(n/2)|, n is even.

1Robert Granger.
”
Three proofs of an observation on irreducible polynomials

over GF(2)“. In: Finite Fields and Their Applications 88 (2023).
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Motivation

• Rewriting R. Grangers result gives

|S1,∗(n)| − |S0,∗(n)| = (|S1,1(n)|+ |S1,0(n)|)− (|S0,1(n)|+ |S0,0(n)|)
= |S1,1(n)| − |S0,0(n)|.

• Thus

|S1,∗(n)| − |S0,∗(n)| =

{
0, n is odd

|S1,∗(n/2)|, n is even

• We were familiar with that kind of behaviour but in another
context, can we find a connection?
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Rational Transformations

Let F ∈ Fq[x ] and Q = g/h ∈ Fq(x), then

FQ(x) := λg ,h,Fh(x)
deg(F ) · F

(
g(x)

h(x)

)
.
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Rational Transformations

Let F ∈ Fq[x ] and Q = g/h ∈ Fq(x), then

FQ(x) := λg ,h,Fh(x)
deg(F ) · F

(
g(x)

h(x)

)
.

Lemma (Cohen)

Let F ∈ Fq[x ] and Q = g/h ∈ Fq(x) with gcd(g , h) = 1. Then FQ

is irreducible over Fq[x ] if and only if F ∈ Fq[x ] is irreducible and
g − αh ∈ Fq(α)[x ] is irreducible, where α ∈ Fq a root of F .

2Stephen D. Cohen.
”
On irreducible polynomials of certain types in finite

fields“. In: Mathematical Proceedings of the Cambridge Philosophical Society
66.2 (1969), S. 335–344.
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Yes/No

Fix a rational function Q = g/h.

• We partition the set of irreducible monic polynomials In
q of

degree n into

Yes(Q, n) := {f ∈ In
q | f Q is irreducible}

No(Q, n) := {f ∈ In
q | f Q is not irreducible}.

• In general hard to describe, since deciding whether g − αh is
irreducible can be difficult
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A Change of (personal) Perspective

In the past:

• Only interested in the
irreducible polynomials f Q

for f an irreducible
polynomial of degree n

• ... because all invariant
irreducible polynomials are
special rational
transformations

Now:

• Also interested in the
irreducible polynomials f of
degree n for which f Q is
irreducible

3Lucas Reis.
”
Möbius-like maps on irreducible polynomials and rational

transformations“. In: Journal of Pure and Applied Algebra 224 (Mai 2019),
S. 169–180.
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A Theorem for Yes/No

A quotient map QG ∈ Fq(x) for a subgroup G ≤ PGL2(Fq) is a
rational function that generates the subfield

Fq(x)
G :=

{
Q ∈ Fq(x) | Q

(
ax + b

cx + d

)
= Q(x) for all

[(
a b
c d

)]
∈ G

}

Theorem (Sch.)

Let G ≤ PGL2(Fq) be a cyclic subgroup of prime order s and QG a
quotient map for G. For all n > d(G ) we have

|Yes(QG , n)| − (s − 1)|No(QG , n)| =

{
0, if s ∤ n
|Yes(QG , n/s)|, if s | n.

4Max Schulz. On the Recursive Behaviour of the Number of Irreducible
Polynomials with Certain Properties over Finite Fields. 2023. arXiv:
2310.01872 [math.NT].
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We have a recipe, so what now?

Are there particular instances of quotient maps QG for which
Yes(QG , n) and No(QG , n) can be described in a ”nice”
arithmetical way?
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Onto a Generalization of R. Grangers Result

Let p be prime and q = pt . Let f ∈ Fq[x ] be an irreducible monic
polynomial of degree n, then we set

Tr(f ) := −Trqn/p(α)

where α ∈ Fqn .

• Be careful! It’s the absolute trace!

• If q = p, then Tr(f ) = an−1(f ).

• In general Tr(f ) = Trq/p(an−1(f )).
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Onto a Generalization of R. Grangers Result

Let In
q be the set of irreducible monic polynomials in Fq[x ] of

degree n. Define for a ∈ Fp

Sa(n) := {f ∈ In
q | Tr(f ) = a}.

Theorem (Sch.)

For all n ∈ N \ {0} and all finite fields Fq we have

∑
a∈F∗

p

|Sa(n)| − (p − 1)|S0(n)| =

0, if p ∤ n∑
a∈F∗

p

|Sa(n/p)|, if p | n.
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Choosing the right Subgroups and Quotient Maps

The rational function QG (x) = xp − x is a quotient map for a
cyclic subgroup of order p = char(Fq) and

f (xp − x) is irreducible ⇔
f is irreducible and xp − x − α is irreducible in Fq(α)

where α ∈ Fq is a root of f (Capelli/Cohens Lemma!). The
polynomial xp − x − α ∈ Fqn [x ] is irreducible if and only if
Trqn/p(α) ̸= 0 due to Varshamov. Thus

Yes(xp − x , n) =
⋃
a∈F∗

p

Sa(n)

No(xp − x , n) = S0(n).
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And another one

Let q be odd and u, v ∈ Fq with u ̸= v . Consider

Cu,v (n) := {f ∈ In
q | f (u) · f (v) is a non-square in Fq}

Du,v (n) := {f ∈ In
q | f (u) · f (v) is a square in Fq}.

Theorem (Sch.)

Let q be odd. For all u, v ∈ Fq with u ̸= v and n > 1 we have

|Cu,v (n)| − |Du,v (n)| =

{
0, if 2 ∤ n
|Cu,v (n/2)|, if 2 | n.
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Choosing the right Subgroups and Quotient Maps

Theorem (Sch.)

Let q be odd. For all u, v ∈ Fq with u ̸= v and n > 1 we have

|Cu,v (n)| − |Du,v (n)| =

{
0, if 2 ∤ n
|Cu,v (n/2)|, if 2 | n.

The rational function

QG (x) =
x2 − uv

2x − (u + v)

is a quotient map for a subgroup of order 2 and it can be shown
that

Yes(QG , n) = {f ∈ In
q | f (u) · f (v) is a non-square in Fq}

No(QG , n) = {f ∈ In
q | f (u) · f (v) is a square in Fq}.
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Pros & Cons of our Approach

Pros: • Gives a recipe for proving and finding recursive relations of
irreducible polynomials

• Reveals that there’s an underlying symmetry that forces these
theorems to hold

• Shows that perspectives matter

Cons: • A lot of theory and notations to digest

• There are easier proofs for both instances I showed you

• The defining arithmetical properties for Yes(QG , n),No(QG , n)
that we know of are not so diverse (trace, square/non-square
or power/non-power conditions).
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