On the Recursive Behaviour of the Number of Irreducible Polynomials with Certain Properties over Finite Fields

Max Schulz

University of Rostock, Institute of Mathematics WCC 2024 Perugia

20.06.2024

イロン 不同 とくほど 不良 とうほ

1/18

How it started

Herunterladen

Lieber Max,

heute habe ich eine interessante Arbeit gesehen, sie ist im Anhang. Eventuell gibt sie dir neue Impulse.

Viele Grüße Gohar

< □ > < □ > < □ > < Ξ > < Ξ > < Ξ > Ξ
 < 2/18

$$x^{5} + x^{2} + 1$$

$$x^{5} + x^{3} + 1$$

$$x^{5} + x^{3} + x^{2} + x + 1$$

$$x^{5} + x^{4} + x^{2} + x + 1$$

$$x^{5} + x^{4} + x^{3} + x + 1$$

$$x^{5} + x^{4} + x^{3} + x^{2} + 1$$

<ロ><回><回><目><目><目><目><目><目><日><<0<0 3/18

$$x^{5} + x^{2} + 1$$

$$x^{5} + x^{3} + 1$$

$$x^{5} + x^{3} + x^{2} + x + 1$$

$$x^{5} + x^{4} + x^{2} + x + 1$$

$$x^{5} + x^{4} + x^{3} + x + 1$$

$$x^{5} + x^{4} + x^{3} + x^{2} + 1$$

 Focus on the coefficients before x and xⁿ⁻¹ of a polynomial of degree n

$$x^{5} + x^{2} + 1$$

$$x^{5} + x^{3} + 1$$

$$x^{5} + x^{3} + x^{2} + x + 1$$

$$x^{5} + x^{4} + x^{2} + x + 1$$

$$x^{5} + x^{4} + x^{3} + x + 1$$

$$x^{5} + x^{4} + x^{3} + x^{2} + 1$$

 Focus on the coefficients before x and xⁿ⁻¹ of a polynomial of degree n

$$x^{5} + x^{2} + 1$$

$$x^{5} + x^{3} + 1$$

$$x^{5} + x^{3} + x^{2} + x + 1$$

$$x^{5} + x^{4} + x^{2} + x + 1$$

$$x^{5} + x^{4} + x^{3} + x + 1$$

$$x^{5} + x^{4} + x^{3} + x^{2} + 1$$

- Focus on the coefficients before x and xⁿ⁻¹ of a polynomial of degree n
- Always the case for *n* odd

n even

$$\begin{aligned} x^{6} + x + 1 \\ x^{6} + x^{3} + 1 \\ x^{6} + x^{5} + 1 \\ x^{6} + x^{4} + x^{2} + x + 1 \\ x^{6} + x^{4} + x^{3} + x + 1 \\ x^{6} + x^{5} + x^{2} + x + 1 \\ x^{6} + x^{5} + x^{4} + x + 1 \\ x^{6} + x^{5} + x^{3} + x^{2} + 1 \\ x^{6} + x^{5} + x^{4} + x^{2} + 1 \end{aligned}$$

<ロ><回><一><日><日><日><日><日><日><日><日><日><日><日><日</td>4/18

n even

$$x^{6} + x + 1$$

$$x^{6} + x^{3} + 1$$

$$x^{6} + x^{5} + 1$$

$$x^{6} + x^{4} + x^{2} + x + 1$$

$$x^{6} + x^{4} + x^{3} + x + 1$$

$$x^{6} + x^{5} + x^{2} + x + 1$$

$$x^{6} + x^{5} + x^{4} + x + 1$$

$$x^{6} + x^{5} + x^{3} + x^{2} + 1$$

$$x^{6} + x^{5} + x^{4} + x^{2} + 1$$

<ロト < 回 > < 言 > < 言 > ミ シ へ で 4/18

Robert Grangers Result

Let $a_i(f)$ be the *i*-th coefficient of the polynomial f, then $S_{a,b}(n) := \{f \in \mathbb{F}_2[x] \mid f \text{ irreducible and } a_{n-1}(f) = a, a_1(f) = b\}.$ Theorem (R. Granger)

$$|S_{1,1}(n)| - |S_{0,0}(n)| = egin{cases} 0, & n \ is \ odd \ |S_{1,*}(n/2)|, & n \ is \ even. \end{cases}$$

¹Robert Granger. "Three proofs of an observation on irreducible polynomials over GF(2)". In: *Finite Fields and Their Applications* 88 (2023). (2023).

Motivation

• Rewriting R. Grangers result gives

$$\begin{aligned} |S_{1,*}(n)| - |S_{0,*}(n)| &= (|S_{1,1}(n)| + |S_{1,0}(n)|) - (|S_{0,1}(n)| + |S_{0,0}(n)|) \\ &= |S_{1,1}(n)| - |S_{0,0}(n)|. \end{aligned}$$

Motivation

• Rewriting R. Grangers result gives

$$\begin{split} |S_{1,*}(n)| - |S_{0,*}(n)| &= (|S_{1,1}(n)| + |S_{1,0}(n)|) - (|S_{0,1}(n)| + |S_{0,0}(n)|) \\ &= |S_{1,1}(n)| - |S_{0,0}(n)|. \end{split}$$

• Thus

$$|S_{1,*}(n)| - |S_{0,*}(n)| = egin{cases} 0, & n ext{ is odd} \ |S_{1,*}(n/2)|, & n ext{ is even} \end{cases}$$

Motivation

• Rewriting R. Grangers result gives

$$\begin{split} |S_{1,*}(n)| - |S_{0,*}(n)| &= (|S_{1,1}(n)| + |S_{1,0}(n)|) - (|S_{0,1}(n)| + |S_{0,0}(n)|) \\ &= |S_{1,1}(n)| - |S_{0,0}(n)|. \end{split}$$

Thus

$$|S_{1,*}(n)| - |S_{0,*}(n)| = egin{cases} 0, & n ext{ is odd} \ |S_{1,*}(n/2)|, & n ext{ is even} \end{cases}$$

• We were familiar with that kind of behaviour but in another context, can we find a connection?

Rational Transformations

Let $F \in \mathbb{F}_q[x]$ and $Q = g/h \in \mathbb{F}_q(x)$, then

$$F^{Q}(x) := \lambda_{g,h,F} h(x)^{\deg(F)} \cdot F\left(\frac{g(x)}{h(x)}\right).$$

Rational Transformations

Let $F \in \mathbb{F}_q[x]$ and $Q = g/h \in \mathbb{F}_q(x)$, then

$$F^Q(x) := \lambda_{g,h,F} h(x)^{\deg(F)} \cdot F\left(\frac{g(x)}{h(x)}\right).$$

Lemma (Cohen)

Let $F \in \mathbb{F}_q[x]$ and $Q = g/h \in \mathbb{F}_q(x)$ with gcd(g, h) = 1. Then F^Q is irreducible over $\mathbb{F}_q[x]$ if and only if $F \in \mathbb{F}_q[x]$ is irreducible and $g - \alpha h \in \mathbb{F}_q(\alpha)[x]$ is irreducible, where $\alpha \in \overline{\mathbb{F}}_q$ a root of F.

²Stephen D. Cohen. "On irreducible polynomials of certain types in finite fields". In: *Mathematical Proceedings of the Cambridge Philosophical Society* 66.2 (1969), S. 335–344. ← □ ► ← ⑦ ► ← ≥ ► ← ≥ ► ← ≥ ► ← ≥

Yes/No

Fix a rational function Q = g/h.

Yes/No

Fix a rational function Q = g/h.

• We partition the set of irreducible monic polynomials \mathcal{I}_q^n of degree n into

$$Yes(Q, n) := \{ f \in \mathcal{I}_q^n \mid f^Q \text{ is irreducible} \}$$

 $No(Q, n) := \{ f \in \mathcal{I}_q^n \mid f^Q \text{ is not irreducible} \}.$

Yes/No

Fix a rational function Q = g/h.

We partition the set of irreducible monic polynomials \$\mathcal{I}_q^n\$ of degree \$n\$ into

$$Yes(Q, n) := \{ f \in \mathcal{I}_q^n \mid f^Q \text{ is irreducible} \}$$

 $No(Q, n) := \{ f \in \mathcal{I}_q^n \mid f^Q \text{ is not irreducible} \}.$

• In general hard to describe, since deciding whether $g - \alpha h$ is irreducible can be difficult

A Change of (personal) Perspective

In the past:

- Only interested in the irreducible polynomials f^Q for f an irreducible polynomial of degree n
- ... because all invariant irreducible polynomials are special rational transformations

Now:

 Also interested in the irreducible polynomials f of degree n for which f^Q is irreducible

³Lucas Reis. "Möbius-like maps on irreducible polynomials and rational transformations". In: *Journal of Pure and Applied Algebra* 224 (Mai 2019), S. 169–180.

A Theorem for Yes/No

A quotient map $Q_G \in \mathbb{F}_q(x)$ for a subgroup $G \leq PGL_2(\mathbb{F}_q)$ is a rational function that generates the subfield

$$\mathbb{F}_q(x)^G := \left\{ Q \in \mathbb{F}_q(x) \mid Q\left(\frac{ax+b}{cx+d}\right) = Q(x) \text{ for all } \begin{bmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \end{bmatrix} \in G \right\}$$

Theorem (Sch.)

Let $G \leq PGL_2(\mathbb{F}_q)$ be a cyclic subgroup of prime order s and Q_G a quotient map for G. For all n > d(G) we have

$$|\operatorname{Yes}(Q_G, n)| - (s-1)|\operatorname{No}(Q_G, n)| = \begin{cases} 0, & \text{if } s \nmid n \\ |\operatorname{Yes}(Q_G, n/s)|, & \text{if } s \mid n. \end{cases}$$

⁴Max Schulz. On the Recursive Behaviour of the Number of Irreducible Polynomials with Certain Properties over Finite Fields. 2023. arXiv: 2310.01872 [math.NT].

We have a recipe, so what now?

Are there particular instances of quotient maps Q_G for which $Yes(Q_G, n)$ and $No(Q_G, n)$ can be described in a "nice" arithmetical way?

Let p be prime and $q = p^t$. Let $f \in \mathbb{F}_q[x]$ be an irreducible monic polynomial of degree n, then we set

$$\operatorname{Tr}(f) := -\operatorname{Tr}_{q^n/p}(\alpha)$$

where $\alpha \in \mathbb{F}_{q^n}$.

Let p be prime and $q = p^t$. Let $f \in \mathbb{F}_q[x]$ be an irreducible monic polynomial of degree n, then we set

$$\operatorname{Tr}(f) := -\operatorname{Tr}_{q^n/p}(\alpha)$$

where $\alpha \in \mathbb{F}_{q^n}$.

• Be careful! It's the absolute trace!

Let p be prime and $q = p^t$. Let $f \in \mathbb{F}_q[x]$ be an irreducible monic polynomial of degree n, then we set

$$\operatorname{Tr}(f) := -\operatorname{Tr}_{q^n/p}(\alpha)$$

where $\alpha \in \mathbb{F}_{q^n}$.

• Be careful! It's the absolute trace!

• If
$$q = p$$
, then $Tr(f) = a_{n-1}(f)$.

Let p be prime and $q = p^t$. Let $f \in \mathbb{F}_q[x]$ be an irreducible monic polynomial of degree n, then we set

$$\operatorname{Tr}(f) := -\operatorname{Tr}_{q^n/p}(\alpha)$$

where $\alpha \in \mathbb{F}_{q^n}$.

- Be careful! It's the absolute trace!
- If q = p, then $Tr(f) = a_{n-1}(f)$.
- In general $Tr(f) = Tr_{q/p}(a_{n-1}(f))$.

Let \mathcal{I}_q^n be the set of irreducible monic polynomials in $\mathbb{F}_q[x]$ of degree *n*. Define for $a \in \mathbb{F}_p$

$$S_a(n) := \{ f \in \mathcal{I}_q^n \mid \mathrm{Tr}(f) = a \}.$$

Theorem (Sch.) For all $n \in \mathbb{N} \setminus \{0\}$ and all finite fields \mathbb{F}_q we have

$$\sum_{a\in\mathbb{F}_p^*}|S_a(n)|-(p-1)|S_0(n)| = \begin{cases} 0, & \text{if } p\nmid n\\ \sum_{a\in\mathbb{F}_p^*}|S_a(n/p)|, & \text{if } p\mid n. \end{cases}$$

Choosing the right Subgroups and Quotient Maps

The rational function $Q_G(x) = x^p - x$ is a quotient map for a cyclic subgroup of order $p = char(\mathbb{F}_q)$ and

 $f(x^p - x)$ is irreducible \Leftrightarrow

f is irreducible and $x^p - x - \alpha$ is irreducible in $\mathbb{F}_q(\alpha)$

where $\alpha \in \overline{\mathbb{F}}_q$ is a root of f (Capelli/Cohens Lemma!). The polynomial $x^p - x - \alpha \in \mathbb{F}_{q^n}[x]$ is irreducible if and only if $\operatorname{Tr}_{q^n/p}(\alpha) \neq 0$ due to Varshamov. Thus

$$Yes(x^p - x, n) = \bigcup_{a \in \mathbb{F}_p^*} S_a(n)$$
$$No(x^p - x, n) = S_0(n).$$

15 / 18

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

And another one

Let q be odd and $u, v \in \mathbb{F}_q$ with $u \neq v$. Consider

$$C_{u,v}(n) := \{ f \in \mathcal{I}_q^n \mid f(u) \cdot f(v) \text{ is a non-square in } \mathbb{F}_q \}$$

$$D_{u,v}(n) := \{ f \in \mathcal{I}_q^n \mid f(u) \cdot f(v) \text{ is a square in } \mathbb{F}_q \}.$$

And another one

Let q be odd and $u, v \in \mathbb{F}_q$ with $u \neq v$. Consider

$$C_{u,v}(n) := \{ f \in \mathcal{I}_q^n \mid f(u) \cdot f(v) \text{ is a non-square in } \mathbb{F}_q \}$$

$$D_{u,v}(n) := \{ f \in \mathcal{I}_q^n \mid f(u) \cdot f(v) \text{ is a square in } \mathbb{F}_q \}.$$

Theorem (Sch.)

Let q be odd. For all $u, v \in \mathbb{F}_q$ with $u \neq v$ and n > 1 we have

$$|C_{u,v}(n)| - |D_{u,v}(n)| = \begin{cases} 0, & \text{if } 2 \nmid n \\ |C_{u,v}(n/2)|, & \text{if } 2 \mid n. \end{cases}$$

 Choosing the right Subgroups and Quotient Maps Theorem (Sch.)

Let q be odd. For all $u, v \in \mathbb{F}_q$ with $u \neq v$ and n > 1 we have

$$|C_{u,v}(n)| - |D_{u,v}(n)| = \begin{cases} 0, & \text{if } 2 \nmid n \\ |C_{u,v}(n/2)|, & \text{if } 2 \mid n. \end{cases}$$

The rational function

$$Q_G(x) = \frac{x^2 - uv}{2x - (u + v)}$$

is a quotient map for a subgroup of order 2 and it can be shown that

$$Yes(Q_G, n) = \{ f \in \mathcal{I}_q^n \mid f(u) \cdot f(v) \text{ is a non-square in } \mathbb{F}_q \}$$
$$No(Q_G, n) = \{ f \in \mathcal{I}_q^n \mid f(u) \cdot f(v) \text{ is a square in } \mathbb{F}_q \}.$$

Pros & Cons of our Approach

- Pros: Gives a recipe for proving and finding recursive relations of irreducible polynomials
 - Reveals that there's an underlying symmetry that forces these theorems to hold
 - Shows that perspectives matter
- Cons: A lot of theory and notations to digest
 - There are easier proofs for both instances I showed you
 - The defining arithmetical properties for $Yes(Q_G, n)$, $No(Q_G, n)$ that we know of are not so diverse (trace, square/non-square or power/non-power conditions).