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Omran Ahmadis Observation
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x4+ x2 41

3/18



Omran Ahmadis Observation

X+ x?+1
X+ x3+1
A+ +x+1
x4 X% x+1
x4+ x+1
x4+ x2 41

® Focus on the coefficients before x and x™! of a polynomial of
degree n

3/18



Omran Ahmadis Observation

X+ x2+1
x> +x3+1
X3+ x2+x+1
x4+ x4 x+1
XX+ +x+1
X Hxt 3+ x2+1

® Focus on the coefficients before x and x™! of a polynomial of
degree n

3/18



Omran Ahmadis Observation

X+ x2+1
x> +x3+1
X3+ x2+x+1
x4+ x4 x+1
XX+ +x+1
X Hxt 3+ x2+1

® Focus on the coefficients before x and x™! of a polynomial of
degree n

® Always the case for n odd
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n even

X+ x+1
X0 +x34+1
x®+x°+1
x4 x+1
x4 X+l
X+ x4+ 1
XX+ xtx+1
XX+ X2 +1
XX+ xt X241
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n even

x4+ x+1
xX0+x3+1
x4+ x®+1
XXt P x 1
x4 x 1
XX+ x+1
Xt x+1
X+ +x3 X% +1
x5+ x X%+
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Robert Grangers Result

Let a;j(f) be the i-th coefficient of the polynomial f, then

S..p(n) = {f € Fa[x] | f irreducible and a,—1(f) = a, ai1(f) = b}.
Theorem (R. Granger)

0, n is odd
1S1,4(n/2)], nis even.

S1a()] — So0(n)] = {

1Robert Granger. , Three proofs of an observation on irreducible polynomials

over GF(2)“. In: Finite Fields and Their Applications 88 (2023).
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Motivation

® Rewriting R. Grangers result gives

1S1,(M)| = [So0,«(m)] = (IS1,1(n)] + [S1,0(n)]) = (1S0,1(n)| + [So,0(n)])
= [S1,1(n)| = [So,0(n)|-
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Motivation

® Rewriting R. Grangers result gives

1S1,(M)| = [So0,«(m)] = (IS1,1(n)] + [S1,0(n)]) = (1S0,1(n)| + [So,0(n)])
= [S1,1(n)| = [So,0(n)|-

® Thus

0, n is odd

S1(n)] — [So,«(n)| =
| 1,( )| | 0, ( )| {’517*(,7/2”’ n is even

® \We were familiar with that kind of behaviour but in another
context, can we find a connection?

6/18



Rational Transformations

Let F € Fy[x] and Q = g/h € Fy(x), then

FO(x) = Ag nph(x)*(F) . F <i8> |
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Rational Transformations

Let F € Fy[x] and Q = g/h € Fy(x), then
FA) = A0 (£

Lemma (Cohen)

Let F € Fy[x] and Q = g/h € Fy(x) with gcd(g, h) = 1. Then F@
is irreducible over Fq[x] if and only if F € Fy[x] is irreducible and
g — ah € Fo(a)[x] is irreducible, where a € Fq a root of F.

2Stephen D. Cohen. , On irreducible polynomials of certain types in finite
fields". In: Mathematical Proceedings of the Cambridge Philosophical Society
66.2 (1969), S. 335-344.
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Yes/No

Fix a rational function Q = g/h.
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Yes/No

Fix a rational function Q = g/h.

® We partition the set of irreducible monic polynomials Z of
degree n into

Yes(Q,n) :={f € I | fQ is irreducible}
No(Q,n) :={f € Zj | fQ is not irreducible}.
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Yes/No

Fix a rational function Q = g/h.

® We partition the set of irreducible monic polynomials Z of
degree n into

Yes(Q,n) :={f € I | fQ is irreducible}
No(Q,n) :={f € Zj | fQ is not irreducible}.

® |n general hard to describe, since deciding whether g — ah is
irreducible can be difficult
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A Change of (personal) Perspective

In the past:
® Only interested in the
irreducible polynomials @ Now:
for f an irreducible ® Also interested in the
polynomial of degree n irreducible polynomials f of
® .. because all invariant degree n for which 9 is
irreducible polynomials are irreducible

special rational
transformations

3Lucas Reis. , M&bius-like maps on irreducible polynomials and rational
transformations”. In: Journal of Pure and Applied Algebra 224 (Mai 2019),

S. 169-180.
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A Theorem for Yes/No

A quotient map Q¢ € Fqy(x) for a subgroup G < PGLy(Fg) is a
rational function that generates the subfield

Fy(x)S = {Q eF (x) | Q (iﬁig) = Q(x) for all Ki Z)} € G}

Theorem (Sch.)

Let G < PGLy(Fy) be a cyclic subgroup of prime order s and Q¢ a
quotient map for G. For all n > d(G) we have

0, ifs{n

|Yes(Qe, m)] = (s = 1)|Ne(Qg, n)] = {|Yes(QG, n/s), ifs|n.

*Max Schulz. On the Recursive Behaviour of the Number of Irreducible
Polynomials with Certain Properties over Finite Fields. 2023. arXiv:
2310.01872 [math.NT].
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https://arxiv.org/abs/2310.01872

We have a recipe, so what now?

Are there particular instances of quotient maps Q¢ for which
Yes(Qg, n) and No(Qg, n) can be described in a "nice”
arithmetical way?

12/18



Onto a Generalization of R. Grangers Result

Let p be prime and g = p*. Let f € Fy[x] be an irreducible monic
polynomial of degree n, then we set

Tr(f) == = Trgnp(a)

where o € Fgn.
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Onto a Generalization of R. Grangers Result

Let p be prime and g = p*. Let f € Fy[x] be an irreducible monic
polynomial of degree n, then we set

Tr(f) == = Trgnp(a)

where a € Fgn.
® Be careful! It's the absolute trace!
e If g = p, then Tr(f) = a,_1(f).

® In general Tr(f) = Try/p(an-1(f)).
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Onto a Generalization of R. Grangers Result

Let Z be the set of irreducible monic polynomials in IF4[x] of
degree n. Define for a € FF,,

Sa(n) :={f € I | Tr(f) = a}.

Theorem (Sch.)
For all n € N\ {0} and all finite fields Fq we have

ES acFy

0, ifptn
2_ 1Sa(nl = (p=DISo(M)| =Y 5 |5,(n/p)l, ifp|n.
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Choosing the right Subgroups and Quotient Maps

The rational function Qg (x) = xP — x is a quotient map for a
cyclic subgroup of order p = char(F,) and

f(xP — x) is irreducible <

f is irreducible and x” — x — « is irreducible in Fq(a)

where o € F; is a root of f (Capelli/Cohens Lemmal). The
polynomial xP — x — a € Fgn[x] is irreducible if and only if
Trgn/p() # 0 due to Varshamov. Thus

Yes(xP — x, n) US

ES
No(xP — x, n) = So(n).
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And another one

Let g be odd and u, v € Fq with u # v. Consider

Cuv(n):={f € Ig | f(u

) - f(v) is a non-square in Fq}
Dyy(n):={f € Zg | f(u) - f(v) is a square in Fg}.
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And another one

Let g be odd and u, v € Fq with u # v. Consider

Cuv(n):={f € Ig | f(u

) - f(v) is a non-square in Fq}
Dyy(n):={f € Zg | f(u) - f(v) is a square in Fg}.

Theorem (Sch.)
Let q be odd. For all u,v € Fq with u # v and n > 1 we have

0, if24n

[Canr(m)] = ()] = {ycu,v(n/z)y, if2 ] n.
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Choosing the right Subgroups and Quotient Maps

Theorem (Sch.)
Let q be odd. For all u,v € Fq with u# v and n > 1 we have

0, if24n
‘CU,V(”)| - |DU,V(’7)| = .
|Cun(n/2)], if2]n.

The rational function

X2 — uv
Q) =5 =t v

is a quotient map for a subgroup of order 2 and it can be shown
that

Yes(Qg,n) = {f € Z; | f(u) - f(v) is a non-square in F}
No(Qq,n) = {f € Zg | f(u) - f(v) is a square in Fg}.
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Pros & Cons of our Approach

Pros: ® Gives a recipe for proving and finding recursive relations of
irreducible polynomials

® Reveals that there's an underlying symmetry that forces these
theorems to hold

® Shows that perspectives matter

Cons: @ A lot of theory and notations to digest
® There are easier proofs for both instances | showed you
® The defining arithmetical properties for Yes(Qg, n), No(Qg, n)

that we know of are not so diverse (trace, square/non-square
or power/non-power conditions).
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