Table of contents

Linearized polynomials

Stabilizers of graphs

Applications on rank-metric codes

Stabilizers of graphs of linear functions and rank-metric codes

Valentino Smaldore

Università degli Studi di Padova

WCC 2024: The Thirteenth International Workshop on Coding and Cryptography

joint work with C. Zanella and F. Zullo

June 18, 2024

Table of contents \circ	Rank-metric codes	Linearized polynomials	Stabilizers of graphs	Applications on rank-metric codes
Graphs				

Table of contents

Rank-metric codes

Linearized polynomials

Stabilizers of graphs

Applications on rank-metric codes

1 Rank-metric codes

- 2 Linearized polynomials
- 3 Stabilizers of graphs
- Applications on rank-metric codes

・ロト・日本・日本・日本・日本・日本

Linearized polynomials

Stabilizers of graphs

Applications on rank-metric codes

Rank-metric codes

Definitions

Definition

An \mathbb{F}_q -linear rank-metric linear code C is a \mathbb{F}_q -subspace of $\mathbb{F}_q^{m \times n}$ of $m \times n$ matrices over \mathbb{F}_q .

Definition

- The rank distance between two matrices A and B is the rank of their difference: d(A, B) = rk(A B).
- The minimum distance of C is $d = d(C) = min\{d(A, B)|A, B \in C, A \neq B\}.$

In this case we say C is a rank-metric code with parameters (m, n, q; d).

Rank-metric codes ○●○○ Linearized polynomials

Stabilizers of graphs

Applications on rank-metric codes

Rank-metric codes

Definitions

Theorem (**Singleton-like bound**)

 $log_q|\mathcal{C}| \leq max\{m,n\}(min\{m,n\}-d+1).$

Definition

A code attaining the Singleton-like bound is called MRD-code.

・ロト・西ト・モン・ビー もくの

 $\underset{O}{\text{Table of contents}}$

Linearized polynomials

Stabilizers of graphs

Applications on rank-metric codes

Rank-metric codes

Left and right idealizers

Definition

The left and right idealizers of a rank-metric code $\ensuremath{\mathcal{C}}$ are

$$L(\mathcal{C}) = \{ Y \in \mathbb{F}_{q}^{m \times m} \mid YC \in \mathcal{C}, \forall C \in \mathcal{C} \},\$$

$$R(\mathcal{C}) = \{ Z \in \mathbb{F}_q^{n \times n} \mid CZ \in \mathcal{C}, \forall C \in \mathcal{C} \}.$$

Theorem

- If C and C' are equivalent \mathbb{F}_q -linear rank-metric codes of $\mathbb{F}_q^{m \times n}$, then their left and right idealizers are isomorphic.
- 2 Let C be an \mathbb{F}_q -linear MRD-code with d > 1.
 - If $m \leq n$, then $L(\mathcal{C})$ is a finite field with $|L(\mathcal{C})| \leq q^m$.
 - If $m \ge n$, then $R(\mathcal{C})$ is a finite field with $|R(\mathcal{C})| \le q^n$.
 - If m = n, L(C) and R(C) are both finite fields.

Stabilizers of graphs

Applications on rank-metric codes

Rank-metric codes

Equivalent definitions

The elements of an \mathbb{F}_q -linear rank metric code C with parameters (m, n, q; d) may be seen as:

- matrices of

 \[
 m^{m \times n}
 having rank at least d and with at least one
 matrix of rank exactly d;
- vectors of length *n* over \mathbb{F}_{q^m} having norm rank at least *d* and with at least one vector of norm rank exactly *d*;
- \mathbb{F}_q -linear maps $V \to W$ where V = V(n, q) and W = V(m, q), having usual map rank at least d and with at least one map of rank exactly d;
- when m = n, elements of the F_q-algebra L_{n,q} of q-polynomials over F_{qⁿ} modulo x^{qⁿ} - x, having rank at least d and with at least one polynomial of rank exactly d.

Stabilizers of graphs

Applications on rank-metric codes

イロト イヨト イヨト イヨト

Linearized polynomials

$$q = p^h$$
, $n \in \mathbb{N}$.

Definition

• A linearized polynomial over \mathbb{F}_{q^n} is

$$f = \sum_{i=0}^{k} a_i x^{q^i} \in \mathbb{F}_{q^n}[x]$$

- If $a_k \neq 0$ then the q-degree of f is k.
- $L_{n,q}$ will denote the set of linearized polynomials over \mathbb{F}_{q^n} .

•
$$\mathcal{L}_{n,q} = L_{n,q}/(x^{q^n} - x).$$

Note that we can identify the elements of $\mathcal{L}_{n,q}$ with the q-polynomials having q-degree smaller than n.

Linearized polynomials

Stabilizers of graphs

Applications on rank-metric codes

Linearized polynomials

Partially scattered polynomials

Let t be a divisor of n, 1 < t < n, f linearized polynomial over \mathbb{F}_{q^n} ,

Definition

• f is L-q^t-partially scattered if for any $y, z \in \mathbb{F}_{q^n}^*$,

$$\frac{f(y)}{y} = \frac{f(z)}{z} \Longrightarrow \frac{y}{z} \in \mathbb{F}_{q^t}.$$

• f is R- q^t -partially scattered if for any $y, z \in \mathbb{F}_{q^n}^*$,

$$rac{f(y)}{y} = rac{f(z)}{z} ext{ and } rac{y}{z} \in \mathbb{F}_{q^t} \Longrightarrow rac{y}{z} \in \mathbb{F}_q.$$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ = 臣 = めんの

Linearized polynomials

Stabilizers of graphs

Applications on rank-metric codes

Linearized polynomials

Scattered polynomials

Definition

A linearized polynomial f over \mathbb{F}_{q^n} is scattered if for any $y, z \in \mathbb{F}_{q^n}^*$,

$$\frac{f(y)}{y} = \frac{f(z)}{z} \Longrightarrow \frac{y}{z} \in \mathbb{F}_q.$$

Note that a polynomial f which is both L- q^t -partially scattered and R- q^t -partially scattered is scattered.

Proposition (J. Sheekey, 2016)

Let f be a scattered polynomial over \mathbb{F}_{q^n} . Then $C_f = \langle x, f(x) \rangle_{q^n}$ is a (n, n, q; n-1)-MRD code of dimension 2n.

Linearized polynomials

Stabilizers of graphs

Applications on rank-metric codes

Linearized polynomials

Graph of functions

Definition

Let $f \in \mathbb{F}_q[x]$.

- The graph of f is $\mathcal{G}_f = \{(y, f(y)) \mid y \in \mathbb{F}_q\} \subseteq AG(2, q).$
- The set of directions of $f \in \mathbb{F}_q[x]$ is defined as

$$\mathcal{D}_f = \{ PQ \cap \ell_\infty \mid P, Q \in \mathcal{G}_f, \ P \neq Q \}.$$

• The set of slopes of the lines used in \mathcal{D}_f is

$$D_f = \left\{ \frac{f(y) - f(z)}{y - z} \mid y, z \in \mathbb{F}_q, \ y \neq z
ight\}.$$

<ロト < 回ト < 回ト

Note that $\mathcal{D}_f = \{ \langle (1, m, 0) \rangle_q \mid m \in D_f \}.$

Linearized polynomials

Stabilizers of graphs

Applications on rank-metric codes

Linearized polynomials Graph of functions

Linearized polynomials

Stabilizers of graphs

Applications on rank-metric codes

Linearized polynomials

Linear sets

Definition

• The linear set associated to f is

$$L_f = L_{\mathcal{G}_f} = \{\langle (y, f(y)) \rangle_{q^n} \mid y \in \mathbb{F}_{q^n}^* \}.$$

• The weight of a point $P = \langle v \rangle_{q^n} \in PG(1,q^n)$ in L_f is

$$w_{L_f}(P) = \dim_q(\mathcal{G}_f \cap \langle v \rangle_{q^n}).$$

• L_f is called scattered if all points of L_f have weight one.

Note that the polynomial $f \in \mathcal{L}_{n,q}$ is scattered if and only if L_f is.

Table of contents o

Linearized polynomials

Stabilizers of graphs

Applications on rank-metric codes

Linearized polynomials Graph of functions

If ℓ meets \mathcal{D}_f in a point of weight j, then it meets \mathcal{G}_f in q^j points. If ℓ meets ℓ_{∞} outside \mathcal{D}_f , then it meets \mathcal{G}_f in exactly 1 point.

Linearized polynomials

Stabilizers of graphs

Applications on rank-metric codes

イロト イヨト イヨト イヨト

Linearized polynomials

Low weight polynomials

Definition

A low weight polynomial f is a polynomial for which the associated linear set L_f has all points of weight less than $\frac{n}{2}$.

Example

Scattered polynomials have all points of weight 1, then they are low weight.

Linearized polynomials

Stabilizers of graphs ●○○○○ Applications on rank-metric codes

イロト イヨト イヨト イヨト

Stabilizers of graphs

Definition

The stabilizer of \mathcal{G}_f is the set $\mathbb{S}_f = \{A \in \mathbb{F}_{q^n}^{2 \times 2} \mid A\mathcal{G}_f \subseteq \mathcal{G}_f\}$, where $A\mathcal{G}_f = \{A\begin{pmatrix} y \\ f(y) \end{pmatrix} \mid y \in \mathbb{F}_{q^n}\}.$

Proposition

 \mathbb{S}_{f} , together with + and \cdot the usual sum and product of matrices in $\mathbb{F}_{q^{n}}^{2\times 2}$ and \star the multiplication by a scalar in \mathbb{F}_{q} , forms an \mathbb{F}_{q} -algebra.

Is \mathbb{S}_f a field?

Table of contents o

Stabilizers of graphs ○●○○○ Applications on rank-metric codes

Stabilizers of graphs

Proposition

If $A, B \in \mathbb{S}_{f}$, then A + B, $AB \in \mathbb{S}_{f}$.

Theorem

If f is a low weight polynomial, then $(\mathbb{S}_f, +, \cdot)$ is a field.

Proof.

(Sketch of...) It is enough to prove that for any rank-one 2×2 matrix M with elements in \mathbb{F}_{q^n} , $M\mathcal{G}_f$ is not contained in \mathcal{G}_f . Consider $Z \neq O$ such that MZ = O and let C be a nonzero column of M. Define $\mu : \mathcal{G}_f \to \mathbb{F}_{q^n}^2$, $(y, f(y)) \mapsto M(y, f(y))^T$. ker $\mu \subseteq \langle Z \rangle_{q^n} \cap \mathcal{G}_f \Rightarrow \dim_q(\ker \mu) < \frac{n}{2}$, then $\dim_q(Im\mu) > \frac{n}{2}$. Assume $M\mathcal{G}_f \subseteq \mathcal{G}_f$, then $Im\mu \subseteq \langle C \rangle_{q^n} \cap \mathcal{G}_f$, $\dim_q(Im\mu) < \frac{n}{2}!!$ $\underset{O}{\text{Table of contents}}$

Linearized polynomials

Stabilizers of graphs

Applications on rank-metric codes

Stabilizers of graphs

Low weight polynomials and stabilizing fields

We will now see examples of low weight polynomials.

- $f = x^{q^s} \in \mathcal{L}_{n,q}$ with (s, n) = 1, then $|\mathbb{S}_f| = q^n$;
- $f = \delta x^{q^s} + x^{q^{n(s-1)}} \in \mathcal{L}_{n,q}$ with (s, n) = 1, $\delta \neq 0$ and $n \ge 4$, then $|\mathbb{S}_f| = q^2$ if n is even and $|\mathbb{S}_f| = q$ if n is odd;
- $f = \delta x^{q^s} + x^{q^{s+n/2}} \in \mathcal{L}_{n,q}$ with $\delta \neq 0$, *n* even and (s, n) = 1, then $|\mathbb{S}_f| = q^{\frac{n}{2}}$;
- $f = x^q + x^{q^3} + \delta x^{q^5} \in \mathcal{L}_{6,q}$ with q odd and $\delta^2 + \delta = 1$, then $|\mathbb{S}_f| = q^2$;
- $f = x^{q^s} + x^{q^{s(t-1)}} + \eta^{1+q^s} x^{q^{s(t+1)}} + \eta^{1-q^{s(2t-1)}} x^{q^{s(2t-1)}} \in \mathcal{L}_{n,q}$ with q odd prime power, $t, s, n \in \mathbb{N}$ with $n = 2t, t \ge 5$, (s, n) = 1 and $N_{q^n/q^t}(\eta) = -1$, then $|\mathbb{S}_f| = q^2$;
- $f = x^{q^{s(t-1)}} + x^{q^{s(2t-1)}} + m(x^{q^s} x^{q^{s(t+1)}}) \in \mathcal{L}_{n,q}$ with q odd prime power, $t, s, n \in \mathbb{N}$ with $n = 2t, t \ge 5$, $gcd(s, n) = 1, m \in \mathbb{F}_q^t$, then $|\mathbb{S}_f| = q^2$.

Linearized polynomials

Stabilizers of graphs

Applications on rank-metric codes

イロト イヨト イヨト イヨト

Stabilizers of graphs

Partially scattered cases

Partially scattered polynomials are *almost* low weight.

Proposition

- If f is a R-q^t-partially scattered polynomial in $\mathcal{L}_{n,q}$, then $w_{L_f}(P) \leq \frac{n}{2}$ for any point $P \in PG(1, q^n)$.
- If f is a L-q^t-partially scattered polynomial in L_{n,q}, then w_{L_f}(P) ≤ t for any point P ∈ PG(1, qⁿ).

 $\underset{O}{\text{Table of contents}}$

Linearized polynomials

Stabilizers of graphs ○○○○● Applications on rank-metric codes

Stabilizers of graphs

Partially scattered cases

Theorem

Let t be a proper divisor of n. Let $f \in \mathbb{F}_{q^n}[x]$ be an L-q^t-partially scattered polynomial in $\mathcal{L}_{n,q}$. Then \mathbb{S}_f is not a field if and only if f is equivalent to $\ell^{q^t} - \ell$ for some $\ell \in \mathcal{L}_{t,q}$, and n = 2t.

Example

Let
$$p = \sum_{k=0}^{n-1} \left(\sum_{\ell=0}^{t-1} (u_{\ell} + u_{\ell}^{q^s} \xi) \lambda_{\ell}^{*q^k} \right) x^{q^k}$$
, where $\{u_0, \ldots, u_{t-1}\}$
is an \mathbb{F}_q -basis of \mathbb{F}_{q^t} and $(\lambda_0^*, \ldots, \lambda_{n-1}^*)$ is the dual basis of
 $(u_0 + \mu u_0^{q^s} \xi, \ldots, u_{t-1} + \mu u_{t-1}^{q^s} \xi, u_0 + u_0^{q^s} \xi, \ldots, u_{t-1} + u_{t-1}^{q^s} \xi)$.
Then p is an R - q^t -partially scattered polynomial and the stabilizer
of \mathcal{G}_p is not a field.

Rank-metric codes

Linearized polynomials

Stabilizers of graphs

Applications on rank-metric codes

Applications on rank-metric codes

Theorem

Let $f \in \mathcal{L}_{n,q}$ and denote by $C_f = \langle x, f(x) \rangle_{q^n}$ the associated rank metric code in $\mathcal{L}_{n,q}$. Suppose that $f \notin \langle x \rangle_{q^n}$. Then the \mathcal{F}_q -algebras \mathbb{S}_f and $R(\mathcal{C}_f)$ are isomorphic.

Proof.

(Sketch of...) The isomorphism is:

$$\psi: \begin{pmatrix} \mathsf{a} & b \\ \mathsf{c} & d \end{pmatrix} \mapsto \mathsf{a} \mathsf{x} + b \mathsf{f}(\mathsf{x}).$$

・ロト・日本・日本・日本・日本・日本・日本

Rank-metric codes

Linearized polynomials

Stabilizers of graphs

Applications on rank-metric codes ○●○○

Applications on rank-metric codes

Right idealizers of rank-metric codes

Theorem (T. H. Randrianarisoa, 2020)

Let $C_f = \langle x, f(x) \rangle_{q^n}$. Then,

$$d(\mathcal{C}_f) = n - max\{dim_q(\mathcal{G}_f \cap \langle v \rangle_{q^n}) \mid P = \langle v \rangle_{q^n} \in PG(1,q^n)\}$$

Corollary

Let f be a linearized polynomial in $\mathcal{L}_{n,q}$. If $d(\mathcal{C}_f) > \frac{n}{2}$, then $R(\mathcal{C}_f)$ is a field.

・ロト・日本・日本・日本・日本・日本・日本

Rank-metric codes

Linearized polynomials

Stabilizers of graphs

Applications on rank-metric codes ○○●○

Applications on rank-metric codes

MRD codes associated with partially scattered polynomials

Proposition

If n = tt' and $f \in \mathcal{L}_{n,q}$ is an R- q^t -partially scattered polynomial then $\tilde{\mathcal{C}}_f = \{F_{|\mathbb{F}_{q^t}} | \mathbb{F}_{q^t} \to \mathbb{F}_{q^t} | F \in \mathcal{C}_f\}$ is an MRD (n, t, q; t - 1)-code.

•
$$\mathcal{L}_{t,n,q} = \{g \in \mathcal{L}_{n,q} \mid g(\mathbb{F}_{q^t}) = \mathbb{F}_{q^t}\};$$

• $g \approx g'$ if and only if $g|_{\mathbb{F}_{q^t}} = g'|_{\mathbb{F}_{q^t}};$
• $\tilde{\pi} : \mathcal{L}_{n,q} \longrightarrow \mathcal{L}_{n,q} / \approx;$
• $\Phi : \tilde{\pi}(g) \in \mathcal{L}_{t,n,q} / \approx \longrightarrow g|_{\mathbb{F}_{q^t}} \in \mathcal{L}_{t,q}.$

Proposition

Let $f \in \mathcal{L}_{n,q}$ with $f \notin \langle x \rangle_{q^n}$ and such that f is R- q^t -partially scattered. Then, $|R(\tilde{\mathcal{C}}_f)| \geq |\mathcal{L}_{t,n,q} \cap R(\mathcal{C}_f)|$.

Table of contents

Rank-metric codes

Linearized polynomials

Stabilizers of graphs

Applications on rank-metric codes

