へのへ

Stabilizers of graphs of linear functions and rank-metric codes

Valentino Smaldore

Università degli Studi di Padova

WCC 2024:The Thirteenth International Workshop on Coding and Cryptography

joint work with C. Zanella and F. Zullo

June 18, 2024

[Rank-metric codes](#page-3-0)

- [Linearized polynomials](#page-7-0)
- [Stabilizers of graphs](#page-15-0)

Rank-metric codes

Definitions

Definition

An \mathbb{F}_q -linear rank-metric linear code $\mathcal C$ is a \mathbb{F}_q -subspace of $\mathbb{F}_q^{m\times n}$ of $m \times n$ matrices over \mathbb{F}_q .

Definition

- The rank distance between two matrices A and B is the rank of their difference: $d(A, B) = rk(A - B)$.
- \bullet The minimum distance of C is $d = d(C) = min{d(A, B)|A, B \in C, A \neq B}.$

In this case we say $\mathcal C$ is a rank-metric code with parameters $(m, n, q; d)$.

Rank-metric codes

Definitions

Theorem (Singleton-like bound)

 $log_a |\mathcal{C}| \leq max\{m, n\} (min\{m, n\} - d + 1).$

Definition

A code attaining the Singleton-like bound is called MRD-code.

メロメ メ御 メメ ヨメメ ヨメー 重 QQ

Rank-metric codes

Left and right idealizers

Definition

The left and right idealizers of a rank-metric code C are

$$
L(C) = \{ Y \in \mathbb{F}_q^{m \times m} \mid YC \in C, \forall C \in C \},
$$

$$
R(C) = \{ Z \in \mathbb{F}_q^{n \times n} \mid CZ \in C, \forall C \in C \}.
$$

Theorem

- \blacksquare If $\mathcal C$ and $\mathcal C'$ are equivalent $\mathbb F_q$ -linear rank-metric codes of $\mathbb F_q^{m\times n}$, then their left and right idealizers are isomorphic.
- **2** Let C be an \mathbb{F}_q -linear MRD-code with $d > 1$.
	- If $m \le n$, then $L(C)$ is a finite field with $|L(C)| \le q^m$.
	- If $m \ge n$, then $R(C)$ is a finite field with $|R(C)| \le q^n$.
	- If $m = n$, $L(C)$ an[d](#page-4-0) $R(C)$ are both fini[te](#page-4-0) [fiel](#page-6-0)d[s.](#page-5-0)

Rank-metric codes

Equivalent definitions

The elements of an \mathbb{F}_q -linear rank metric code C with parameters $(m, n, q; d)$ may be seen as:

- matrices of $\mathbb{F}_q^{m\times n}$ having rank at least d and with at least one matrix of rank exactly d;
- vectors of length *n* over \mathbb{F}_{q^m} having norm rank at least *d* and with at least one vector of norm rank exactly d ;
- \mathbb{F}_q -linear maps $V \to W$ where $V = V(n, q)$ and $W = V(m, q)$, having usual map rank at least d and with at least one map of rank exactly d;
- when $m = n$, elements of the \mathbb{F}_q -algebra $\mathcal{L}_{n,q}$ of q-polynomials over \mathbb{F}_{q^n} modulo $x^{q^n} - x$, having rank at least d and with at least one polynomial of rank exactly d .

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯

へのへ

Linearized polynomials

$$
q=p^h, n\in\mathbb{N}.
$$

Definition

A linearized polynomial over \mathbb{F}_{q^n} is

$$
f=\sum_{i=0}^k a_i x^{q^i}\in \mathbb{F}_{q^n}[x]
$$

- \bullet If $a_k \neq 0$ then the q-degree of f is k.
- $L_{n,q}$ will denote the set of linearized polynomials over \mathbb{F}_{q^n} .

$$
\bullet \ \mathcal{L}_{n,q} = L_{n,q}/(x^{q^n}-x).
$$

Note that we can identify the elements of $\mathcal{L}_{n,q}$ with the q -polynomials having q -degree smaller than n .

Linearized polynomials

Partially scattered polynomials

Let t be a divisor of n, $1 < t < n$, f linearized polynomial over \mathbb{F}_{q^n} ,

Definition

f is L-q^t-partially scattered if for any $y,z\in\mathbb{F}_{q^n}^*$,

$$
\frac{f(y)}{y} = \frac{f(z)}{z} \Longrightarrow \frac{y}{z} \in \mathbb{F}_{q^t}.
$$

f is R-q^t-partially scattered if for any $y,z\in\mathbb{F}_{q^n}^*$,

$$
\frac{f(y)}{y} = \frac{f(z)}{z} \text{ and } \frac{y}{z} \in \mathbb{F}_{q^t} \Longrightarrow \frac{y}{z} \in \mathbb{F}_q.
$$

K □ ▶ K 倒 ▶ K ミ ▶ へのへ

Linearized polynomials

Scattered polynomials

Definition

A linearized polynomial f over \mathbb{F}_{q^n} is scattered if for any $y,z\in \mathbb{F}_{q^n}^*$,

$$
\frac{f(y)}{y} = \frac{f(z)}{z} \Longrightarrow \frac{y}{z} \in \mathbb{F}_q.
$$

Note that a polynomial f which is both $L-q^t$ -partially scattered and R - q ^t-partially scattered is scattered.

Proposition (J. Sheekey, 2016)

Let f be a scattered polynomial over \mathbb{F}_{q^n} . Then $C_f = \langle x, f(x) \rangle_{q^n}$ is a $(n, n, q; n - 1)$ -MRD code of dimension $2n$.

Linearized polynomials

Graph of functions

Definition

Let $f \in \mathbb{F}_q[x]$.

- The graph of f is $\mathcal{G}_f = \{(y, f(y)) \mid y \in \mathbb{F}_q\} \subseteq AG(2, q)$.
- The set of directions of $f \in \mathbb{F}_q[x]$ is defined as

$$
\mathcal{D}_f = \{PQ \cap \ell_\infty \mid P, Q \in \mathcal{G}_f, P \neq Q\}.
$$

The set of slopes of the lines used in \mathcal{D}_f is

$$
D_f = \left\{ \frac{f(y) - f(z)}{y - z} \mid y, z \in \mathbb{F}_q, \ y \neq z \right\}.
$$

K ロ ト K 御 ト K ヨ ト

∽≏ດ

Note that $\mathcal{D}_f = \{ \langle (1, m, 0) \rangle_g \mid m \in D_f \}.$

Linearized polynomials

Graph of functions

Linearized polynomials

Linear sets

Definition

• The linear set associated to f is

$$
L_f = L_{\mathcal{G}_f} = \{ \langle (y, f(y)) \rangle_{q^n} \mid y \in \mathbb{F}_{q^n}^* \}.
$$

The weight of a point $P = \langle v \rangle_{q^n} \in PG(1, q^n)$ in L_f is

$$
w_{L_f}(P)=\dim_q(\mathcal{G}_f\cap \langle v\rangle_{q^n}).
$$

 L_f is called scattered if all points of L_f have weight one.

Note that the polynomial $f\in \mathcal{L}_{n,q}$ is scattered if and only if L_f is.

Linearized polynomials

Graph of functions

If ℓ meets \mathcal{D}_f in a point of weight j , then it meets \mathcal{G}_f in q^j points. If ℓ meets ℓ_∞ outside \mathcal{D}_f , then it meets \mathcal{G}_f in exactly 1 point.

∢ロ ▶ ∢ 御 ▶ ∢ 后 ▶ ∢ 后 ▶

つくい

Linearized polynomials

Low weight polynomials

Definition

A low weight polynomial f is a polynomial for which the associated linear set L_f has all points of weight less than $\frac{n}{2}$.

Example

Scattered polynomials have all points of weight 1, then they are low weight.

[Table of contents](#page-2-0) [Rank-metric codes](#page-3-0) [Linearized polynomials](#page-7-0) **[Stabilizers of graphs](#page-15-0)** [Applications on rank-metric codes](#page-20-0)
O 0000 00000 00000000 0000000 00000 0000

メロメ メ御 メメ ヨメ メヨメー

つへへ

Stabilizers of graphs

Definition

The stabilizer of \mathcal{G}_f is the set $\mathbb{S}_f = \{A \in \mathbb{F}_{q^n}^{2 \times 2} \mid A \mathcal{G}_f \subseteq \mathcal{G}_f\}$, where $AG_f = \left\{ A \begin{pmatrix} y \\ f(y) \end{pmatrix} \right\}$ $f(y)$ $\Big) \mid y \in \mathbb{F}_{q^n} \Big\}$.

Proposition

 \mathbb{S}_f , together with $+$ and \cdot the usual sum and product of matrices in $\mathbb{F}_{q^n}^{2\times 2}$ and \star the multiplication by a scalar in \mathbb{F}_q , forms an \mathbb{F}_q -algebra.

Is \mathbb{S} a field?

[Table of contents](#page-2-0) [Rank-metric codes](#page-3-0) [Linearized polynomials](#page-7-0) **[Stabilizers of graphs](#page-15-0)** [Applications on rank-metric codes](#page-20-0)
O 0000 00000000 0000000 00000

Stabilizers of graphs

Proposition

If $A, B \in \mathbb{S}_f$, then $A + B$, $AB \in \mathbb{S}_f$.

Theorem

If f is a low weight polynomial, then $(\mathbb{S}_f, +, \cdot)$ is a field.

Proof.

(Sketch of...) It is enough to prove that for any rank-one 2×2 matrix M with elements in \mathbb{F}_{q^n} , \mathcal{MG}_f is not contained in \mathcal{G}_f . Consider $Z \neq O$ such that $MZ = O$ and let C be a nonzero column of M . Define $\mu: \mathcal{G}_f \to \mathbb{F}_{q^n}^2,$ $(y, f(y)) \mapsto M(y, f(y))^T$. $\mathsf{ker}\, \mu \subseteq \langle Z \rangle_{\bm{q}^n} \cap \mathcal{G}_f \Rightarrow \mathsf{dim}_{\bm{q}}(\mathsf{ker}\, \mu) < \frac{n}{2}$ $\frac{n}{2}$, then dim $_q(Im\mu) > \frac{n}{2}$ $\frac{n}{2}$. Assume $MG_f \subseteq \mathcal{G}_f$, then $\mathit{Im}\mu \subseteq \langle C \rangle_{q^n} \cap \mathcal{G}_f$, $\dim_q(\mathit{Im}\mu) < \frac{\pi}{2}$ $\frac{n}{2}$!!

Stabilizers of graphs

Low weight polynomials and stabilizing fields

We will now see examples of low weight polynomials.

- $f = x^{q^s} \in \mathcal{L}_{n,q}$ with $(s,n) = 1$, then $|\mathbb{S}_f| = q^n;$
- $f=\delta x^{q^s}+x^{q^{n(s-1)}}\in \mathcal{L}_{n,q}$ with $(s,n)=1, \ \delta \neq 0$ and $n\geq 4,$ then $|\mathbb{S}_f|=q^2$ if *n* is even and $|\mathbb{S}_f|=q$ if *n* is odd;
- $f=\delta x^{q^s}+x^{q^{s+n/2}}\in \mathcal{L}_{n,q}$ with $\delta\neq 0$, n even and $(s,n)=1,$ then $|\mathbb{S}_f| = q^{\frac{n}{2}};$

•
$$
f = x^q + x^{q^3} + \delta x^{q^5} \in \mathcal{L}_{6,q}
$$
 with q odd and $\delta^2 + \delta = 1$, then $|\mathbb{S}_f| = q^2$;

- $f = x^{q^s} + x^{q^{s(t-1)}} + \eta^{1+q^s} x^{q^{s(t+1)}} + \eta^{1-q^{s(2t-1)}} x^{q^{s(2t-1)}} \in \mathcal{L}_{n,q}$ with q odd prime power, $t, s, n \in \mathbb{N}$ with $n = 2t, t \ge 5$, $(s, n) = 1$ and $N_{q^n/q^t}(\eta) = -1$, then $|\mathbb{S}_f| = q^2$;
- $f = x^{q^{s(t-1)}} + x^{q^{s(2t-1)}} + m(x^{q^s} x^{q^{s(t+1)}}) \in \mathcal{L}_{n,q}$ with q odd prime power, t, s, $n \in \mathbb{N}$ with $n = 2t$, $t \ge 5$, $gcd(s, n) = 1$, $m \in \mathbb{F}_q^t$, then $|\mathbb{S}_f| = q^2$.

[Table of contents](#page-2-0) [Rank-metric codes](#page-3-0) [Linearized polynomials](#page-7-0) **[Stabilizers of graphs](#page-15-0)** [Applications on rank-metric codes](#page-20-0)
OCOO 000000000 0000000 00000 00000

メロメ メ団 メメミメメミメ

つくい

Stabilizers of graphs

Partially scattered cases

Partially scattered polynomials are almost low weight.

Proposition

- \textbf{D} If f is a R-q^t-partially scattered polynomial in $\mathcal{L}_{n,q},$ then $w_{L_f}(P) \leq \frac{n}{2}$ $\frac{n}{2}$ for any point $P \in PG(1, q^n)$.
- \bullet If f is a L-q^t-partially scattered polynomial in $\mathcal{L}_{n,q},$ then $w_{L_f}(P) \leq t$ for any point $P \in PG(1, q^n)$.

Stabilizers of graphs

Partially scattered cases

Theorem

Let t be a proper divisor of n. Let $f \in \mathbb{F}_{q^n}[x]$ be an L-q^t-partially scattered polynomial in $\mathcal{L}_{n,q}$. Then \mathbb{S}_f is not a field if and only if f is equivalent to $\ell^{q^t} - \ell$ for some $\ell \in \mathcal{L}_{t,q}$, and $n = 2t$.

Example

Let
$$
p = \sum_{k=0}^{n-1} \left(\sum_{\ell=0}^{t-1} (u_{\ell} + u_{\ell}^{q^s} \xi) \lambda_{\ell}^{*q^k} \right) x^{q^k}
$$
, where $\{u_0, \ldots, u_{t-1}\}$
is an \mathbb{F}_q -basis of \mathbb{F}_{q^t} and $(\lambda_0^*, \ldots, \lambda_{n-1}^*)$ is the dual basis of
 $(u_0 + \mu u_0^{q^s} \xi, \ldots, u_{t-1} + \mu u_{t-1}^{q^s} \xi, u_0 + u_0^{q^s} \xi, \ldots, u_{t-1} + u_{t-1}^{q^s} \xi)$.
Then *p* is an *R*- q^t -partially scattered polynomial and the stabilizer
of \mathcal{G}_p is not a field.

[Table of contents](#page-2-0) [Rank-metric codes](#page-3-0) [Linearized polynomials](#page-7-0) [Stabilizers of graphs](#page-15-0) **[Applications on rank-metric codes](#page-20-0)**
O 0000 00000000 0000000 000000 00000 **0000**

Applications on rank-metric codes

Theorem

Let $f\in \mathcal{L}_{n,q}$ and denote by $\mathcal{C}_f=\langle x,f(x)\rangle_{q^n}$ the associated rank metric code in $\mathcal{L}_{n,q}.$ Suppose that $f \notin \langle x \rangle_{q^n}.$ Then the \mathcal{F}_q -algebras \mathbb{S}_f and $R(\mathcal{C}_f)$ are isomorphic.

Proof.

(Sketch of...) The isomorphism is:

$$
\psi: \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto ax + bf(x).
$$

メロメ メ団 メメミメメミメ へのへ

Applications on rank-metric codes

Right idealizers of rank-metric codes

Theorem (T. H. Randrianarisoa, 2020)

Let $C_f = \langle x, f(x) \rangle_{q^n}$. Then,

$$
d(C_f) = n - \max\{dim_q(\mathcal{G}_f \cap \langle v \rangle_{q^n}) \mid P = \langle v \rangle_{q^n} \in PG(1,q^n)\}.
$$

Corollary

Let f be a linearized polynomial in $\mathcal{L}_{n,q}$. If $d(C_f) > \frac{n}{2}$ $\frac{n}{2}$, then $R(\mathcal{C}_f)$ is a field.

> メロメ メ御 メメ ヨメ メヨメー つくい

Applications on rank-metric codes

MRD codes associated with partially scattered polynomials

Proposition

If $n = tt'$ and $f \in \mathcal{L}_{n,q}$ is an R-q^t-partially scattered polynomial then $\widetilde{\mathcal{C}}_f=\{F_{|\mathbb{F}_{q^t}}\mid \mathbb{F}_{q^t}\rightarrow \mathbb{F}_{q^t}\mid F\in \mathcal{C}_f\}$ is an MRD $(n, t, q; t - 1)$ -code.

\n- \n
$$
\mathcal{L}_{t,n,q} = \{ g \in \mathcal{L}_{n,q} \mid g(\mathbb{F}_{q^t}) = \mathbb{F}_{q^t} \};
$$
\n
\n- \n $g \approx g'$ if and only if $g|_{\mathbb{F}_{q^t}} = g'|_{\mathbb{F}_{q^t}};$ \n
\n- \n $\tilde{\pi} : \mathcal{L}_{n,q} \longrightarrow \mathcal{L}_{n,q} / \approx;$ \n
\n- \n $\Phi : \tilde{\pi}(g) \in \mathcal{L}_{t,n,q} / \approx \rightarrow g_{\mathbb{F}_{q^t}} \in \mathcal{L}_{t,q}.$ \n
\n

Proposition

Let $f \in \mathcal{L}_{n,q}$ with $f \notin \langle x \rangle_{q^n}$ and such that f is R-q^t-partially scattered. Then, $|R(\tilde{\mathcal{C}}_f)| \geq |\mathcal{L}_{t,n,q} \cap R(\mathcal{C}_f)|$.

