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Pages 26-32

4. Extensible Decentralized Secret Sharing and Schnorr Signatures
Michele Battagliola, Riccardo Longo and Alessio Meneghetti

Pages 33-44

5. On Functions of F22t mapping Cosets of F∗

2t to Cosets of F∗

2t

Jules Baudrin, Anne Canteaut and Léo Perrin
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Abstract. We build a public-key encryption scheme relying on the Lat-
tice Isomorphism Problem, which is the problem of deciding whether
two lattices are rotations of each other. We generalize a restricted-to-Zn

scheme from Benett et al. using the quadratic form formalism. Our pro-
posal benefits from more versatility, no floating points arithmetics, and
relies on a plausibly falsifiable assumption.

Keywords: Public-key Encryption · Lattice Isomorphism Problem

Modern cryptography is challenged by the advent of quantum computers
with enough quantum-bits and efficient error correction. In this still hypothetical
setup both factorization and discrete logarithm problem are no longer hard as
Shor’s algorithm [24] can solve them in polynomial time. Lattices, or discrete
subgroups of a real multidimensional space, have proven themselves as strong
candidates for quantum-resistant cryptography. Besides conjectured quantum-
resilient, the average-case-worst-case connection of lattice problems accounts for
their attractivity. Decades of lattice-based cryptography gave birth to well under-
stood hypotheses — eg. NTRU, the Learning With Errors (LWE) and the Small
Integer Solution (SIS) problems — and a thick variety of constructions, ranging
from public-key encryption scheme [23] and signatures [15] to fully homomorphic
encryption [14] going through anonymous credentials [7,18]. Algebraically struc-
tured variants of those problems, relying on number theoretic structures, yield
fast and compact schemes. Recent lines of works consider agressive variations of
standard hypotheses to reach attractive performances [1,7,8].

At a high level, the current lattice-based schemes generate a public random
lattice together with a trapdoor that forms the secret key. Typically, a random
basis of the lattice is made public while a particular one, made of short and
as orthogonal as possible vectors is kept secret. Breaking these schemes reduces
to solving well-identified and well-studied hard problems over random lattices.
One such problem is Bounded Distance Decoding (BDD): given a point very
close to a lattice ⇤, one is asked to return the closest lattice point. Heuristically,
the concrete hardness of this problem is driven by the gap gap(⇤, ⇢) between ⇢,



the distance between ⇤ and the target, and half the Gaussian heuristic, which
predicts the length of the shortest vectors in “random enough” lattices. It turns
out that solvers perform much better when gap(⇢,⇤) gets large. For LWE, SIS,
NTRU schemes, one expects a O(

p
n)-gap, but other classes of lattices can reach

much smaller gaps. For example, Barnes-Sloane lattices [3] have decoding gap
as small as ⇥(

p
log n). Consequently, these lattices give a much better concrete

BDD security at a given dimension; equivalently, they require quite smaller di-
mension to reach a given security level, leading to efficiency improvements. This
is an unfortunate aspect of the current “standard” lattice-based cryptography:
hypotheses on random lattices and their subsequent constructions barely connect
with the luxuriant litterature on remarkable lattices.

⌅ Minimal preliminaries

Vectors and matrices. Matrices are denoted by bold capital letters (eg. B), the
transpose operator by ·T and the dual by ·_. (Column) vectors are denoted by
bold letters (eg x).

Spaces. Let N, Z, R denote respectively the set of natural numbers, integers and
reals. The discretized n-dimensional hypercube is Hn

q = {0, 1/q, . . . , (q� 1)/q}n.
We denote the general linear group of degree n over Z by GLn(Z), the set of
symmetric positive definite matrices of dimension n⇥ n over R by S++

n (R).

Lattices. A (full-rank) lattice ⇤ is an n-dimensional discrete subgroup of R
n.

As such, it admits a smallest non-zero vector of length �1(⇤). The gaussian
heuristics gh(⇤) gives an estimate of �1(⇤) and is accurate for random lattices3.

Quadratic forms. Quadratic forms can be represented by real symmetric matri-
ces. In this work we will only be interested in the positive definite case, i.e. el-
ements of S++

n (R). A quadratic form Q represented by a matrix Q 2 S++

n (R)
defines a scalar product hx,yiQ = xTQy, with its associated Euclidean norm
kxk2Q = xTQx. The relation R that relates Q to Q0 whenever there exists

U 2 GLn(Z) such that Q0 = UTQU is an equivalence relation, and [Q] denotes
the class of Q. The smallest length of a vector of Zn through the induced norm,
ie. minx2Zn\{0}

p

xTQx, only depends on the class and is written �1([Q]). The
n-th minima is the infimum of the radii of 0-centered balls4 containing i linearly
independent Z

n vectors.

Gaussians. The gaussian function for the quadratic form Q with width param-
eter � is ⇢Q,�(x) = exp(�⇡kxk2Q/�2), for all x 2 R

n. When � = 1, the subscript

is omitted. Elliptic Gaussians behave much like spherical ones: if Q = LTL, then
kxkQ = kLxk. The discrete Gaussian distribution DQ,� with width parameter

� is defined by the probability density function Prx -DQ,σ
(x = y) =

⇢Q,σ(y)
⇢Q,σ(Zn) ,

3 We refer to [2] for an intelligible definition of a random lattice.
4 Note that balls are implicitly defined using the quadratic norm.



for any y 2 Z
n. Sampling along this distribution can be done efficiently [11].

We denote by ⌘✏([Q]) the smoothing parameter of a class. Informally, above this
threshold, the reduction mod 1 of a (continuous) Gaussian vector of covariance
Q0 2 [Q] is indistinguishable from a uniformly distributed point in [0, 1)n.

⌅ The Lattice Isomorphism Problem

The Lattice Isomorphism Problem (LIP) is a tentative at giving more attention
to remarkable lattices and their strong geometric properties. It was first intro-
duced in [21] and further studied in [17]. In its search variant, it asks to find an
isomorphism between two lattices given as input, should it exist. In [11], Ducas
and van Woerden bring the LIP problem on the cryptographic frontline and
showed how to build core primitives founded on this problem. In an independent
work [4], Bennett et al. study similar ideas but restricted to the Z

n lattice. This
new approach for building primitives from lattices shares the flavour of first code-
based and multivariate constructions [5]. In the former, illustrated for example
by McEliece’s public key encryption scheme, a code G with an efficient decoder
is hidden by permutation S, P as Gpub = SGP ; in the latter, an easy-to-invert
quadratic map Q is masked by affine transformations T, S as Qpub = T �Q � S.
In the LIP paradigm, a lattice of known good basis is hidden by Bpub = OBU

where U is unimodular (integer entries and determinant ±1) and O is a rota-
tion. Only someone knowing (U,O) can benefit from the good properties of B.
Should one only use U, as in the GGH encryption scheme [16], then attacks
exist, so on the first look, one would need to deal with rotation matrices having
irrational entries.

LIP-based cryptography can fortunately be rephrased using quadratic forms
instead of lattices bases. Therefore, rather than considering rotated lattices
as in [4], one can essentially work modulo rotation. We have (Bpub)TBpub =
UT(BTB)U which gives a nice reformulation over the Gram matrix of B and
Bpub, that are quadratic forms. In other words, the lattices described by the
bases B and B0 are isomorphic if and only if the corresponding Gram matrices
QB, QB0 are congruent using unimodular matrices. With such a reformulation,
a natural playground for representing the space is to work within Z

n but with
a norm that reflects the geometry of lattices of one’s choice. This observation
gives rise to the following formulation of the search version of LIP.

Definition 1 (wc-LIPQ0 , quadratic form version). Given quadratic forms
Q and Q0 from S++

n (R), find U 2 GLn(Z) such that Q = UTQ0U, should it
exists.

Staying concretely within Z
n seems to significantly ease implementations of LIP-

based scheme, compared to their equivalent in standard lattice-based cryptog-
raphy. The recent Hawk proposal [10] to NIST’s second call for standardization
can be compared performance-wise to Falcon [22], boasting much simpler5 im-
plementation constraints on top.

5 Implementing the Gaussian sampler of Falcon is a notoriously difficult task.



As many cryptographic problems, LIP is unlikely to be NP hard. Nevertheless,
it benefits from worst-case to average-case self-reduction within an instantiation
class. Informally, for a fixed equivalence class [Q0] = {UTQ0U | U 2 GLn(Z)}
of quadratic forms, there is an efficient way [11, lem. 3.9] of generating a random
member of the class with corresponding LIP instance being as hard as possible6.
In this document, we denote by QFSQ,s the (non-deterministic) sampler within
the class of [Q] with parameter s, and by Ds([Q]) its output distribution. Ad-
ditionally, the connection of LIP with the Graph Isomorphism Problem (GIP)
[25] accounts for its assumed theoritical hardness.

Besides the work of [4], the LIP problem restricted to the Z
n lattice has

been the focus of [12,6], to improve understanding of LIP hardness in what is
arguably the most simple lattice one can think of. In particular, it helps driving
throughout hazardous choices when instantiating the LIP problem on concrete
quadratic form classes.

For now, despite the exciting connection with other isomorphism problems,
such as the GIP problem, only low-level constructions exist: an identification
scheme, two hash-and-sign signatures and a key-exchange mechanism, all de-
scribed in [11].

⌅ A LIP-based public-key encryption scheme

We propose the first public-key encryption scheme founded on LIP. More pre-
cisely, it relies on a mild restriction of its distinguishing variant that we note
�LIPpke. Under the assumption that the aforementionned problem is hard for
the considered classes of quadratic forms, our scheme achieves IND-CPA secu-
rity. The latter essentially means that any adversary has negligible probability
of guessing the encrypted bit. This completes the set of fundamental primitives
that can be built from the LIP assumption.

It should be noted that encryption of communications can already be done
relying on LIP, using the key-exchange mechanism from [11]. In such a scheme,
two parties agree upon a common private key by decoding a small (Gaus-
sian) element. Private communications follow using symmetric encryption. Our
scheme’s target is beyond: besides encryption, a PKE scheme is a first step
toward more advanced cryptography. For example, one could think of identity-
based or attribute-based encryption as future objectives.

The new �LIPpke security assumption. This new assumption stems from the
distinguishing variant of LIP that appears in [11], and consists in guessing to
which which class a quadratic form belongs to given two proposals. At a high
level our assumption �LIPpke states that this variant remains secure when one
restricts the set of possible instances to those where the smoothing parameter
differ significantly between classes. Formally, the corresponding cryptographic
game is defined as such.

6 This is an example of worst-case to average-case reduction



Definition 2 (�LIP
Q0,Q1

pke,s
7). Given Q0 and Q1 from S++

n (R) such that there ex-

ists an efficient algorithm for bounded distance decoding at distance r  �1([Q0])/2
in [Q0] and ⌘"([Q1]) < r, and a quadratic form sampled as (Q, ·)  QFSQb,s

where b -$ {0, 1}, guess b.

The scheme. At a high-level, our PKE scheme can be seen as an adaptation of
the Dual-Regev PKE from [15] with a LIP flavour. The design is inspired from
[4], but our approach 1) is not restricted to (rotations of) the Z

n lattice (ie. with
the class of equivalence of the n-dimensional identity); 2) is founded on a concrete
assumption such as LIP — recall that rotations involves irrational numbers, while
LIP can be dealt with mostly with rationals. The encryption correctness relies on
the strong concentration of high-dimensional Gaussian vectors. Ciphertexts live
in the unit discretised n-cube Hn

q with lower vertice at the origin; if the ciphertext
corresponds to 0, it is uniformly distributed; if it corresponds to a 1, it is the
reduction of an Gaussian modulo Z

n, with a covariance matrix corresponding
to the public quadratic form, and the closeness is therefore measured in the
induced norm. On the one hand, once reduced modulo the cubic lattice, the
Gaussian distribution will strongly concentrate around the vertices of Hn, as
shown in Figure 1. On the other hand, uniformly distributed vectors are much
more likely to be in the inner part of the domain, since this is where most of
the mass is. In the full version, we show that encryptions of 1 are in fact so
close to the vertices that there is essentially no chance that they be mistaken
for an element sampled uniformly at random within Hn

q or a discretized version
of it, thanks to the properties of the smoothing parameter. Using the decoding
algorithm Dec associated to the public form, the secret key owner can know how
far the ciphertext was from the Z

n lattice, and conclude: a ciphertext close to
the lattice corresponds to a 1, and a ciphertext far away from the lattice to a 0.

Theorem 1. Restricted to instantiation where �1(Sn) is smaller that 2 – which
can always be achieved by rescaling8 – any generated keypair (pk, sk) is such that
for any bit b it holds with overwhelming probability that Dec(sk, Enc(pk, b)) = b.

An intuition for the hardness, illustrated in Figure 1, is the following: an
adversary ignoring the secret key is unable to observe Hn through the good
norm, and distribution of points of Hn that are close to the vertices of the
hypercube is mixed up in their point of view. In other words, given a ciphertext,
they cannot compute efficiently the closeness of the cipher to a vertice without
the secret key. More formally, we rely on the �LIPpke hypothesis. Indeed, if
the adversary cannot find which class the public form belongs to, in their view
everything happens as if the smoothing parameter is big enough that the reduced
Gaussian distribution mimics uniform distribution.

Theorem 2. If the �LIPpke problem is hard, then the scheme is IND-CPA secure.

7 When Q0, Q1and s are clear from context, sub/super-scripts are omitted.
8 Recall that one of the purpose of LIP is to instantiate scheme on remarkable lattices:

the first minimum of such lattices is likely to be known.



Small elements distribution, with canonical norm

Small elements distribution, with random quadratic norm

Fig. 1. Distribution of 2-dimensional small elements reduced modulo H
2, either for the

Euclidean norm or the norm induced by a random quadratic form.

The scheme is fully specified in Figure 2. At the core of the proof of Theorem 1
is a counting argument. We describe the number of points that are likely to be
output by the reduced-gaussian sampler as the cardinal of the intersection of Zn

and an ellipsoid. Such estimates are the topic of classic mathematical problems,
and we find a good-enough approximation thanks to a result of Landau [19]. The
proof of Theorem 2 is then a game-based proof that turns the original IND-CPA

game into a variant where encryptions of 0 and 1 follow the same distribution.

Looking for a concrete scheme, one can deviate from the parameter regime
deduced from our proof, as is standard in cryptography. Then, the scheme can be
instantiated on any particular lattice with efficient decoder, such as the hyper-
cubic lattice Z

n as before, but also (again) Barnes-Wall lattices, and many more,
enjoying possibly strong properties. For example, having a lattice minima closer
to the Gaussian heuristics gives better concrete security at given dimension.

Encryption of bits may seems limiting but this is the case of many unstruc-
tured lattice encryption schemes (eg. Regev and Dual-Regev schemes). Pratical
schemes in fact considered algebraically structured lattices to achieve m bits
messages at the cost of possibly weaker assumptions, that restrict standard as-
sumptions to specific classes9 of lattices.

9 The typical choices nowadays are lattices coming from ideals in cyclotomic number
field field. See eg. [20] for details.



Protocol 1. Public-key encryption

Let (Sn)n2N = (BT
Sn

BSn)n2N be a family of n-dimensional quadratic forms with
an efficient decoding algorithm DecSn of known decoding radius rn < �1(Sn)/2,
and such that

 (n) = 1/
p
⇡n · det(Sn)

�1/2
· (2e⇡r2n)

n/2

is negligible. Let n 2 N, s � max
n

�n(S), kB⇤
Sk ·

p

ln(2n+ 4)/⇡
o

. Further, let

q =
l

sn
r

·
p

ln(2n+ 4)/⇡
m

.

— Key Generation —

Sample (P,U) QFSS,s . P = UTSU, see [11, lem. 3.9] for details
Return (pk, sk) = (P,U)

1:

2:

— Encryption of 0 —

Sample e - 1/q ·DP,qr/
p
n

Compute c e mod Z
n

Return c, living in H
n
q

1:

2:

3:

— Encryption of 1 —

Sample c - U(Hn
q )

Return c, living in H
n
q

1:

2:

— Decryption —

Compute y DecS(Uc) . Algorithm of protocol requierements
Compute z = c�U�1y

If z 2 H
n
q and kzkP  r:

Return 0
Return 1

1:

2:

3:

4:

5:

Fig. 2. Public-key encryption scheme

⌅ Security and cryptanalysis discussion

As observed in prior works, easy instances of �LIPpke exist: any pair of forms
that do not have the same determinant; or the same parity; or more generally,
that do not belong to the same genus, that is, the set of all equivalence classes
for the relation R over p-adic integers for all prime p, can be distinguished
in polynomial time. When restricted to pairs sharing at least these identified
invariants, there are reasons to believe that �LIPpke is a difficult problem. While
our efforts unfortunately could not go beyond the current state of the art of the
hardness of �LIP, we provide below other supporting observations that there
are many hard instances. More can be found in the full version of this article.

Another invariant of a lattice is its theta series, a power series used to encode
all lattice points by sorting them by (squared) norm. We however observe that
theta series does not seem to be useful in the context of breaking �LIPpke. On
the one hand, while the theta series can give accurate estimates of the smooth-



ing parameter of lattices [13], computing the first terms of the series amounts
to solving the shortest vector problem by enumeration. This certainly requires
exponential time at current state of knowledge. On the other hand, starting with
dimension 4 [9], the theta series does not carry enough information to completely
characterize a lattice. Lattices sharing the same theta series but not equivalent
to one another are called isospectral. Knowing one such pair, one can build many
other: if (L1, L2) is isospectral, then (⇤�L1,⇤�L2) is also isospectral, for any
lattice ⇤.

Restricted to unimodular lattices, that is, self-dual lattices, the IND-CPA se-
curity of our scheme relies on the following mild assumption, which is reminiscent
of [11].

Conjecture 1 (Mild version). For any (Q0, Q1) instance of �LIPpke of dimen-
sion n, with equal polytime computable R-invariants arithmetic quantities, 1 
max{gh(Qi)/�1(Q1), gh(Q

_

i )/�1(Q
_

i )}, the problem wc-�LIP
Q0,Q1

pke is 2⇥(n)-hard.

While we gave clues that distinguishing between quadratic classes should not
be easier if they differ by their smoothing parameter it may seem quite tricky
to find family of lattices that could give an instance of �LIPpke in the regime of
parameter we need. Therefore, falsifying our security assumption seems tough
at first sight. This is not surprising: the authors of [4] had already observed that
it was quite unclear how to instantiate their Z

n, rotation-based scheme with
parameters reasonably close to their proof’s regime (if possible at all!). Similar
observation appear in [11]. This is partly due to the difficulty of understanding
the genus of high-dimensional lattices. Nevertheless, in the full-version we sup-
port10 our new assumption by showing that the famous Barnes-Wall lattices ac-
tually provide candidates for its plausibility, only missing the exact requirement
by small constant factors. In dimension 2m with m odd, these are unimodular
even lattices, which are also known to form a single genus on top of many of
fascinating properties: this may suggest to look more into these class of lattices.

⌅ Open questions

The first research direction we want to highlight is further reductionist effort. It
seems reasonable to think that �LIP problems restricted to classes that mainly
differ by a gap on some quantity �(⇤) is a problem simpler than a Gap problem
(eg. GapSVP is a famous problem Gap on lattices, regarding the shortest vector’s
length) on this quantity. Is this even true? What can be said of the opposite
direction? See that if those problems were in fact equivalent, �LIP could be seen
as a generic way to consider Gap problems in cryptography while easing space
requirements.

The second one concerns falsifiability of the assumption: can the �LIPpke

assumption we rely on be effectively instantiated, and concretely cryptanalysed?
As priorly stressed, gaps of Zn are not that small, and one could expect better
performances at fixed security level with our scheme instantiated on lattices with

10 More precisely, besides cryptanalysis, we give clues for its falsifiability.



smaller gaps, such as Barnes-Wall lattices [3]. As highlighted in the previous
paragraph, this question is open since [4]. A way of tackling this problem is a
further study of the existence of optimal unimodular even quadratic form —
a form is optimal when its minimum is the largest possible in a genus, and
extremal when it reaches a known upper bound for these forms, of 2bn/24c+ 2.
It is known that extremal forms cannot exist above dimensions 163264, but they
may exist for cryptographic sizes; nonetheless, we propose the conjecture that
optimal forms could have minima large enough to answer the problem. Another
promising direction is to use the Siegel-Weill mass formula that give (efficiently)
the average theta series of a given genus: a mean argument could suffice to
deduce the existence of quadratic forms that fit our requirements11.
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Abstract. The Niederreiter public-key cryptosystem is believed to be
secure against attackers having access to a large quantum computer when
the parameters are set adequately. As a main drawback, the scheme needs
to use very large public keys to reach acceptable levels of security. In this
work we explore a variation of the classical scheme that allows to reduce
the size of this key. We replace the scrambling matrix S and the permu-
tation matrix P used in the original scheme with polynomial matrices
S(D) and R(D). The public key is then the parity-check matrix of a con-
volutional code. Instead of encrypting a constant vector e of information
we encrypt a polynomial vector e(D). Thus, the scheme can be seen as
a convolutional version of the Niederreiter public-key cryptosystem. We
analyze its security against general decoding and structural attacks and
conclude that this approach can be of interest in order to reduce the size
of the key.

1 Introduction

Nowadays all widely used public-key cryptosystems (PKC) are based on the
problem of integer factoring [23] or the computation of discrete logarithms
[5,6,18,11]. These problems can be easily solved with a quantum computer us-
ing Shor’s algorithm [27,28]. Due to the continuous progress in this area, the
National Institute of Standards and Technology (NIST) emphasized the neces-
sity of having alternative PKCs and started a standardization project to define
quantum-resistant schemes. Most of the promising schemes are based on prob-
lems coming from lattice theory [25,14,22] and coding theory [4,2,17].

The McEliece cryptosystem [16] was introduced in 1978 and became the first
PKC based on a coding theory problem. Even though no feasible attack is known
when the parameters are chosen adequately, the scheme has not been used in
practice. The reason is mainly due to the large public key of the scheme.

The Niederreiter cryptosystem is a variation of the McEliece cryptosystem
proposed in 1986 by Niederreiter [19]. This variant is equivalent to the McEliece
cryptosystem in terms of security [12], but it can reduce the size of the public
key. In fact, the NIST standardization project proposals Classic McEliece [4] and
BIKE [2] are Niederreiter schemes using binary Goppa and QC-MDPC codes
respectively.



In this work we propose a variation of the original Niederreiter scheme using
polynomial matrices to hide a binary Goppa code. Instead of sending a large
vector e, we send a finite sequence of smaller vectors ei, i = 0, 1, . . . ` � 1,
represented by a polynomial vector e(D) = e0+e1D+ · · ·+e`�1D

`�1. This idea
was explored in the context of the McEliece cryptosystem in [1]. We study the
security of the new scheme against general decoding and structural attacks and
compare the size of the keys with those keys of Classic McEliece. In all cases
the proposed scheme uses smaller keys. The reduction is relevant in the cases of
192-bit and 256-bit security.

This work is structured as follows: In Section 2 we recall some basic definitions
from coding theory and describe the Niederreiter PKC. In Section 3 we introduce
the new scheme. Section 4 contains an explanation of possible attacks against the
scheme. In Section 5 we propose parameters to reach the standard security levels
and compare the obtained public key sizes with those used in Classic McEliece
PKC. Finally, in Section 6 we provide some conclusions and future work.

2 Preeliminaries

In this section we introduce the basic definitions we need to describe the proposed
variation of the Niederreiter cryptosystem. Throughout the whole paper, vectors
are column vectors. We introduce the following notation: given an integer j and
a positive integer `, we denote by [j]` the canonical representative of j modulo
`, i.e., the smallest non negative integer that is congruent with j modulo `. It is
worthwhile to point out that, for �`  j  2`� 1, we have

[j]` =

8

<

:

j + ` when �`  j  �1;
j when 0  j  `� 1;

j � ` when `  j  2`� 1.

2.1 Coding theory

Let Fq be the finite field of q elements, where q is a prime power. An [n, k] linear
code C is a subspace of Fn

q of dimension k. Its vectors are called codewords.

This space can be defined either by a generator matrix G 2 F
k⇥n
q , that is,

C = {u>G : u 2 F
k
q} or by a parity-check matrix H 2 F

(n�k)⇥n
q , that

is, C = {Hc = 0n�k : c 2 F
n
q }. Given a vector v 2 F

n
q , its syndrome is

s = Hv. The Hamming weight of a vector wt(v) is the number of non-zero
components of that vector. The distance between two vectors d(v,w) is the
number components where they differ. The minimum distance d(C) of a code
is the minimum distance between any two different codewords, and it coincides
with the minimum weight among the nonzero codewords of the code. The value
j
d(C)�1

2

k

is called the error correction capability of the code.

The Syndrome Decoding Problem (SDP) is an important problem in
coding theory. It can be stated as follows:



SDP: Given a parity-check matrix H 2 F
(n�k)⇥n
q of a code, a vector s 2 F

n�k
q

and a non negative integer t find, if exists, a vector e 2 F
n
q such that s = He

and wt(e)  t.

If t is the error correction capability of the code, then the solution of the
SDP is unique. The SDP problem is known to be NP-complete [3] but there
exist families of codes admitting efficient algorithms to solve it in polynomial
time, for example the family of Goppa codes.

Definition 1. Let q be a prime power, m a positive integer, g(z) 2 Fqm [z] and
L = (↵1,↵2, . . . ,↵n) ⇢ Fqm be an ordered subset of Fqm of different elements
that are not roots of g(z). The Goppa code of parameters g and L is defined as

� (g, L) =

(

(c1, c2, . . . , cn) 2 F
n
q :

nX

i=1

ci
z � ↵i

⌘ 0 (mod g(z))

)

.

L is called the support of � (g, L).

The dimension of a Goppa code is lower bounded by n � m deg(g). Binary
Goppa codes defined using a squarefree polynomial are of interest due to the
following theorem.

Theorem 1. [15, Ch. 12, §3, Thm. 6] Let � (g, L) be a Goppa code defined over
F2. If g(z) is squarefree then d(� (g, L)) � 2 deg(g) + 1.

Irreducible polynomials defined over a finite field are squarefree [9, pag. 289,
Ex. 13], thus, from now on, we restrict our attention to binary Goppa codes
defined by a irreducible monic polynomial of dimension n�m deg(g). The error
correction capability of these codes is at least deg(g) and we can correct that
number of errors in polynomial time using Patterson’s algorithm [21].

A convolutional code C of rate k/n is an Fq[D]-submodule of Fn
q [D] of

rank k given by a polynomial encoder matrix G(D) 2 F
k⇥n
q [D],

C = {u>(D)G(D) : u(D) 2 F
k
q [D]}.

Not all convolutional codes admit a dual representation with a parity-check
matrix. If a code has a basic generator matrix G(D), i.e., a generator matrix
with polynomial right inverse, then it can can be defined in terms of a parity-

check matrix H(D) 2 F
(n�k)⇥n
q [D] [24]

C = {c(D) 2 F
n
q [D] : H(D)c(D) = 0n�k}.

For more details about convolutional codes we refer to [10].

2.2 The Niederreiter cryptosystem

The Niederreiter PKC [19] is a code-based cryptosystem based on the hardness of
the SDP. Its public key is a disguised version of the parity-check matrix of some



linear code having an efficient syndrome decoding algorithm while the private
key is this algorithm together with the elements used to disguise that partiy-
check matrix. The ciphertext is the syndrome of some low weight vector that
can be efficiently recovered with the syndrome decoding algorithm. The scheme
is described as follows:

Public parameters: a prime power q and three positive integers n, k and t.

Private and public keys: the private key is composed by three matrices:

– a non singular matrix S 2 F
(n�k)⇥(n�k)
q ;

– the parity-check matrix H 2 F
(n�k)⇥n
q of an [n, k] linear code over Fq admit-

ting an efficient syndrome decoding algorithm capable to correct t errors;
– and a permutation matrix P 2 F

n⇥n
q .

The public key is the matrix H 0 = SHP .

Encryption procedure: the message to be transmitted is a vector e 2 F
n
q of

wt(e)  t. The ciphertext is s = H 0e.

Decryption procedure: multiply s by S�1 to obtain S�1s = HPe. As P is a
permutation, wt(Pe)  t so the efficient decoding algorithm can be applied to
HPe to recover Pe. Finally, multiply by the inverse of P to recover e.

3 A convolutional version of the Niederreiter

cryptosystem

In this section we present a variation of the Niederreiter cryptosystem. We multi-
ply the parity-check matrix of a binary Goppa code by two polynomial matrices
to hide its structure. The resulting matrix is the parity-check matrix of some
convolutional code. The plaintext is a finite sequence of vectors of low weight
and the ciphertext is the syndrome of this sequence. We impose a restriction
on the weights of the sequence in order to guarantee that the message can be
correctly decrypted.

Public parameters: The message length ` and five positive integers n, k, t, s,
r, with s+ r < `.

Private key: It is composed by three matrices:

1) H 2 F
(n�k)⇥n

2 is the parity-check matrix of an [n, k] binary Goppa code able
to correct t errors.

2) S(D) 2 F
(n�k)⇥(n�k)
2 [D] is a polynomial matrix of the form

S(D) = S0 + S1D + S2D
2 + · · ·+ SsD

s

that is non singular over F2[D]/(D` � 1).



3) R(D) 2 F
n⇥n
2 [D] is a polynomial matrix of the form

R(D) = R0 +R1D +R2D
2 + · · ·+RrD

r

that is non singular over F2[D]/(D` � 1) and such that each column of
each coefficient matrix Ri, i 2 {0, 1, . . . , r}, has no more than one nonzero
element.

Public key: A polynomial matrix H 0(D) 2 F
(n�k)⇥n

2 [D] defined as

H 0(D) = S(D)HR(D) = H 0

0 +H 0

1D +H 0

2D
2 + · · ·+H 0

s+rD
s+r.

Encryption: The message e0, e1, . . . , e`�1 is represented as a polynomial vector

e(D) = e0 + e1D + · · ·+ e`�1D
`�1

2 F
n
2 [D]

satisfying the condition

wt([e[i]` e[i�1]` e[i�2]` · · · e[i�r]` ])  t, for all i 2 {0, 1, . . . , `� 1}, (1)

that is, the weight of any r consecutive vectors ei adds up to t. The ciphertext
is the vector

s(D) = H 0(D)e(D) (mod D`
� 1).

Decryption: To decrypt a ciphertext s(D), we first compute the inverse of S(D)
over F2[D]/(D` � 1), namely S�1(D), and the vector

ŝ(D) = S�1(D)s(D) (mod D`
� 1).

This vector is of the form ŝ0 + ŝ1D + · · · + ŝ`�1D
`�1. It happens that for each

coefficient ŝi there exists some vector êi 2 F
n
2 with wt(êi)  t such that ŝi =

H êi. Hence, we can recover each êi using an efficient decoding algorithm, e.g.
Patterson’s algorithm [21]. Let ê(D) = ê0 + ê1D + · · · + ê`�1D

`�1. We recover
the message e(D) by computing

e(D) = R�1(D)ê(D) (mod D`
� 1).

We can prove that this decryption procedure is correct.

Theorem 2. Given a ciphertext s(D) = H 0(D)e(D) (mod D` � 1), with e(D)
satisfying condition (1), the decryption procedure described above computes e(D)
correctly.

Proof. Let us define the polynomials

ŝ(D) = S�1(D)s(D) (mod D`
� 1);

ê(D) = R(D)e(D) (mod D`
� 1).



These are polynomials of degree `� 1 and so, we can write

ŝ(D) = ŝ0 + ŝ1D + · · ·+ ŝ`�1D
`�1

2 F
n�k
2 [D];

ê(D) = ê0 + ê1D + · · ·+ ê`�1D
`�1

2 F
n
2 [D],

and the coefficients of ê(D) are given by

êi = R0e[i]` +R1e[i�1]` +R2e[i�2]` + · · ·+Rre[i�r]` ,

for each i 2 {0, 1, . . . , `� 1}. Since each column of each Rj , j 2 {0, 1, . . . , r} has
at most one nonzero element, (1) implies wt(êi)  t. The first step is to compute
ŝ(D). We have

S�1(D)s(D) (mod D`
� 1) = HR(D)e(D) (mod D`

� 1),

so it holds that ŝ(D) = H ê(D). Then each coefficient of ŝ(D) is of the form
ŝi = H êi. Since each wt(êi)  t, the use of the syndrome decoding algorithm to
each ŝi in the second step of the decryption yields the vectors êi. Once ê(D) is
computed, then the message e(D) can be recovered by computing

R�1(D)ê(D) (mod D`
� 1) = R�1(D)R(D)e(D) (mod D`

� 1) = e(D).

since R(D) is invertible over F2[D]/(D` � 1).

4 Analysis of the possible attacks

In this section we study the security of the scheme against possible message
recovery and key recovery attacks.

4.1 Message recovery attacks

Equation s(D) = H 0(D)e(D) (mod D` � 1) can be written using matrices as

2
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.



This can be seen as an instance of the SDP. Assuming wt(ei) ⇡
t

(r+1) in average

(see (1)) we have

wt([e0 e1 · · · e`�1]) ⇡
`t

(r + 1)
,

For adequate values of ` this becomes a huge linear system which is unexpected
to be solved by any of the classical ISD algorithms. See for instance [7].

This naive approach does not take into account that the ciphertext is a
sequence. An attacker can consider intervals of the sequence rather than the
whole sequence, and try to recover individual blocks in an iterative attack instead
of attacking the whole sequence at once. Notice that the ciphertext is computed
modulo D` � 1, so without loss of generality, the attacker must find the interval
[s0, s1, . . . , s`0 ], `0 2 {0, 1, . . . , ` � 1}, such that the work factor of solving the
linear system obtained from the first (`0 + 1)(n � k) rows of the above linear
system viewed as an instance of the SDP is minimal when using one of the ISD
algorithms. Let H(`0) be matrix formed by the first (`0 + 1)(n � k) rows of H.
Notice that in this case

– The length of the code with parity-check matrix H(`0) is

N = min{(`0 + s+ r + 1)n, `n};

– The dimension of the code with parity-check matrix H(`0) is

N � (`0 + 1)(n� k);

– The part of [e0 e1 · · · e`�1] associated to [s0, s1, . . . , s`0 ] can be assumed to
have weight

⇡ min

⇢

(`0 + s+ r + 1)
t

(r + 1)
, `

t

(r + 1)

�

.

4.2 Key recovery attacks

The best known key recovery attack against the Niederreiter cryptosystem based
on binary Goppa codes is due to Loindreau and Sendrier [13], using the Sendrier’s
support-splitting algorithm (SSA) [26]. In this attack, the knowledge of g and
the elements of the support {↵1,↵2, . . . ,↵n}, but not their order, can be used
to recover (↵1,↵2, . . . ,↵n). If n = 2m, then {↵1,↵2, . . . ,↵n} = F2m , so the set
is known. However, for n < 2m, the attacker must guess {↵1,↵2, . . . ,↵n} among

the
�
2m

n

�
subsets of F2m of cardinality n. On the other hand, since g is not known,

an exhaustive search has to be performed to find g. Recall that g is chosen to
be monic and irreducible, and there are about ⇡

2mt

t
possible polynomials of

this class [15, Ch. 4, §8, Th. 15]. It is pointed out in [13] that this number can

be reduced to ⇡
2m(t−3)

mt
by exploiting certain group of automorphisms. Table 1

contains these values for certain parameters m and t.
The next theorem establishes a relation between the security of the original

Niederreiter scheme with the security of the proposed scheme.



m t
2
m(t−3)

mt

10 42 ≈ 2381.28

10 48 ≈ 2441.09

11 51 ≈ 2518.86

11 57 ≈ 2584.70

11 72 ≈ 2749.37

11 75 ≈ 2782.31

11 84 ≈ 2881.14

Table 1. Values of 2
m(t−3)

mt
for certain parameters m and t.

Theorem 3. Any attack aiming to recover the private key of the convolutional
Niederreiter cryptosystem with parameters n, k, s, r can be transformed to an
attack aiming to recover the private key of the original Niederreiter cryptosystem
with parameters n and k.

Proof. Assume an attacker knows the public key H 0 = SHP of some instance
of the original Niederreiter cryptosystem. Then the attacker can select S(D) 2

F
(n�k)⇥(n�k)
2 [D] of degree ` and non singular over F2[D]/(D` � 1) at random

and R(D) 2 F
n⇥n
2 [D] of degree r, non singular over F2[D]/(D` � 1) and such

that each column of each coefficient matrix Ri, i 2 {0, 1, . . . , r}, has at most one
element. Let S0(D) = S(D)S and R0(D) = PR(D). It is clear that

H 0(D) = S(D)H 0R(D) = S0(D)HR0(D)

is a valid public key for the convolutional Niederreiter cryptosystem. Hence, any
attack that can recover S0(D), H and R0(D) is an attack that can recover S, H
and P .

Under the assumption that attacks based on the SSA are actually the best
attacks against the original Niederreiter cryptosystem to recover the private
key, the above theorem states that attacks against the proposed convolutional
Niederreiter cryptosystem cannot be better than SSA attacks. Of course, this
does not prove that the convolutional Niederreiter scheme is secure but any
structural attack against the proposed scheme would have an important impact
in the security of the original Niederreiter PKC.

5 Proposed parameters

In Table 2 we propose a set of parameters for the new scheme reaching different
security levels. In all cases s = r = 2. Column Work Factor contains the expected
number of operation of the attack according to the attack described in Subsec-
tion 4.1. Notice that all the values in Table 1 related with the attacks based
on the SSA are higher than those obtained for the message recovery attacks.
This number has been estimated using the tool Cryptographic Estimators



[8]. NIST establishes five categories for public-key cryptosystems [20]: category
1 (resp., 3 and 5) requires that the best attack against a particular instance
of the cryptosystem needs at least 2128 bit operations (resp., 2192 and 2256).
Categories marked with an ⇤ have a slightly lower number of expected bit op-
erations. These values have been considered in purpose to compare them with
those proposed for Classic McEliece [4]. See Table 3. The reason of considering
them is that most of the ISD attacks require an important use of the memory
of the computer, and accessing to the memory has a non-negligible cost. Taking
this cost into account, the number of operations increases, reaching the stated
security category. See [7] for more details on the cost of these memory accesses.
We can observe that one of the main drawbacks of the cryptosystem is the large
ciphertexts we need to send to attain the same security level. For instance, to
obtain a WF of 2180 we need to send a message which is 6732

1248 ⇡ 5.4 times larger
than in Classic McEliece and the public key is 2793780

4193280 ⇡ 0.66 times smaller, that
is, the key is reduced in a 0.34 %.

Table 2. Work factors and key sizes (in bits) for the proposal in Section 3.

Convolutional Niederreiter cryptosystem with binary Goppa codes

m n t ` Work Factor Security Level Key size Ciphertext

10 726 42 11 2129 Category 1 1524600 4620

10 831 48 10 2140 Category 1 1994400 4800

11 996 51 12 2182 Category 3∗ 2793780 6732

11 1092 57 12 2195 Category 3 3423420 7524

11 1396 72 13 2254 Category 5∗ 5528160 10296

11 1455 75 13 2266 Category 5 6001875 10725

11 1611 84 12 2278 Category 5 7442820 11088

Table 3. Work factors and key sizes (in bits) for the Classic McEliece scheme [4].

Classic McEliece [4,7]

m n t Work factor Security level Key size Ciphertext length

12 3488 64 2141 Category 1 2088960 768

13 4608 96 2180 Category 3∗ 4193280 1248

13 6688 128 2246 Category 5∗ 8359936 1664

13 6960 119 2246 Category 5∗ 8373911 1547

13 8192 128 2276 Category 5 10862592 1664



6 Conclusions and future work

The new proposed scheme reduces the size of the keys of Classic McEliece scheme
presented to the NIST standardization project, especially when compared with
parameters of category 3 and 5. We expect that key size can be further reduced
if we are able to adapt the cryptosystem to admit public keys in systematic form
[In�k | A(D)] with the condition that the entries in A(D) are polynomials of
certain small degree.
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Abstract. A flag code in network coding consists of a set of sequences of
nested subspaces of Fn

q (flags), where Fq is the finite field with q elements.
In this paper, we deal with cyclic orbit flag codes, that is, orbits of a Singer
cycle of the general linear group acting on flags of Fn

q . Inspired by the results
in [15] and [10] about cyclic orbit codes, we completely characterize those
cyclic orbit flag codes attaining both the best possible size and distance,
that is, optimal full-length cyclic orbit flag codes. As a consequence, we can
show that, for this family of codes, the distance distribution depends only
on q, n and the dimensions of the subspaces in the generating flag.

Keywords: Cyclic orbit codes · Sidon spaces · Cyclic orbit flag codes ·

Distance distribution of a code.

1 Introduction

In [17], Trautmann et al. introduced the concept of orbit codes as those that arise
from the action of subgroups of the general linear group GL(n, q) on subspaces of
F
n
q . In case the acting group is cyclic, we speak about cyclic orbit codes (see [8],

[16]). This family of codes has been widely studied in the last years due to their
interesting structure and properties.

On the other hand, in [9], Gluesing-Luerssen et al. consider subspace codes as
collections of Fq-vector subspaces of Fqn by means of the natural isomorphism with
F
n
q , and study orbit codes given by the natural action of the multiplicative group F

⇤

qn

on Fq-vector spaces. It is well known that, if U is a generating subspace of dimension
k, and the cyclic orbit code Orb(U) attains the maximum possible distance, i.e. 2k,
then k must be a divisor of n and Orb(U) is a k-spread code of size (qn�1)/(qk�1).
This is the smallest cardinality for cyclic orbit codes generated by a k-dimensional
subspace. Clearly, the largest size of such codes is (qn�1)/(q�1), and codes attaining
it will be called full-length orbit codes. For dimensions 1 < k 6 bn

2 c, full-length orbit
codes with the best possible distance value, that is 2k � 2, will be called optimal
full-length orbit codes. In [9] and [16], it was conjectured the existence of optimal
full-length orbit codes for any dimension k with 2k 6 n.

Different constructions of optimal full-length orbit codes were proposed in [6],
[7] and [14]. In 2018, Roth et al. (see [15]) gave a characterization result and showed
that all of these codes are generated by subspaces known as Sidon spaces. In [10], the
distance distribution of optimal full-length orbit codes was completely described.

Flag codes can be seen as a generalization of subspace codes whose codewords
are sequences of nested subspaces (flags) of prescribed dimensions. In the network
coding framework (see [11]), the first work handling flag codes is [12]. In that paper,
the authors propose a natural extension of the multiplicative action of GL(n, q),
previously used in [16, 17] on subspaces, to flags and provide several constructions

? Supported by Ministerio de Ciencia e Innovación (PID2022-142159OB-I00) and Consel-
leria de Innovación, Universidades, Ciencia y Sociedad Digital (CIAICO/2022/167).



of orbit flag codes. From this seminal work, several related papers have dealt with
different characterizations of flag codes of the maximum distance and also with
different constructions, orbital or not, of them (see [3–5, 13]).

Following the approach in [9], it is possible to consider flags on Fqn given by
nested Fq-subspaces of the field Fqn and to study cyclic orbit flag codes, that is,
orbits of F⇤

qn acting on the flag variety (see [2]). The main point in these papers is
to address their study by taking into account the best friend of a flag, that is, the
largest subfield of Fqn over which every subspace in a flag is a vector space and the
way it is obtained. As for the case of subspaces, cyclic orbit flag codes attaining both
the best cardinality, that is again (qn � 1)/(q � 1), and the best possible distance
are called optimal full-length cyclic orbit flag codes.

In this paper we completely characterize optimal full-length cyclic orbit flag
codes by describing the set of suitable generating flags. Moreover, once we fix a
flag F as a seed of the orbit, we can provide the distance distribution of Orb(F)
and demonstrate that it depends just on n, q and the dimensions of the subspaces
appearing in F .

2 Preliminaries

Let q be a prime power and Fq the finite field with q elements. For any natural
number n > 1, the field Fqn is an n-dimensional vector space over Fq. The set
of k-dimensional subspaces of Fqn , that is, the Grassmannian, will be denoted by
Gq(k, n). The Grassmannian can be endowed with a metric called the subspace
distance: for any pair U ,V 2 Gq(k, n), we set

dS(U ,V) = 2(k � dim(U \ V)). (1)

A constant dimension code C of dimension k and length n is a nonempty subset of
Gq(k, n). In case |C| > 2, its minimum subspace distance is given by

dS(C) = min{dS(U ,V) | U ,V 2 C, U 6= V}.

Otherwise, we put dS(C) = 0. For further information on constant dimension codes,
consult [18] and the references inside.

On the other hand, the multiplicative group F
⇤

qn acts on Gq(k, n): for every k-
dimensional subspace U of Fqn and every nonzero element ↵ 2 Fqn , we have that
U↵ = {u↵ | u 2 U} 2 Gq(k, n). This action allows to build constant dimension
codes, called cyclic subspace codes, as its orbits. Given an Fq-subspace U of Fqn , the
set

Orb(U) = {U↵ | ↵ 2 F
⇤

qn}

is called the cyclic orbit code generated by U and the stabilizer (subgroup) of U is

Stab(U) = {↵ 2 F
⇤

qn | F↵ = F}.

The code Orb(U) contains exactly qn�1
qm�1 elements if, and only if, F

⇤

qm is the
stabilizer of U , for some divisor m of n. In particular, the largest possible orbit size
is qn�1

q�1 . Cyclic orbit codes with this cardinality are called full-length cyclic orbit
codes.

Concerning cyclic orbit codes with maximum distance, if 1 6 k 6
n
2 and U

is a k-dimensional Fq-subspace of Fqn , then Orb(U) attains the maximum possible
minimum distance (the value 2k) if, and only if, k divides n and Orb(U) = Orb(Fqk).

In this situation, the orbit size is qn�1
qk�1

, which is the smallest one for any cyclic orbit
code generated by a k-dimensional subspace. In view of this, also in [9, 16], the



authors conjectured whether it was possible to build full-length cyclic orbit codes
(of dimension k > 1) with distance 2k � 2, which is the second best value for the
minimum distance for dimension k, but the best one after prescribing the orbit size
qn�1
q�1 . Such codes are denominated optimal full-length cyclic orbit codes.

A positive answer to the conjecture was given firstly in [6], [7] and [14], where the
authors proposed different constructions of optimal full-length cyclic orbit codes.
However, Roth et al. went further in [15] and characterized the class of suitable
generating subspaces: they must be Sidon spaces.

Definition 1. A subspace U of Fqn is said to be a Sidon space if for every nonzero
elements a, b, c, d 2 U such that ab = cd, then {aFq, bFq} = {cFq, dFq}, where
eFq = {e� |� 2 Fq}.

They show that finding optimal full-length cyclic orbit codes is equivalent to
constructing Sidon spaces of the desired dimension.

Theorem 1. ([15, Lemma 34]) Let U be a k-dimensional Fq-subspace of Fqn . The
code Orb(U) is an optimal full-length cyclic orbit code if, and only if, U is a Sidon
space.

In [10] it is completely determined the distance distribution of codes generated
by Sidon spaces.

2.1 Flag codes

Now, we recall the basic definitions on flag codes that already appear in [4, 5, 12],
specially those ones concerning the particular class of cyclic orbit flag codes intro-
duced in [2].

Definition 2. A flag F = (F1, . . . ,Fr) on the extension field Fqn is a sequence of
nested Fq-vector subspaces

{0} ( F1 ( · · · ( Fr ( Fqn .

The subspace Fi is called the i-th subspace of F and the type of F is the vector
(dim(F1), . . . , dim(Fr)). We say that a flag F 0 is a subflag of F if each subspace of
F 0 is a also subspace of F .

The flag variety of type (t1, . . . , tr) on Fqn , that is, the set of flags of this
type, will be denoted by Fq((t1, . . . , tr), n). In this variety, we can define a metric
that extends the subspace distance in (1). Given two flags F = (F1, . . . ,Fr) and
F 0 = (F 0

1, . . . ,F
0

r) in Fq((t1, . . . , tr), n), their flag distance is

df (F ,F 0) =

r
X

i=1

dS(Fi,F
0

i).

Definition 3. A flag code of type (t1, . . . , tr) on Fqn is a nonempty subset C ✓
Fq((t1, . . . , tr), n). Its minimum distance is given by

df (C) = min{df (F ,F 0) | F ,F 0 2 C, F 6= F 0}.

whenever |C| > 2. In case |C| = 1, we put df (C) = 0.
For type t = (t1, . . . , tr), the previous distance is an even integer satisfying

0 6 df (C) 6 D(t,n), where

D(t,n) = 2

0

@

X

ti6
n

2

ti +
X

ti>
n

2

(n� ti)

1

A (2)

and flag codes attaining this upper bound are called optimum distance flag codes.



There are constant dimension codes naturally associated to a flag code C.

Definition 4. Given a flag code C of type (t1, . . . , tr), we define the i-projected
code of C as the set

Ci = {Fi | (F1, . . . ,Fi, . . . ,Fr) 2 C} ✓ Gq(ti, n).

The size of a flag code is clearly related with the ones of its projected codes as
follows: |Ci| 6 |C| for every i = 1, . . . , r. In case |C1| = · · · = |Cr| = |C|, we say that
C is disjoint.

3 Optimal full-length cyclic orbit flag codes

Let us remember the concept introduced in [2] of cyclic orbit flag code constructed
as the orbit of the multiplicative action of (cyclic) subgroups of F⇤

qn on flags on Fqn .
The cyclic group F

⇤

qn acts on flags on Fqn in a natural way: if F = (F1, . . . ,Fr)
is a flag of type (t1, . . . , tr) on Fqn and ↵ 2 F

⇤

qn , the flag F↵ is

F↵ = (F1↵, . . . ,Fr↵). (3)

The orbit
Orb(F) = {F↵ | ↵ 2 F

⇤

qn}. (4)

is called the cyclic orbit flag code generated by F and it has projected codes
(Orb(F))i = Orb(Fi), for all 1 6 i 6 r. The stabilizer of F is the subgroup

Stab(F) = {↵ 2 F
⇤

qn | F↵ = F}. (5)

Clearly, the cardinality of Orb(F) is

|Orb(F)| =
qn � 1

|Stab(F)|
=

qn � 1

qm � 1
(6)

for some divisor m of n. The minimum distance can be calculated as

df (Orb(F)) = min{df (F ,F↵) | ↵ 2 F
⇤

qn \ Stab(F)}. (7)

Following the terminology used in [9], let us start by giving a special name to
the biggest possible orbits under this action.

Definition 5. Let F be a flag on Fqn . We say that Orb(F) is a full-length (cyclic
orbit) flag code if its size is the maximum possible one, that is, qn�1

q�1 .

Concerning full length cyclic orbit codes that are also optimum distance flag
codes, in [2] it was proved the following:

Theorem 2. Given a flag F of type t on Fqn , a cyclic orbit flag code Orb(F)

containing qn�1
q�1 elements attains the maximum possible distance for their type,

D(t,n), if and only if, the dimensions in the type vector are 1 and/or n� 1.

As a consequence, the possible type vectors for such codes are (1), (n � 1) and
(1, n � 1). Clearly, if Orb(F) is full-length with type t /2 {(1), (n � 1), (1, n � 1)}
then we have

df (Orb(F)) 6 D(t,n) � 2. (8)

Hence, for flags F of type t /2 {(1), (n � 1), (1, n � 1)}, the best possible value
for the distance df (Orb(F)) is precisely D(t,n) � 2.



Definition 6. Let t 6= (1), (n�1), (1, n�1) be a type vector. A full-length flag code
Orb(F) is said to be optimal if

df (Orb(F)) = D(t,n) � 2.

We show first that for a type t 6= (1), (n� 1), (1, n� 1), a cyclic orbit flag code
Orb(F) that attains the best possible distance must also have the best possible size.
Moreover, we can show that cyclic orbit flag codes with df (Orb(F)) = D(t,n) � 2
must be disjoint.

Theorem 3. Let F be a flag code of type t on Fqn . If df (Orb(F)) = D(t,n) � 2,
then Orb(F) is full-length and disjoint.

Let us now state a result that permits to us completely determine what is the
admissible set of type vectors for optimal full length cyclic orbit flag codes. Consider
F a flag of type t on Fqn . Whenever they appear in t, we will denote the special
dimensions

tL = max{ti | 2ti 6 n} and tR = min{ti | 2ti > n}. (9)

Observe that, if n
2 is a dimension in the type vector, then tL = tR = n

2 . Moreover,
if every dimension is upper (resp. lower) bounded by n

2 , then L = r and R is not
defined (resp R = 1 and L is not defined). In any other case, these dimensions tL and
tR exist, they are different and, in fact, they are consecutive. With this notation,
the next result holds.

Theorem 4. Let F be a flag of type t = (t1, . . . , tr) on Fqn . If Orb(F) is an optimal
full length cyclic orbit flag code, then the type vector can only contain dimensions
1, tL, tR and n�1, with tL 6

n
2 6 tR, defined as in (9). Moreover, in the type vector

it must appear at least one dimension different from 1 and n� 1.

Taking into account the previous result, we restrict our study to type vectors
t = (1, k1, k2, n� 1) with k1 and k2 satisfying either

k1 <
n

2
< k2 or k1 =

n

2
= k2 (10)

and we determine the possible generating flags of an optimal full-length cyclic orbit
flag code.

Theorem 5. Let F = (`,F1,F2, h) be a flag of type t = (1, k1, k2, n � 1) on Fqn .
Then Orb(F) is an optimal full-length cyclic orbit flag code if, and only if, for every
↵ 2 Fqn \ Fq, it holds

dim(F1 \ F1↵) + dim(F?

2 \ (F2↵)
?) 6 1 (11)

and the equality holds for some choice of ↵.

Corollary 1. Let F = (`,F1,F2, h) be a flag of type t = (1, k1, k2, n � 1) on Fqn .
Assume that Orb(F) is an optimal full-length cyclic orbit flag code, then both sub-
spaces F1 and F?

2 are Sidon spaces of Fqn .

Remark 1. It is important to point out that the converse of Corollary 1 is not neces-
sarily true due to the fact that condition (11) must be satisfied. This is consequence
of the nested structure of flags that usually produces a strong interdependence be-
tween the flag code parameters as pointed out in [1].



4 Distance distribution of optimal full-length cyclic orbit

flag codes

Let F = (l,F1,F2, h) be a flag of type (1, k1, k2, n � 1) on Fqn and assume that it
generates an optimal full-length cyclic orbit flag. In particular, both codes Orb(F1)
and Orb(F?

2 ) are generated by Sidon spaces and their distance (or intersection)
distributions are known (see [10]). Let us write

�
1
j = |{F1↵ | dS(F1,F1↵) = 2(k1 � j), ↵ 2 Fqn \ Fq}|,

�
2
j = |{F2↵ | dS(F

?

2 , (F2↵
i)?) = 2(n� k2 � j), ↵ 2 Fqn \ Fq}|,

for j = 0, 1. These values have been computed in [10, Th. 3.7] and they are exactly:

�
1
1 =

qk1 � 1

q � 1

qk1 � q

q � 1
, �

1
0 =

qn � 1

q � 1
� �

1
1 � 1,

�
2
1 =

qn�k2 � 1

q � 1

qn�k2 � q

q � 1
, �2

0 =
qn � 1

q � 1
� �

2
1 � 1.

(12)

One can also wonder how many flags in a cyclic orbit flag code are at certain
distance from the generating flag. This leads to the next definition.

Definition 7. Let Orb(F) be a cyclic orbit flag code on Fqn with minimum distance
df (C). If d̄ = D(t,n) � df (C), then the (flag) distance distribution of Orb(F) is the
sequence

(�f
0 ,�

f
1 , . . . ,� d̄

2

),

where

�
f
j = |{F↵ | df (F ,F 0) = D(t,n) � 2j}|,

for 0 6 j 6 d̄
2 .

In the particular case of considering flag codes with minimum distance D(t,n)�2,
then their distance distribution is a sequence of length two and it counts the number
of flags �

f
0 giving the maximum possible distance D(t,n) and �

f
1 , giving the value

D(t,n) � 2.

Theorem 6. Let Orb(F) be an optimal full-length cyclic orbit flag code of type
t = (1, k1, k2, n� 1) on Fqn . Hence, its distance distribution is

(�f
0 ,�

f
1 ),

where

�
f
1 = �

1
1 + �

2
1 = qk1�1

q�1
qk1�q
q�1 + qn−k2�1

q�1
qn−k2�q

q�1

�
f
0 = �

1
0 � �

2
1 = �

2
0 � �

1
1.
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Abstract. Starting from links between Coding Theory and Secret Shar-

ing Schemes, we develop an extensible and decentralized version of Shamir

Secret Sharing, that allows the addition of new users after the initial

share distribution.

On top of it we design a totally decentralized (t, n)-threshold Schnorr

signature scheme that needs only t users online during the key generation

phase, while the others join later. Using a classical game-based argument,

we prove that if there is an adversary capable of forging the scheme with

non-negligible probability, then we can build a forger for the centralized

Schnorr scheme with non-negligible probability.
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mum Distance Separable Code, Diffie-Hellman Assumption.

1 Introduction

Decentralized systems are slowly becoming a desirable alternative to central-
ized ones, due to the advantages of distributing the management of data, such as
avoiding single-points-of-failures or the secure storage of crypto-assets. For them
to become a viable alternative, it is necessary to use secure decentralized cryp-
tographic schemes. In particular, digital signature schemes assume a central role
in this setting, as hinted by the amount of recent works on multi-user schemes
and threshold variants of signature protocols (see e.g. [1, 2, 5, 7]). In this work
we present a completely decentralized Extensible and Verifiable Secret Sharing
Scheme based on Shamir’s one and we enhance it with the possibility of having
offline participants, firstly introduced in [2]. In particular, our protocol allows
for the addition of new parties after the initial secret sharing, a property that
can be useful to enhance the resilience of the secret reconstruction, allowing for
more protection against share loss.

Our Secret Sharing Scheme is a suitable algorithm for performing the Key
Generation in many Discrete Logarithm based threshold signature, such as ECDSA
[2], however we decided to focus our attention on the Schnorr’s one, due to the in-
creasing interest in this field. Our approach is similar to [3], [9] and [10]. However,
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these three signatures work only in the (n, n) case, while ours works for an arbi-
trary threshold. More recently a general (t, n) Schnorr Signature was proposed,
FROST [8], however their assumptions are not classical, while we only rely on
the Decisional Diffie Hellman Assumption. Lastly, concurrently with this work,
Sparkle [6] was proposed, that require only standard assumptions in the static
case and it is very similar to our work. The two works were made independently,
we discuss the small difference between them in Section 6.

2 Preliminaries

2.1 From MDS Codes to Secret Sharing

Let Fq be the finite field with q elements and let ↵ be an agreed-upon prim-
itive element of Fq. Let {p(i)}i=1,...,⌧ ✓ Fq[x] be a set of ⌧ polynomials of degree

t � 1, so p(i) =
Pt�1

k=0 p
(i)
k xk, where p

(i)
k 2 Fq is the k-th coefficient of the poly-

nomial p(i).

Let p =
P⌧

i=1 p
(i), with coefficients pk =

P⌧
i=1 p

(i)
k for k = 0, . . . , t � 1, and

define �j = p(↵j). Note that, if we define �i,j = p(i)(↵j) for i 2 {1, . . . , ⌧} and
j 2 {1, . . . , q � 1}, then we have that �j =

P⌧
i=1 �i,j .

Definition 1. Let J = [j1, . . . , jn] be a list of 1  n  q � 1 distinct integers in
{1, . . . , q � 1}. We define GJ as the (t⇥ n) matrix:

GJ =
⇥

↵j·k
⇤

k2{0,...,t�1}, j2J

If n = 1 then J = [j] and we sometimes simply use Gj instead of G[j].

We remark that the matrix GJ is the generator matrix of a punctured [n, t]q
Reed-Solomon code. A more general approach would be to use any t⇥n generator
matrix of an MDS code, and, for instance, by using Extended Generalized Reed-
Solomon codes we would obtain a broader set of acceptable parameters.

Since p has degree at most t�1, given any list J ✓ {1, . . . , q � 1} of cardinality
at least t, with the list of evaluations [�j ]j2J it is possible to interpolate the
polynomial p. That is, the coefficients pk can be reconstructed and therefore the
evaluation p(�) in any element � 2 Fq can be computed. More formally, we have
these following propositions, whose proofs are trivial:

Proposition 1. Let J = [j1, . . . , jt] be a list of t distinct integers in {1, . . . , n},
and let GJ be the square matrix constructed as in Definition 1. Then:

(p0, . . . , pt�1) = (�j1 , . . . ,�jt) ·G
�1
J .

Proposition 2. Let h be any integer in {1, . . . , n}, let J = [j1, . . . , jt] be a list
of t distinct integers in {1, . . . , n}, and let e` be the `-th element of the standard
basis of Ft

q. Then:

�h =
t
X

`=1

f(�j` , h, J, `),
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where for any ` 2 {1, . . . , t} we define the function f as:

f(x, h, J, `) = x · e`G
�1
J Gh. (1)

An interesting consequence of Proposition 2 is that t distinct shares are
sufficient to compute any other share. However, observe that it is possible to
obtain �j` from f(�j` , h, J, `), since both GJ and Gh can be easily computed even
without knowing anything about the polynomials. This means that Proposition 2
should not be used directly to distribute new shares of a secret, in order to
preserve the privacy of the old shares. A simple workaround is to split these
secret values. Let bh,J,`,k be chosen at random in Fq for k 2 {1, . . . , t} \ {`}, and

set bh,J,`,` = f(�j` , h, J, `)�
Pt

k=1,k 6=` bh,J,`,k. If we define bh,J,k =
Pt

`=1 bh,J,`,k,
then we have that:

t
X

k=1

bh,J,k =
t
X

k=1

 

t
X

`=1

bh,J,`,k

!

=
t
X

`=1

 

t
X

k=1

bh,J,`,k

!

=
t
X

`=1

f(�j` , h, J, `) = �h

(2)
Note that the random values are completely canceled out only when summing
all the bh,J,k, this means that the values �j` remain hidden, so exploiting this
idea is a safe way to generate new shares.

2.2 Homomorphic Commitment Schemes

A commitment scheme [4] is composed by two algorithms:

– Com(m, r): which given the message m to commit and some random value
r (sometimes we will omit this randomness in our notation) outputs the
commitment KGC and the decommitment KGD.

– Ver(KGC, KGD): which given a commitment and its decommitment outputs
the committed message m if the verification succeeds, ? otherwise.

Besides the standard notion of binding and hiding, we need the following
homomorphic property4: for all m0,m1, z0, z1, � 2 Fq

HCom(m0; z0) · HCom(m1; z1) = HCom(m0 +m1; z0 + z1),

HCom(m0; z0)
� = HCom(� ·m0; � · z0).

An example of suitable commitment for our work is Pedersen commitment [11],
based on the difficulty of the discrete logarithm.

3 Extensible Decentralized Verifiable Secret Generation

and Sharing Protocol

In this section we will give a brief description of our decentralized variant of
the Verifiable Secret Sharing Scheme (VSSS) by Pedersen [11], which includes
the feature of adding new users.

4 We use the notation HCom when using an homomorphic commitment, while Com

denotes any binding and hiding commitment scheme.
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Let P1, . . . , Pn be n parties participating in the Secret Sharing Scheme, and
let t  n be the chosen threshold. We assume that q is a prime big enough that,
given n polynomials of degree d sampled uniformly at random from Fq[x], the
probability of their sum to be of degree d0 < d is negligible. Finally, let HCom be
an homomorphic commitment scheme as per Section 2.2.

3.1 Secret Generation

The distributed secret generation algorithm is carried out by the first ⌧  n

parties {P1, . . . , P⌧}, and proceeds as follows:

1. Each Pi for i 2 {1, . . . , ⌧} generates a secret polynomial p(i) 2 Fq[x] of degree

t� 1, by sampling the coefficients p
(i)
k uniformly at random in Fq.

2. The constant term p0 of the summation polynomial p (see Section 2.1) is
implicitly defined as the secret to be shared. Note that no single party Pi for
any i knows this secret.

3. Each Pi samples another random polynomial z(i) 2 Fq[x] of degree t � 1,
and uses its coefficients to compute and publish the commitments to the

coefficients of their secret polynomial p(i): C0,i,k = HCom

⇣

p
(i)
k ; z

(i)
k

⌘

.

4. After having received every single commitment C0,j,k, for j 2 {1, . . . , ⌧} and
k 2 {0, . . . , t� 1}, each Pi sends to each Pj the evaluations �i,j = p(i)(↵j)
and �i,j = z(i)(↵j).

5. Each Pi for i 2 {1, . . . , ⌧} sends the pair (�i,j , �i,j) also to every party Pj

for j 2 {⌧ + 1, . . . , n}.

6. By exploiting the homomorphic properties of the commitment scheme, each
Pi for i 2 {1, . . . , n} checks the values received against the published com-
mitments:

HCom(�j,i; �j,i)
?
=

t�1
Y

k=0

(C0,j,k)
(↵i)k , (3)

for j 2 {1, . . . , ⌧}.

7. If all of these checks pass, each Pi sets its share of the newly generated secret
as �i =

P⌧
j=1 �j,i, and saves the checking value �i =

P⌧
j=1 �j,i.

Observe that the ⌧ parties involved in the secret generation algorithm are
always capable of determining the secret p0, even if ⌧ < t.

3.2 Secret Reconstruction

If J ✓ {1, . . . , q} is a list of t distinct indexes, then with the vector of shares
(�j)j2J it is possible to reconstruct the secret p0 as follows:

p0 = (�j)j2J ·G�1
J · eT1 ,
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which is a direct consequence of Proposition 1. Let ` 2 {1, . . . , t} be the position
of j inside the list J , note that the Shamir share �j can be converted into an
additive share !j :

!j = �je` ·G
�1
J · eT1 ; p0 =

X

j2J

!j . (4)

3.3 Addition of New Parties

Let J = [j1, . . . , jt] ✓ {1, . . . , n} be a list of t distinct indexes. The parties
{Pi}i2J can collaborate to add the new party Pn+1 (i.e. generate its share �n+1)
with the following algorithm:

1. Each Pj` for ` 2 {1, . . . , t} picks randomly bn+1,J,`,k, zn+1,J,`,k 2 Fq for all

k 2 {1, . . . , t} \ {`}, sets bn+1,J,`,` = f(�j` , n+ 1, J, `)�
Pt

k=1,k 6=` bn+1,J,`,k,

zn+1,J,`,` = f(�j` , n+ 1, J, `)�
Pt

k=1,k 6=` zn+1,J,`,k, where f(x, n+ 1, J, `) is
defined as in Equation (1).

2. Each Pj` publishes the commitments Cn+1,J,`,k = HCom (bn+1,J,`,k; zn+1,J,`,k)
for k 2 {1, . . . , t}.

3. After having received every single commitment Cn+1,J,`,k, for `, k 2 {1, . . . , t},
each Pj` checks the coherence of these commitments with the ones published
during the generation phase:

t
Y

k=1

Cn+1,J,`,k
?
=

0

B

@

t�1
Y

k=0

0

@

⌧
Y

j=1

C0,j,k

1

A

(↵j` )k
1

C

A

e`G
−1

J
Gn+1

, (5)

for ` 2 {1, . . . , t} (GJ and Gn+1 are defined as in Definition 1), and:

t
Y

k=1

t
Y

`=1

Cn+1,J,`,k
?
=

t�1
Y

k=0

0

@

⌧
Y

j=1

C0,j,k

1

A

(↵n+1)k

. (6)

If everything checks out, Pj` sends to each Pjk the values bn+1,J,`,k and
zn+1,J,`,k, for `, k 2 {1, . . . , t}.

4. Each Pj` checks the consistency of the data received and the committed
values:

HCom (bn+1,J,k,`; zn+1,J,k,`)
?
= Cn+1,J,k,`,

for k 2 {1, . . . , t}, sets bn+1,J,` =
Pt

k=1 bn+1,J,k,`, zn+1,J,` =
Pt

k=1 zn+1,J,k,`,
and sends them to Pn+1.

5. Pn+1 retrieves its share as: �n+1 =
Pt

`=1 bn+1,J,`, and the checking value

as: �n+1 =
Pt

`=1 zn+1,J,`. Then it checks their consistency with the commit-
ments by verifying:

HCom (bn+1,J,`; zn+1,J,`)
?
=

t
Y

k=1

Cn+1,J,k,`, (7)

for ` 2 {1, . . . , t}, and Equations (5) and (6).
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At the end of the procedure, Pn+1 has its own secret values just like the other
parties, so it can participate in the secret reconstruction or in the users addition.

3.4 Security of the Secret Sharing

In this section we prove correctness and security of the Secret Sharing Scheme
described in Section 3.1, reducing it to the correctness and security of a central-
ized version, which are a direct consequence of the binding and hiding properties
of the commitment scheme. For the correctness we refer to Definition 4.1 of [11]
which includes the verifiability, for the security we refer to Theorem 4.4 of [11].

Definition 2 (Centralized Secret Sharing). The centralized version of the scheme
described in Section 3.1 between a dealer D and players P1, . . . , Pn with threshold
t of a secret s 2 Fq proceeds as follows:

1. D chooses two random polynomials p, z 2 Fq[x] of degree t � 1 such that
p0 = s;

2. D computes and publishes Ck = HCom(pk, zk) for k = 0, . . . , t� 1;
3. D sends �j = p(↵j) and �j = z(↵j) to Pj;
4. each Pj checks that their share is correct by verifying:

HCom(�j , �j)
?
=

t�1
Y

k=0

C
(↵j)k

k (8)

The secret s can be reconstructed as usual by interpolating {�j}j2J where J is a
set of at least t indexes.

To prove the security of the proposed secret sharing scheme we need two
preliminary Lemmas:

Lemma 1 (Correctness). If HCom is binding then the Secret Sharing Scheme
of Definition 2 is correct. If HCom is perfectly binding then the Secret Sharing
Scheme of Definition 2 is correct even if D has unbounded computational power.

Lemma 2 (Security). If HCom is hiding then the Secret Sharing Scheme of Def-
inition 2 is secure. If HCom is perfectly hiding then the Secret Sharing Scheme
of Definition 2 is secure even if the adversary has unbounded computational
power.

From Lemma 2 and Lemma 2 we have the first main result about the secret
sharing scheme proposed:

Theorem 1. If HCom is hiding, then the Secret Sharing Scheme described in
Section 3.1 is secure.

Proof. For the sake of simplicity we suppose that ⌧ = t but the same proof can
be adapted for an arbitrary ⌧ .

Since HCom is hiding, then the Secret Sharing Scheme of Definition 2 is secure.
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Let us suppose that the adversary controls P2, ..., Pt. We show that after the
Secret Generation (Section 3.1) it has no information about the secret p0.

First of all, notice that p
(1)
0 is uniformly distributed, thus p0 is uniformly

distributed as well.
Then notice also that steps 1 to 6 are t independent executions of the Ver-

ifiable Secret Sharing scheme described in Definition 2 with n participants and
threshold t, each having as dealer a different Pi, i = 1, ..., t, thus the adversary

does not gain any information about p
(1)
0 , the secret of the honest player. More-

over the last step does not involve any new message exchange, thus does not
reveal anything. Hence, the adversary has no information about p0.

Now we need to prove the security of the Addition of New Parties. Informally,
we need to show that an adversary controlling at most t� 1 participants is not
able to learn anything about the secret of the other parties or the secret itself.

Formally, we have the following definition:

Definition 3. Let S ✓ {1, ..., t, n + 1} be a set such that |S| = t � 1, and let
viewS be the set of all the messages that parties in S see during the Addition of
New Parties algorithm. We say that the Addition of New Parties is secure if and
only if:

P(Pi has secret !i|viewS) = P(Pi has secret !i),

for i 62 S. Moreover:

P(The shared secret is p0|viewS) = P(The shared secret is p0).

Theorem 2. If HCom is hiding, then the Addition of New Parties described in
Section 3.3 is secure.

Sketch. Initially we suppose that the adversary does not control Pn+1, but only
t� 1 out of the t parties which perform the protocol to add Pn+1. WLOG we
can suppose that these parties are P1, . . . , Pt and that the adversary controls
P2, . . . , Pt.

Since HCom is hiding, then the Secret Sharing Scheme of Definition 2 is secure.
We can notice that Step 1 is a (t, t) additive secret sharing of f(�1, n+1, J, 1),

with dealer P1, verified with a homomorphic commitment. This is secure and
does not leak any information about �1 or �n+1.

The following steps do not require any additional computation or communi-
cation involving the secret bn+1,J,1,1, so the security is trivial.

In the same way we can prove the security when the adversary controls the
added user Pn+1 and t� 2 among P1, . . . , Pt.

The checks in Equations (5) to (7) also allow to prove the following:

Theorem 3. If HCom is binding, then the Addition of New Parties described in
Section 3.3 is robust, i.e. an adversary controlling at most t � 1 parties is not
able to corrupt the protocol without being noticed.
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4 Threshold Schnorr Signature

In this section we describe a possible use case of our extensible Secret Sharing
Scheme: a (t, n)-threshold variant of Schnorr’s digital signature algorithm with
offline participants. For our construction we need a group G of prime order q

with generator g where the DLOG problem is assumed to be hard. Moreover the
hardness of DLOG implies that the size of q is exponential in the security pa-
rameter, thus any practical application necessarily has a number of users n ⌧ q.
Finally, we require that at least ⌧ � t users are online for the setup, in the
following we suppose there are exactly ⌧ = t online parties in the key generation
phase, namely P1, . . . , Pt.

For this signature protocol we exploit the Secret Sharing Scheme of Section 3,
but note that we have to add some steps to the Key Generation algorithm
because we have to publish the public key and check its consistency with the
private key shares.

The protocol is divided into four algorithms, with a preliminary Setup Phase
where all the common parameters are set:

1. Key Generation (Section 4.1): is performed by P1, . . . , Pt to create the
public key for the signature scheme and the private shares for themselves.

2. Signature Algorithm (Section 4.2): performed whenever any group of t

parties wants to produce a signature.
3. Participant Addition(Section 4.3) performed by any group of at least t

parties to create new shares for a new player.
4. Verification(Section 4.4) performed by the receiver.

From now on “Pi does something” means that all the parties involved in that
phase perform the specified action.

4.1 Key generation

In this phase, the starting parties P1, . . . , Pt produce a common public key
A and each obtains a share of the corresponding private key.

1. Secret key generation and commitment:

(a) Pi randomly picks ai 2 Zq and sets Ai = gai ;
(b) Pi randomly picks a polynomial p(i) of degree t�1 such that p(i)(0) = ai.
(c) Pi computes [KGCi, KGDi] = Com(Ai);
(d) Pi computes (as per Section 3) �i,j = p(i)(↵j), �i,j = z(i)(↵j), C0,i,k;
(e) Pi computes [KCCi,j , KCDi,j ] = Com(g�i,j ) then publishes the commitments

KGCi, C0,i,k, KCCi,j ;

2. Shares verification and private key computation:

(a) once all the commitments have been published, Pi publishes the decom-
mitments KGDi, KCDi,j ;

(b) Pi gets Aj , g�j,` for 1  j  t, i 6= j, 1  ` < t and checks their
consistency by interpolating at the exponent;
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(c) Pi proves in ZK the knowledge of ai using Schnorr’s protocol (this proof
can either be interactive or non interactive. In the second case the proofs
are checked as soon as they are received. In either cases, if a party fails
the ZKP the protocol aborts).

(d) Pi sends (�i,j , �i,j) to player Pj ;
(e) Pi checks the integrity and consistency of the shards �j,i as in Section 3

and also with the values g�j,i ;
3. Pi computes its private key �i =

Pt

j=1 �j,i.

4. The public key is A =
Qt

i=1 Ai. Implicitly we set
Pt

i=1 ai = a.

The public values A, C0,i,k for i 2 {1, . . . , t}, k 2 {0, . . . , t � 1} are saved in
a public register pub_reg.

4.2 Signature Algorithm

This algorithm is used when a set J of at least t players agrees to sign a
message M . The protocol proceeds as follows.

1. Generation of r:
(a) Pi randomly chooses ki 2 Zq and computes ri = gki ;
(b) Pi computes [NGCi, NGDi] = Com(ri) and sends NGCi;
(c) once every NGCj for j 2 J has been received, Pi sends NGDi;
(d) Pi computes rj = Ver([NGCj , NGDj ]) for each j 2 J ;
(e) Pi computes r =

Q

j2J rj .
2. Generation of s:

(a) Pi compute !i such that
P

j2J !j = a, as in Equation (4);
(b) Pi computes e = H(r||M) and si = ki � !ie;
(c) Pi computes [SGCi, SGDi] = Com(si) and sends SGCi;
(d) once every SGCj for j 2 J has been received, Pi sends SGDi;
(e) Pi computes sj = Ver([SGCj , SGDj ]) for each j 2 J ;
(f) Pi computes s =

P

j2J sj .

3. Pi computes rv = gsAe and checks that H(rv||M) = e.

The output signature is (s, e). If a check fails, the protocol aborts.

4.3 Participant Addition

This protocol allows any set J of at least t users to add a new user Pm to
the protocol. After the protocol Pm will have the same powers (i.e. can sign and
add new users) as the other users. The protocol works as follows:

1. the players in J share all the public data with Pm;
2. the players in J participate in the Participant Addition Protocol of Sec-

tion 3.3, publishing Cm,J,k,`, for k, ` 2 {1, . . . , t};
3. Pj` sends to Pm bm,J,`, zm,J,`;
4. using the homomorphic commitments received in Steps 1 and 2, Pm performs

all the checks described in Section 3.3 and computes its share �m

Pt

`=1 bm,J,`.
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4.4 Verification

The verification protocol is the same of the centralized one. In particular,
to verify a signature (s, e) for a received message M , the receiver computes
rv = gsAe and checks that H(rv||M) = e. If the checks fails the receiver reject
the signature, otherwise it accepts.

5 Security Proof

It is possible to prove that the described protocol is unforgeable. Namely:

Definition 4 (Unforgeability). A (t, n)-threshold signature scheme is unforge-
able if no malicious adversary who corrupts at most t � 1 players can produce
the signature on a new message m with non negligible probability, given the view
of the threshold sign on input messages m1, . . . ,mQ (adaptively chosen by the
adversary), as well as the signatures on those messages.

The unforgeability of our protocol is formally stated in the following theorem:

Theorem 4. Assuming that the Schnorr signature scheme instantiated on the
group G of prime order q with the hash function H is unforgeable, Com, Ver is
a non-malleable commitment scheme, and that the Decisional Diffie-Hellman
Assumption holds, then our threshold protocol is unforgeable.

6 Comparison with Concurrent Works

Concurrently with our work, Crites, Komlo and Maller proposed Sparkle [6],
a new (t, n)�threshold Shnorr Signature. The two protocols are very similar and
have almost the exact structure, in particular we have the following correspon-
dences with our Signature Algorithm of Section 4.2:

– the Sign algorithm of Sparkle correspond to our steps from 1a to 1b;

– the Sign0 algorithm of Sparkle corresponds to our steps from 1c to 1e;

– the Sign00 algorithm of Sparkle correspond to our steps from 2a to 2d;

– the Combine algorithm of Sparkle correspond to our steps from 2e to 2f.

In [6] there is a deep security analysis focused on adaptive corruption of
parties after the key generation. However, a key difference between our and
their proofs is that Sparkle’s security proof does not allow the adversary to
participate in the key generation phase, and thus the adversary is not able to
choose its secret key freely. One may see our analysis as covering adversaries that
participate in the key generation and Sparkle’s analysis as covering adversaries
that corrupt parties afterwards, thus the two somewhat complete each other.
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Abstract. We study the hardness of the Syndrome Decoding problem,
the base of most code-based cryptographic schemes, such as Classic
McEliece, in the presence of side-channel information. We use Chip-
Whisperer equipment to perform a template attack on Classic McEliece
running on an ARM Cortex-M4, and accurately classify the Hamming
weights of consecutive 32-bit blocks of the secret error vector e 2 F

n
2 .

With these weights at hand, we optimize Information Set Decoding al-
gorithms. Technically, we show how to speed up information set decod-
ing via a dimension reduction, additional parity-check equations, and an
improved information set search, all derived from the Hamming weight
information.
Consequently, using our template attack, we can practically recover an
error vector e 2 F

n
2 in dimension n = 2197 in a matter of seconds.

Without side-channel information, such an instance has a complexity
of around 88 bit. We also estimate how our template attack affects the
security of the proposed McEliece parameter sets. Roughly speaking,
even an error-prone leak of our Hamming weight information leads for
n = 3488 to a security drop of 89 bits.

1 Introduction

Hardness of Syndrome Decoding. Central to all code-based schemes that ad-
vanced to the 4th Round of the NIST Post-Quantum Standardization Pro-
cess [ARBC+20,ABB+23,MAB+23] lies the Syndrome Decoding (SD) problem:

given a parity-check matrix H 2 F
(n�k)⇥n
2 , where F2 denotes the binary finite

field, a syndrome s 2 F
n�k
2 , and an integer w < n, find the error vector e such

that He = s and |e| < w, where | · | denotes the Hamming weight.
An algorithm for solving this problem for a uniformly random H leads

to a message or key recovery attack for the aforementioned schemes. There-
fore, the syndrome decoding problem has received a significant amount of at-
tention, resulting in various methods to solve it: Information Set Decoding
(ISD) [Pra62,Ste89,MMT11], Statistical Decoding [Al 01,CDMHT22], and, re-
cently, Sieving-style algorithms [GJN23,DEEK23]. Despite this extensive the-
oretical effort, the problem remains tractable for relatively small dimensions.
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Concretely, in the setting of Classic McEliece (e.g., w ⇡ n
5 log

2
n and k ⇡ 0.8n),

the largest solved instance reported today [ALL19] is for n = 1470, and it already
requires an optimized GPU implementation of an advanced information set de-
coding algorithm [NFK23], together with significant computational resources.4

Side-Channel Attacks. For the practical security of code-based schemes, it is
important that the syndrome decoding problem also offers sufficient robustness
against realistic side-channel attacks using leaks of the secret error vector e 2
F
n
2 . Compared to the comprehensive study of the syndrome decoding problem’s

classical security, its side-channel resistance has received much less attention.

Some initial theoretical work of Horlemann et al. [HPR+22] classifies different
leakages and shows how to incorporate them into ISD algorithms to solve the
syndrome decoding problem faster. One of the leakages considered in [HPR+22,
Section 4] is known Hamming weights of error blocks.

In this leakage setting, one knows {|ei|}it, where e = (e1, . . . , et) and all
ei’s (except, may be the last et) are of the same length, i.e., the word size of
the Central Processing Unit (CPU). For example, for an ARM Cortex-M4, each
word ei consists of 32 bits. Typical target instructions are loads, which move
32-bit words from SRAM to CPU registers, and stores, which move 32-bit words
from CPU registers to SRAM. When executing such instructions, the power
consumption is slightly different for each possible weight |ei|, and these unique
characteristics can be condensed into a so-called template [CRR03]. We call
the respective modified syndrome decoding problem, which additionally receives
{|ei|}it, the template syndrome decoding (template SD) problem.

While Horlemann et al. [HPR+22] describe a potential template syndrome
decoding attack, their attack remains purely theoretical. Neither do the authors
realize concrete power trace leaks, nor do they provide an improved informa-
tion set decoding implementation. Thus, the practical implications of code-based
template attacks remain unclear.

Contribution. In this work, we perform for the first time an explicit template
attack on a Classic McEliece implementation. To this end, we realize a concrete
power trace leak, from which we derive with high accuracy (but still error-prone)
the desired Hamming weight information {|ei|}it.

We then improve information set decoding by using and enhancing the tech-
niques of Horlemann et al. [HPR+22]. Building on information set decoding
software from Esser, May, and Zweydinger [EMZ22], we provide a concrete im-
plementation of these improvements.

With our (erroneous but easily correctable) leakage, we run our template
information set decoding and retrieve the secret e 2 F

n
2 . Concretely, we are

able to solve the template syndrome decoding problem for Classic McEliece in
dimension n = 2197 in a matter of seconds. Without template, such an instance
has complexity around 88 bits. In more detail, our results are as follows.

4 See also https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/

WzgqEmAfnk8 for the discussion on hardness predictions for this instance.

https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/WzgqEmAfnk8
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/WzgqEmAfnk8
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1. We use ChipWhisperer equipment to measure the power consumption of
an open-source implementation [CC21] of Classic McEliece running on an
ARM Cortex-M4, or at least a decapsulation subroutine that checks whether
|e| = w. Using 48k traces for template building, and 12k for matching, the
weights {|ei|} we recover are correct with a probability of around 97%. We
show how to deal with this measurement noise in the full version.

2. We modify the ISD algorithms of Prange [Pra62] and Dumer [Dum91] by
incorporating the template. Specifically, we show how to encode the knowl-
edge of weights of error blocks into the parity-check matrix H. Then, using
such modified H, we show how to decrease the expected running time of the
above ISD algorithms, again exploiting the leakage.

3. We provide efficient and parallelized implementations of the modified ISD
algorithms. With our software we are able to solve the n = 2197 instance
from [ALL19] in a matter of 10 seconds on AMD EPYC 7742 using 200
threads. Based on our implementation, we estimate the hardness of larger
McEliece instances under this template attack.

Related work. Closely related to the template syndrome decoding is regular

syndrome decoding introduced in [AFS05]. In regular SD, for each block ei of
e = (e1, . . . , et) it holds that |ei| = 1. Note that regular SD is a special case of
Template SD. Recent work of Esser and Santini [ES23] studies the hardness of
regular SD, and some of their ideas apply to our setting, e.g., the construction
of new parity-check equations, see also [EMZ22].

Another template attack on Classic McEliece was presented by Grosso et
al. in [GCCD23]. The authors of [GCCD23] aim at the same leakage, namely,
{|ei|}it but they retrieve it from the matrix-vector multiplication H · e that
computes the syndrome. In our template attack, similar to [GCCD23], we discard
the columns of H that correspond to the zero-weight blocks in the template.
Contrary to [GCCD23], in our work we show how to make use of the non-zero

weight blocks to speed-up ISD algorithms, and we implement our ISD algorithms
in order to actually retrieve the secret.

Another side-channel attack exploiting failures of the decoding procedure in
McEliece decryption is studied in [LNPS20]. The authors show how to learn
the positions of 1’s in the secret vector by querying the decoder with modified
syndromes. Similar to our work, the authors combine the obtained information
with ISD algorithms and estimate their attack performance. In contrast, we
implement our (modified) ISD routines, report on concrete runtimes for feasible
instance and then give estimates for large dimensions.

In summary, in contrast to [GCCD23] and [LNPS20] we do not only estimate

the effects on ISD, but we retrieve Hamming weight side-channel information,
correct errors, provide improved ISDs via dimension reduction and additional
parity check equations, and practically solve an n = 2197-dimensional template
SD instance in a matter of seconds.

Artifacts. Our software for Template ISD algorithms as well as scripts to gen-
erate the figures are available in [Tem24].
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2 Template ISD

Notations. Let |x| denote the Hamming weight of x and by [i, j) the interval
of consecutive integers {i, i + 1, . . . , j � 1}. By Sn we denote the group of all
permutations on sets of size n. By In we denote the identity matrix of rank n.

Problem definitions. In the Classic McEliece KEM [ARBC+20], the decryption
process receives as input a syndrome s 2 F

n�k
2 and recovers the secret message

e by calling an efficient syndrome decoder using the McEliece secret key. Once e
is retrieved, the decryption checks if |e| = w, where w is the decoding capacity
of the syndrome decoder. The parameter w is a fixed public parameter. Classic
McEliece decryption only returns e, if e passes the check |e| = w.

Without knowledge of the secret key, message recovery attacks on Classic
McEliece require solving the Syndrome Decoding (SD) problem.

Definition 1 (Syndrome Decoding (SD)). Let H 2 F
(n�k)⇥n
2 be a random-

looking parity-check matrix, e an error vector of Hamming weight w, and s =
He 2 F

n�k
2 the corresponding syndrome. SD asks to find the unique weight-w

e 2 F
n
2 satisfying He = s.

The side-channel attack we consider in this work creates a template for the
function that computes |e|. In the ideal scenario, such a template allows the
attacker to learn the blockwise weight of e. We call the SD problem that in
addition receives the blockwise weight template Syndrome Decoding.

Definition 2 (Template SD). Let H 2 F
(n�k)⇥n
2 be a parity-check matrix of a

random code and s = He 2 F
n�k
2 , for some e of Hamming weight w. Let further

e = (e1, . . . , et) with ei 2 F
b
2 for i = [1, t), et 2 F

n�b·(t�1)
2 , and wi = |ei|.

Template ISD asks to find e given H, s, and {wi}it.

Definition 3 (Guess). We call any vector {ŵi}it 2 N
t
0 a guess. The accuracy

of a guess is the percentage of correctly identified weights, i.e.
|{i2[1,t]|ŵi=wi}|

t . A

guess is error-free if it has accuracy 1, otherwise it is error-prone. Notice that in

general error-prone guesses do not satisfy
Pt

i=1 ŵi = w.

The block size b, and, therefore, also the template’s length depends on the
target architecture’s specifications. Our template attack targets ARM Cortex-
M4 processor that operates on words of 32 bits. Hence, our guesses will be of
length t = dn/32e.

Running Example n = 2197. Our running example uses the parameters n =
2197, k = 1758, and w = 37. Therefore, a guess is a string of length t = 69, its
i-th entry indicating the weight of the i-th 32-bit block of e.
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3 Algorithms for Template ISD

3.1 Permutation-based Template ISD – Improving Prange

Let us start with the fundamental information set decoding algorithm due to
Prange [Pra62]. Prange’s algorithm permutes the columns of H, which is equiv-
alent to permuting the positions of 1’s in e.

Let ⇡ 2 Sn be a permutation and let ⇡(H) = (Q | ·) be the result of applying

the permutation ⇡ to H such that Q 2 F
(n�k)⇥(n�k)
2 is invertible (this event

occurs with constant probability). Multiplying by Q�1 from the left both ⇡(H)
and s leads to an equivalent SD instance written in systematic form:

H 0
⇡(e) = s0, where H 0 = Q�1H = (In�k | ·), and s0 = Q�1s.

If ⇡(e) has weight 0 on the last k coordinates, then |s0| = w. This means that
the first (n� k) coordinates of ⇡(e) are given by s0 and e can be reconstructed.

Dimension reduction. As already noticed in the work of Grosso et al. [GCCD23],
any weight-0 block with wi = 0 does not contribute to the solution e. Let m0 de-
note the number of error-free blocks. Then b ·m0 columns of H do not contribute
and can be eliminated, leading to a modified parity-check matrix H̄ 2 F

(n�k)⇥n̄
2

with n̄ = n� b ·m0 columns. This in turn reduces the dimension of the solution
e from n to n̄ = n� b ·m0 leaving its weight w unchanged.

Improved permutation. The idea of the permutation ⇡ in Prange’s algorithm
is to move all w 1-entries of e upfront to the first n � k coordinates. Having
weight wi for the i-th block, we permute a number proportional to wi upfront.
Concretely, in Algorithm 2, we use the following template-optimized permutation.

Let P be a permutation matrix and vi 2 Z with 0  vi  b and
Pt

i=1 vi =
n� k. Further, denote the permuted error vector as

Pe = (e0, e00) = (e01, . . . , e
0
t, e

00
1 , . . . , e

00
t )

with e0i 2 F
vi

2 and e00i 2 F
b�vi

2 . Then, P is a template permutation if e0i and e00i
originate from ei for all i. The success probability P (

P

i |e
00
i | = 0) is determined

by the vi. In [HPR+22], a greedy algorithm for optimizing vi is given. We ob-
serve that this optimal choice corresponds to the setting vi ⇡

wi

w · (n � k), i.e.,
the number of columns is chosen proportional to the weight of the block. This
proportional assignment of columns generalizes the puncturing of [GCCD23]:
columns of H with wi = 0 are implicitly ignored by taking 0 columns from the
blocks with wi = 0. In Algorithm 2, the procedure that samples a template
permutation as described above is called TemplatePerm.

In practice, vi =
wi

w · (n� k) cannot be used directly due to rounding issues
and the restriction vi  b. In our implementation, we minimize |vi�

wi

w · (n�k)|.

Additional Parity Check Equations. Note that |ei| = wi implies that the sum of
the entries of ei is wi mod 2, see also [EMZ22]. Hence, for wi > 0, one can extend
the parity-check matrix by appending a row of the shape (0, . . . , 0, 1, . . . , 1, 0, . . . 0),
where the all-1 block is at the positions [i · b, (i+ 1) · b). The syndrome s is ex-
tended by appending wi mod 2. Each appended check increases the co-dimension
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of the code by one to eventually n�k+ t�m0. This makes it simpler for ISD to
find a permutation that puts all weight to the first co-dimension many positions.

Algorithm 1: Prange

Input : H, s, w
Output: e

1 repeat

2 Sample P 2 Sn

3 Let
H 0 = Q�1HP

be the
systematic form
of HP

4 s0 = Q�1s

5 until |s0| = w

6 return P�1 · (s0, 0k).

Algorithm 2: Template Prange

Input : H 2 F
(n�k)⇥n
2 , s, {wi}it;

P
i wi = w

Output: e

1 Let m0 := |{i  t | wi = 0}|, n̄ = n�m0b,
k̄ = k +m0 � t.

2 Obtain H̄ 2 F
(n�k)⇥n̄
2 by removing zero blocks.

3 Obtain H̄ 2 F
(n�k̄)⇥n̄
2 , s̄ 2 F

n�k̄
2 by adding checks.

4 repeat

5 P  TemplatePerm(w)
6 Let H 0 = Q�1H̄P be the systematic form of

H̄P

7 e0 = Q�1s̄.

8 until |e0| = w

9 return P�1 · (e0, 0k).

We summarize all modifications to the parity-check matrix and the optimized
permutations in Figure 1.

w1 = 0 w2 = 1 . . . wt = 2

H

1 1 . . . 1
. . .

1 1 . . . 10

0

s

1
...

0

=

Fig. 1: Illustration of our improved
Template ISD method. Columns in
blocks with error weight wi = 0
are punctured. For wi 6= 0, an ad-
ditional check is appended to the
parity-check matrix and the syn-
drome. For each block, the number
of columns chosen for permutation
upfront (colored red) is set propor-
tionally to the error weight.

Theorem 1. Let {wi}it be a an error-free guess with m0 many zeros. The

expected number of permutations of Algorithm 2 for solving Template SD is

t
Y

i=1

✓

b

wi

◆✓

bwi

w (n� k + t�m0)e

wi

◆�1

.

Proof. Our Algorithm 2 finds a good permutation if for all t blocks of length b,
all wi-many 1’s from the i-th block will be moved upfront to the first n � k̄ =
n � k + t �m0 coordinates. As from each block we take bwi

w (n � k + t �m0)e
many positions, the expected number of required permutation follows. ut

Running example n = 2197. According to [EVZB23], the concrete complexity
of Algorithm 1 for n = 2197, k = 1758, w = 37 is estimated as 116 bits.
Dimension reduction by weight-0 blocks reduces the complexity of this instance
to 71 bits. With improved permutation and additional parity check equations
from Algorithm 2, the complexity further decreases to 62 bits. Figures for larger
McEliece instances are available in [Tem24].
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3.2 Enumeration-based Template ISD – Improving Dumer

Recall from Section 3.1 that for a parity-check matrix H 2 F
(n�k)⇥n
2 Prange’s

algorithm finds a permutation that shifts all w 1-entries of e upfront to the first
n� k entries. That is why Prange is called a permutation-based ISD.

Instead, enumeration based ISD algorithms like [Dum91,FS09,MMT11] choose
small parameters p, ` and permute e such that weight w � 2p lands on the first
n � k � ` coordinates, and the remaining weight 2p lands on the last k + `

coordinates. On the one hand, such a permutation is way more likely to find
the secret. On the other hand, we now have to enumerate a search space of size
�

k+`

2p

�

, in Dumer’s algorithm in a meet-in-the-middle fashion. For usual McEliece
such a tradeoff pays off, i.e., the benefit of faster finding a suitable permutation
outweighs the drawback of enumeration.

In this work, we chose to adapt Dumer’s algorithm to the Template ISD
setting. In the parameter range that we practically solve, Dumer’s algorithm
is known to perform best, whereas more advanced algorithm like [MMT11] are
taking over for large n of cryptographic size [EMZ22].

Although we now choose with Dumer an enumeration-based ISD algorithm,
the benefits from the Template ISD still contribute to a large extent to the search
for a suitable permutation. Namely, analogous to Section 3.1, we obtain the
template version of Dumer using the following modifications and improvements:

Dimension reduction: 0-weight blocks from the guess {wi}it are removed,
let m0 be their number. Such a dimension reduction helps to significantly
speed up permutation search, and it also decreases the search space for enu-
meration by m0b.

Additional parity checks: Encoding all wi � 1 into additional check equa-
tions increases the co-dimension from n� k to n� k + t�m0. This speeds
up permutation search further, and slightly reduces the enumeration cost.

Improved permutation: Similar to Section 3.1, we permute upfront propor-
tionally to the weights wi to improve the permutation. For this, we set
vi ⇡ wi·c

w�2p (n � k̄ � `), where c = w�2p
w is a re-scaling factor. We do not

exploit non-zero weights for enumeration.

The resulting algorithm Template Dumer is given in Algorithm 3.

Theorem 2 (Template Dumer). Let k0 := n̄� (n� k̄)+ ` with n̄ and k̄ as in

Algorithm 3. Then, the number of iterations that Template Dumer ISD performs

on average is the inverse of the success probability

✓

k0/2

p

◆2✓
k0

2p

◆�1
X

p1+...+pt=2p

t
Y

i=1

✓

bwi

w (n� k̄ � `)e

wi � pi

◆✓

b

wi

◆�1

, (1)

where each iteration has a meet-in-the-middle cost of 2
�

k0/2
p

�

+
�

k0/2
p

�2
· 2�`.

Proof. Since bwi

w (n� k̄�`)e positions of the i-th block are moved upfront, it con-

tributes pi errors to the last k0 positions with probability
�b

wi

w (n�k̄�`)e

wi�pi

��

b
wi

��1
.
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Algorithm 3: Template Dumer

Input : H 2 F
(n�k)⇥n
2 , s, {wi}it;

P
i wi = w, b, p, `

Output: e

1 Let m0 := |{i  t | wi = 0}|, n̄ = n�m0b, k̄ = k+m0� t, k0 = n̄� (n� k̄)+ `.

2 Obtain H̄ 2 F
(n�k)⇥n̄
2 by removing zero blocks.

3 Obtain H̄ 2 F
(n�k̄)⇥n̄
2 , s̄ 2 F

n�k̄
2 by adding checks.

4 repeat

5 P  TemplatePerm(w � 2p)
6 Let H 0 = Q�1H̄P be the quasi-systematic form of H̄P ,

(s0, s00) = Q�1s̄ 2 F
n�k̄�`

2 ⇥ F
`

2.

7 for all collisions e1, e2 2 F
k0/2
2 with weight p do

8 Compute e0 := H1e1 +H2e2 + s0. . via Meet-in-the-Middle

9 until |e0| = w � 2p
10 return P�1 · (e0, e1, e2).

Similar to [HPR+22], the probability of 2p errors in the last k0 positions is ob-
tained by summing over all possibilities p1 + . . . + pt = 2p. Further, the error
needs to split evenly in the last k0 positions. Randomizing the order of these co-

ordinates, this probability is
�

k0/2
p

�2�k0

2p

��1
. The meet-in-the-middle step requires

enumerating 2
�

k0/2
p

�

vectors e1, e2, leading to
�

k0/2
p

�2
2�` collisions on average.

Running example n = 2197. For n = 2197, k = 1758, w = 37, we pick ` = 16
and p = 2. The performance differs between guesses. On average, 219.9 iterations
are sufficient, each with a Meet-in-the-Middle cost of processing 214.7 vectors.

3.3 Dealing with Noisy Guesses

The full version provides an algorithm that deals with noisy guesses. In partic-
ular, we show that Template Prange and Template Dumer are robust to single
(or very few) misclassifications.

4 Side-Channel Experiments

4.1 Measurement Setup

We target an open-source C implementation of McEliece, which is made by Chen
and Chou [CC21], optimized for the ARM Cortex-M4, and unprotected against
side-channel attacks. The targeted function is a Hamming-weight computation
in the decryption, as specified in Listing 1.1 [CC22]. To accelerate our measure-
ments, we do not run the entire decapsulation, and instead communicate via
UART with a custom wrapper around function weight 3488. Likewise, although
solving n = 3488 is computationally feasible, we reduce n to 2197 for faster



A Practical Template Syndrome Decoding Attack 9

results. The code is compiled by arm-none-eabi-gcc using O3 optimization. Al-
though the right-shift of the 32-bit word v in Listing 1.1 might leak bit-level
information, we only aim to recover word-level information, i.e., weights |v|.

1 s t a t i c i n t weight 3488 ( u in t 32 t ∗v )
2 {
3 i n t i , w = 0 ;
4 f o r ( i = 0 ; i < 3488 ; i++)
5 w += (v [ i>>5] >> ( i &31) ) & 1 ;
6 re turn w;
7 }

Listing 1.1: Targeted C function [CC22].

The power consumption is measured using ChipWhisperer equipment: a
CW308 UFO board, an STM32F405RGT6 target that contains an ARM Cortex-
M4, and a Husky oscilloscope. The clock frequency is set to 16MHz and the
sampling frequency is set to 128MHz, i.e., there are 8 samples per clock period.
To synchronize traces, the wrapper raises a trigger signal right before function
weight 3488 is executed. To capture the entire operation, 201559 samples suffice.
As the Husky has a buffer of 131070 samples, we stitch together 2 traces by
varying the offset from the trigger. Traces for template building and template
matching are taken from the same STM chip, which is fair: to build templates,
the attacker can perform unlimited encapsulations to obtain known pairs (c, e).

4.2 Template Building

Given that error e spans 69 words, each having weight W 2 {0, 1, 2, 3} with
overwhelming probability, 276 = 69 ⇥ 4 templates are built. For this purpose,
we randomly generate 48k error vectors e and measure one trace for each e. To
ensure that the templates have similar qualities, we impose P (W = 0) = P (W =
1) = P (W = 2) = P (W = 3) = 1/4. This deviation from the McEliece distribu-
tion is optional and is only realistic for a 2-device attack. All choose-W -out-of-32
selections are equally likely. For example, words 0x80020040 and 0x01400002 are
equally likely in the case of W = 3. For each out of 69 words, we only retain
the 100 samples that matter most. All other samples primarily generate classi-
fication noise, so it’s beneficial to discard them. To make a selection, we use an
extension of Welch’s t-test specified below, where MW is the sample mean, VW

is the sample variance, and NW is the number of traces for each weight W .

T =
1

3

 

M0 �M1
q

V0

N0

+ V1

N1

+
M1 �M2
q

V1

N1

+ V2

N2

+
M2 �M3
q

V2

N2

+ V3

N3

!

4.3 Template Matching

For each error e we aim to recover, we collect 12k traces, and average them into
a single trace X. Now, the weights W are non-uniform and follow the McEliece
distribution. For each out of 69 words, the distinguisher DW =

P99
i=0 |Ti|·|MW �

Xi| 2 R
+ is computed. The weight W for which DW is the smallest is the best

guess. The probability that this guess is correct is around 97%.
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5 Practical Template SD Solving with Our Algorithms

We implemented Algorithm 2 and Algorithm 3. The source-code of our imple-
mentation can be found in [Tem24]. We ran our experiments on the parity-check
matrices of Classic McEliece instances with parameters provided by [ALL19],
where we generated the solution vectors e ourselves. We fully recovered the se-
cret error vector for all instances n  2197.

In the experiments, we always worked with an error-free guess. Indeed, for
our running example n = 2197, the actual side-channel attacks gave guesses with
97% accuracy resulting in a single mispredicted block: we observed a guess ŵ
with

P

i ŵi = w � 1, which can be corrected with low overhead.

To accurately estimate the running time of Algorithms 1 (Original Prange), 2
(Template Prange), and 3 (Template Dumer) for all dimensions n, we generated
random error vectors and measured the runtime per permutation. To obtain the
overall runtime, we multiply by the expected number of permutations, which is
computed as in Theorems 1 and 2 by averaging over different error vectors. The
resulting estimates are presented in Figure 2.

Running Example n = 2197. Our implementation of Algorithm 3 (with p = 2,
` = 16) on 2x AMD EPYC 7742 CPUs recovers the secret e for n = 2197 in
1019 seconds with 1134185 iterations required (the predicted number of itera-
tions for this instance is 1.6 · 106). The implementation is parallelized over the
choice of permutation, and with 200 threads outputs the secret in 10 seconds
using only 334MB of RAM.
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Introduction

Researchers have extensively explored the connections between linear codes and sets of points in finite
geometries, as evidenced by previous works as [1,10,12,13,15,17]. The construction of a generator matrix
or parity check matrix for a linear code can be accomplished through a multiset of projective points,
with the supports of codewords corresponding to complements of hyperplanes in a fixed projective set.
The interconnection between these two domains facilitates the application of methods from one field
to the other. Notably, this approach has been employed in constructing codes with a bounded covering

radius, associated with saturating sets in projective space. Recent investigations into the geometry
of rank-metric codes codes [2, 23] reveal their correspondence to q-systems and linear sets. A similar
correspondence holds for sum-rank metric codes [21, 24].

The covering radius of a code is the smallest positive integer ⇢ such that the union of the spheres of
radius ⇢ about each codeword equals the entire ambient space. The covering radius serves as an indicator
of combinatorial properties, such as maximality, and is an invariant of code equivalence. It also provides
insight into error-correcting capabilities by determining the maximal weight of a correctable error. This
essential coding theoretical parameter has been extensively studied for codes in the context of the
Hamming metric [7,11–16]. However, only a few papers in the literature on rank-metric codes and sum-
rank metric address this parameter [5,9,19,22]. Recently, in [5] a purely geometrical approach based on
saturating system was proposed the study the covering radius in the rank metric. This approach allowed
to provide new bounds, and interesting examples of covering codes in the rank metric, see [3, 5].

In this paper, we extend these ideas to the sum-rank metric by introducing the concept of a sum-rank
saturating system, aligning it with a sum-rank metric covering code. We also provide new bounds for
covering codes in the sum-rank metric, as well as examples arising from cutting systems.

1 Preliminaries

Let q be a prime power and Fq be the finite field with q elements. Let t be a positive integer and
n = (n1, . . . , nt),m = (m1, . . . ,mt) 2 N

t be ordered tuples with n1  n2  · · ·  nt and m1 
m2, · · ·  mt, and we set N := n1 + · · · + nt. Throughout the paper, we will use the following
notations for the direct sums of vector spaces F

n
q :=

Lt
i=1 F

ni
q and for direct sums of matrix spaces

Matn⇥m(Fq) :=
Lt

i=1 F
ni⇥mi
q .

Definition 1. Given a pair of nonnegative integers N and M , the q-binomial or Gaussian coefficient
counts the number of M -dimensional subspaces of an N -dimensional subspace over Fq and is given by:


N

M

�

q

:=

M�1Y

i=0

qN � qi

qM � qi
.



We write N to denote the poset {(a1, . . . , at) : 0  ai  ni} endowed with the partial order 
defined by

(a1, . . . , at)  (b1, . . . , bt) () ai  bi for all i 2 [t].

We will adopt the following notation: for u = (u1, . . . , ut),v = (v1, · · · , vt) we define,

|u| :=
tX

j=1

uj ,


u
v

�

q

:=

tY

j=1


uj

vj

�

q

, q(
u

2) :=

tY

j=1

q(
uj−vj

2 ).

Definition 2. Let X := (X1, . . . , Xt) 2 Mat(n,m,Fq). The sum-rank support of X is defined as the

space

supp(X) := (colsp(X1), colsp(X2), . . . , colsp(Xt)) ✓ F
n

q ,

where colsp(Xi) is the Fq-span of the columns of Xi. The rank-list of X is defined as

rkl(X) := (rk(X1), . . . , rk(Xt)) 2 N
t.

Finally, the sum-rank weight of X is the quantity

wsrk(X) := dimFq
(supp(X)) :=

tX

i=1

rk(Xi).

Definition 3. A sum-rank metric code C is an Fq-linear subspace of Matn⇥m(Fq) endowed with the

sum-rank distance

dsrk :Matn⇥m(Fq)⇥Matn⇥m(Fq) �! N

(X,Y ) 7! wsrk(X � Y ).

The minimum sum-rank distance of a sum-rank code C is defined to be:

dsrk(C) := min{wsrk(X) : X 2 C, X 6= 0}.

The sum-rank support of the code C is the Fq-span of the supports of all the codewords of C, that is

supp(C) :=
X

X2C

supp(X) ✓ F
n

q .

C is said to be sum-rank non-degenerate if supp(C) = F
n
q . For each i 2 [t], we write Ci := ⇧i(C), where

⇧i : Matn⇥m(Fq) �! F
ni⇥mi
q denotes the canonical projection map.

Definition 4. The dual of a code C  Matn⇥m(Fq) is defined as

C? :=

⇢

(Y1, ..., Yt) 2 Matn⇥m(Fq)

�
�
�
�

tX

i=1

Tr(XiY
T
i ) = 0 for all (X1, ..., Xt) 2 C

�

 Matn⇥m(Fq).

Definition 5. Let U be an Fq-subspace of dimension n in F
k
qm . The Fq-linear set in PG(k � 1, qm) of

rank n associated to U is the set

LU := {huiFqm
: u 2 U \ {0}},

where huiFqm
denotes the projective point corresponding to u.

2 Sum-rank saturating systems

Definition 6. For each i 2 {1, . . . , t}, let Ui be an Fq-subspace of Fk
qm of dimension ni. If the ordered

t-tuple U = (U1, . . . ,Ut) satisfies hU1, . . . ,UtiFqm
= F

k
qm then U is called an [n, k]qm/q system. We

say that U has dimension n. A generator matrix for U is a k ⇥
Pt

j=1 nj matrix over Fqm the form

G = [G1| · · · |Gt], where for each i, Gi is a generator matrix for the [ni, k]qm/q system Ui, that is such

that the Fq-span of the columns of each Gi is Ui.



Definition 7. Two sum-rank systems (U1, . . . ,Ut) and (V1, . . . ,Vt) are equivalent if there exists an

isomorphism ' 2 GL(k,Fqm), an element a = (a1, . . . , at) 2 (F⇤
qm)t and a permutation � 2 St, such

that for every i 2 {1, . . . , t}
'(Ui) = aiVσ(i).

We recall the definition of a ⇢-saturating set.

Definition 8. Let S ✓ PG(k � 1, qm).

(a) A point Q 2 PG(k�1, qm) is said to be ⇢-saturated by S if there exist ⇢+1 points P1, . . . , Pρ+1 2 S
such that Q 2 hP1, . . . , Pρ+1iFqm

. We also say that S ⇢-saturates Q.

(b) The set S is called a ⇢-saturating set of PG(k�1, qm) if every point Q 2 PG(k�1, qm) is ⇢-saturated
by S and ⇢ is the smallest value with this property.

Definition 9. U is sum-rank ⇢-saturating if LU1 [ · · · [ LUt
is (⇢� 1)-saturating.

Theorem 1. Let U be an [n, k]qm/q system and let G be any generator matrix of U . The following are

equivalent:

(a) U is sum-rank ⇢-saturating.

(b) For each vector v 2 F
k
qm there exists � = (�1, . . . ,�t) 2 F

1⇥n1
qm ⇥ . . .⇥ F

1⇥nt

qm with wtsrk(�)  ⇢ such

that

v = G(�1, . . . ,�t)
T ,

and ⇢ is the smallest value with this property.

(c) We have

F
k
qm =

[

(Si:i2[t]): SiFqUi,
Pt

i=1 dimFq Siρ

 
t[

i=1

hSiiFqm

!

and ⇢ is the smallest integer with this property.

Definition 10. Let U be an [n, k]qm/q system. For each positive integer ⇢, we define

Sρ(U) :=
[

(Si:i2[t]): SiFqUi,
Pt

i=1 dimFq Siρ

 
t[

i=1

(Si ⌦ Fqm)

!

.

It is immediate from Theorem 1 that U is sum-rank ⇢-saturating if ⇢ is the least integer satisfying
F
k
qm = Sρ(U).
The following statement is the sum-rank analogue of [5, Theorem 2.5].

Theorem 2. Let U be an [n, k]qm/q system associated to a code C. The following are equivalent.

(a) U is sum-rank ⇢-saturating.

(b) ⇢srk(C
?) = ⇢.

Definition 11. For i = 1, 2, let Ui be a sum-rank ⇢i-saturating [ni, ki]qm/q system that is associated

with a code Ci that has generator matrix Gi. We define the direct sum of U1 and U2, which we denote

by U1 � U2, to be the [(n1,n2), k1 + k2]qm/q system associated with the direct sum of C1 and C2, i.e. the
code whose generator matrix is

G1 �G2 :=


G1 0
0 G2

�

.

It is straightforward to establish the following (c.f. [5]).

Theorem 3. For i 2 [t], let Ui be a sum-rank ⇢i-saturating [ni, ki]qm/q system. Then U1 � · · · � Ut is

an [(n1, . . . ,nt), k1 + · · ·+ kt]qm/q system and is sum-rank ⇢-saturating, where ⇢  ⇢1 + · · ·+ ⇢t.

Definition 12. A sum-rank ⇢-saturating system is reducible if there exists i 2 {1, . . . , t} such that the

system without the block Ui is sum-rank ⇢-saturating. Otherwise, the system is irreducible.



3 Bounds on the dimension of sum-rank saturating systems

As in the classical cases, it is interesting to know how short can a sum-rank metric code of a given
dimension and covering radius ⇢ be, or equivalently how small can the rank of a sum-rank ⇢-saturating
system be, in a given vector space. However, the situation here is much more complicated than in the
Hamming and rank-metric cases.

We start with a bound which follows from the geometric characterisation of our systems. In the
proof, we will use the following well-known estimates:


a

b

�

q

< f(q) qb(a�b), for a, b 2 N, (1)

qe1 + . . .+ qer <
q

q � 1
qer , for ei 2 Z, 0  e1 < . . . < er. (2)

where f(q) =
Q+1

i=1 (1� q�i)�1.

Theorem 4. Let U be a sum-rank ⇢-saturating [n, k]qm/q system. Then

qmρ
X

s2N ,|s|=ρ


n
s

�

q

� qmk.

In particular,
1

4t
·

X

1i<jt

(nj � ni)
2
+

⇢(|n|� ⇢)

t
+ 2t � m(k � ⇢). (3)

Remark 1. We have that f(q) �! 1 as q �! 1, and so asymptotically qf(q)t

q�1 �! 1 as q �! 1. For

this reason, as q grows, we may replace (3) with

1

4t
·

X

1i<jt

(nj � ni)
2
+

⇢(|n|� ⇢)

t
� m(k � ⇢),

for sufficiently large q. Indeed, even for relatively small values of q, qf(q)t

q�1 takes values much smaller than

q for t not exceeding q. For example, for q = 211, t = 20, we have qf(q)t

q�1 ⇡ 1.105407; for q = 111, t = 111

we have qf(q)t

q�1 ⇡ 2.780617.

Remark 2. For t = 1 (rank-metric), the bound coincides asymptotically with the one obtained in [5]
(while for small q in [5] we could avoid the rough estimate). When n1 = . . . = nt = n,

N = tn �
tm

⇢
(k � ⇢) + ⇢�

2t2

⇢
. (4)

Lemma 1. Fix t and N . Let [n1, . . . , nt] and [n0
1, . . . , n

0
t] be such that n1 � . . . � nt, n

0
1 � . . . � n0

t and

N = n1 + . . .+ nt = n0
1 + . . .+ n0

t. Then
X

1i<jt

(nj � ni)
2


X

1i<jt

�
n0
j � n0

i

�2

if and only if [n1, . . . , nt] � [n0
1, . . . , n

0
t] in the lexicographic ordering.

This means that, ⇢, t, N being fixed, the left hand-side of (3) gets its minimum and maximum values
when n1 = . . . = nt and when n2 = . . . = nt = 1 respectively. This gives sense to the following definition.

Definition 13. Let t be a positive integer. We define the shortest length

sqm/q(k, ⇢, t) := min

(
tX

i=1

dim(Ui) : Ui Fq
F
k
qm , (U1, . . . ,Ut) is sum-rank-⇢ saturating

)

,

i.e. it is the minimal sum of the Fq-dimensions of the Ui, i 2 {1, . . . , t}, of a sum-rank ⇢-saturating

system U = (U1, . . . ,Ut) in F
k
qm .

We define the homogeneous shortest length

shomqm/q(k, ⇢, t) := min
�
tn : Ui Fq

F
k
qm , dim(Ui) = n, (U1, . . . ,Ut) is sum-rank-⇢ saturating

 
,

i.e. it is the minimal sum of the Fq-dimensions of the Ui, i 2 {1, . . . , t}, of a sum-rank ⇢-saturating

system U = (U1, . . . ,Ut) in F
k
qm , with the additional hypothesis that they all have equal dimension.



Remark 3. Notice that given a sum-rank saturating system U = (U1, . . . ,Ut) having generator matrix
G = [G1| · · · |Gt]. We can always consider the system U 0 = (U1, . . . ,Ut�2,U

0
t�1) having generator matrix

G = [G1| · · · |Gt�2|G
0
t�1], where G

0
t�1 is the matrix having as columns the union of Fq-bases of Ut�1 and

Ut. Since Ut�1 + Ut = U 0
t�1 we have dimFq

(U 0
t�1)  dimFq

(Ut�1) + dimFq
(Ut), while ⇢(U 0)  ⇢(U).

This remark shows that reducing the number of the blocks usually provides an yields the following
result, that provides us the motivation to fix a given value for t before starting the investigation on the
minimal dimension of a system U .

Proposition 1 (Monotonicity in t). We have that sqm/q(k, ⇢, t)  sqm/q(k, ⇢, t+ 1)

Lemma 2. Let U = (U1, . . . ,Ut) be a sum-rank ⇢-saturating [n, k]qm/q system. Suppose for some i 2
[t], Ui is not scattered. Then U 0 = (U1, . . . ,U

0
i , . . . ,Ut) is a sum-rank-⇢0-saturating [n0, k]qm/q system

satisfying ⇢0  ⇢+ 1 and n0 = (n1, . . . , ni � 1, . . . , nt).

Proof. The statement follows as a direct consequence of [5, Lemma 4.5]

Lemma 3. Let U = (U1, . . . ,Ut) be a sum-rank ⇢-saturating [n, k]qm/q system. Suppose that for each

i 2 [t], Ui has an Fq-basis {u
(i)
1 , . . . , u

(i)
ni } such that

u(t)
nt

= �
X

i2S

niX

j=1,
j 6=nt

a
(i)
j u

(i)
j ,

for some a
(i)
j 2 Fq and S ✓ [t]. Then U 0 = (U1, . . . ,Ut�1,U

0
t) is a sum-rank-⇢0-saturating [n0, k]qm/q

system satisfying ⇢0  ⇢+ |S| and n0 = (n1, . . . , nt�1, nt � 1).

In particular, Lemma 2 follows as a special case of Lemma 3.
We have the following observations of the monotonicity of sqm/q(k, ⇢, t). The proofs are similar to

those of [5, Theorem 4.6].

Theorem 5 (Monotonicity in ⇢). Let |n| > k. The following hold.

1. sqm/q(k, ⇢, t)  sqm/q(k, ⇢+ 1, t).
2. sqm/q(k, ⇢, t)  sqm/q(k + 1, ⇢, t)� 1.
3. sqm/q(k + 1, ⇢+ 1, t)  sqm/q(k, ⇢+ 1, t) + 1.

Definition 14. For each i 2 {1, 2}, let U (i) be an [n(i), ki]qm/q system, associated with an [n(i), ki]qm/q

sum-rank-metric code Ci. Let f : Fn
(1)

qm �! F
n

(2)

qm be an Fqm-linear map. The code

C := {(u, f(u) + v) : u 2 C1, v 2 C2}

is an [(n(1),n(2)), k1 + k2]qm/q, which we call the f -sum of C1 and C2. Its associated [(n(1),n(2)), k1 +

k2]qm/q system is called the f -sum of U (1) and U (2), which we denote by U (1) �f U (2). If f is the zero

map, we write U (1) � U (2), and call it the direct sum; if f is the identity map, we we write U (1) �ι U
(2)

and call it the Plotkin-sum of U (1) and U (2).

Theorem 6. For each i 2 {1, 2}, let n(i) = (n
(i)
1 , . . . ,n

(i)
ti ), and let U (i) be an [n(i), ki]qm/q sum-rank-

⇢i-saturating system, associated with an [ni, ki]qm/q code Ci. Let f : Fn
(1)

qm �! F
n

(2)

qm be an Fqm-linear

map. Then U (1) �f U (2) is an [(n(1),n(2)), k1 + k2]qm/q system that is sum-rank-⇢-saturating, where

⇢  ⇢1 + ⇢2. In particular, if ⇢1 + ⇢2  min{k1 + k2,m}, then

sqm/q(k1 + k2, ⇢1 + ⇢2, t1 + t2)  sqm/q(k1, ⇢1, t1) + sqm/q(k2, ⇢2, t2).

Theorem 7. Let Fqm = Fq[↵], r � 1, h � r and

Ah,r :=


Ir 0 0 · · · 0
0 Ih�r ↵Ih�r · · · ↵m�1Ih�r

�



Then

Gt :=

2

6
6
6
4

Ah,r 0 · · · 0
0 Ah,r · · · 0
...

...
. . .

...

0 0 · · · Ah,r

3

7
7
7
5

| {z }

t times

generates an homogeneous sum-rank rt-saturating system. So

shomqm/q(th, tr, t)  t(m(h� r) + r).

Remark 4. Since

t
⇣m

r
(h� r) + r

⌘

 shomqm/q(th, tr, t)  t(m(h� r) + r),

we see immediately that when r = 1 the lower and the upper bounds coincide, so that

shomqm/q(th, t, t) = t(m(h� 1) + 1).

4 Constructions of short sum-rank saturating systems

4.1 Sum-rank saturating systems from partitions of the projective space

A partition of the vector space F
k
qm yields a partition of PG(k � 1, qm) into subspaces. In [8], some

necessary conditions and constructions of partitions are presented. We know that U is sum-rank ⇢-
saturating if LU1

[ · · · [ LUt
is (⇢� 1)-saturating.

Proposition 2. Let P = {Pi}i2{1,...,t} a partition of PG(k� 1, qm) into subspaces. Let ki be a positive

integer such that Pi ' PG(ki � 1, qm). If U is such that each Ui is rank ⇢-saturating in Pi, then U is

sum-rank ⇢0-saturating with ⇢0  ⇢.

In [20, Theorem 4.28] we get that, if (m, k) = 1, there exists a partition of PG(k � 1, qm) into

t =
(qmk � 1)(q � 1)

(qm � 1)(qk � 1)

subgeometries PG(k � 1, q). This gives us an homogeneuous 1-saturating system of length

k ·
(qmk � 1)(q � 1)

(qm � 1)(qk � 1)
.

4.2 Sum-rank (k − 1)-saturating systems from cutting designs

In this section we introduce the notion of sum-rank metric minimal codes and we investigate their
parameters. The geometry of minimal codes have been important in order to construct and give bounds
in both Hamming and rank metric, via the so called strong blocking sets. These, introduced first in [13]
in relation to saturating sets, are sets of points in the projective space such that the intersection with
every hyperplane spans the hyperplane. In [18] strong blocking sets are referred to as generator sets and
they are constructed as union of disjoint lines. They have gained very recently a renovated interest in
coding theory, since [4], in which they are named cutting blocking sets and they are used to construct
minimal codes. Quite surprisingly, they have been shown to be the geometric counterparts of minimal
codes.

Definition 15. Let C be an [n, k]qm/q sum-rank metric code. A codeword c 2 C is said minimal if for
every c0 2 C such that suppn(c

0) ✓ suppn(c) then c0 = �c for some � 2 Fqm . We say that C is minimal
if all of its codewords are minimal.

Definition 16. A system U = (U1, . . . ,Ut) ⇢ F
k
qm is cutting if LU1

[ . . . [ LUt
is a strong blocking set

in PG(k � 1, qm), that is if

h(LU1
[ . . . [ LUt

) \HiFqm
= H,

for every hyperplane H in PG(k � 1, qm).



The following is a generalization of the geometric characterization of minimal codes in the Hamming
and in the rank metric.

Theorem 8 ( [24, Corollary 10.25]). A sum-rank metric code is minimal if and only if an associated

system is cutting.

Theorem 9. If U is a cutting system in F
k
qm , then U is a sum-rank (k�1)-saturating system in F

k
qm(k−1) .

Remark 5. In [6], the authors provide interesting bounds and examples about sum-rank minimal codes.
Combining them with Theorem 9, it is possible to obtain more examples of saturating systems in the
sum-rank metric.
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Abstract. Universal lower bounds for potential energy of weighted spher-
ical codes are obtained by linear programming. The universality is in the
sense of Cohn-Kumar – every attaining code (if any) is optimal with re-
spect to a large class of potential functions, in the sense of Levenshtein –
there is a bound for every weighted code, and in the sense of parameters
(nodes and weights) which do not depend on the potential function.

Keywords: Discrete potentials linear programming universal bounds

1 Introduction

A collection (C,W ) of distinct points C = {x1, x2, . . . , xN} ⇢ S
n�1, where S

n�1

is the unit sphere in R
n, and corresponding weights W = (w1, w2, . . . , wN ),

where wi > 0 corresponds to xi and w1+w2+ · · ·+wN = 1, is called a weighted
spherical code.

For a continuous function h : [�1, 1) ! R we consider the weighted h-energy
of C

Eh(C,W ) :=
X

i 6=j

wiwjh(xi · xj),

where x · y is the usual inner product in R
n. Let

Eh(N,W ) := inf
|C|=N

Eh(C,W )

be the minimum h-energy among all codes (C,W ) with fixed cardinality |C| =
N � 2 and weights set W . Optimization problems for the h-energy arise, for



example, in the electrostatics when it is necessary to distribute N = |W | positive
charges (not necessarily equal) on the unit sphere.

We will use the version of the Gegenbauer polynomials P
(n)
i , i = 0, 1, . . .,

orthogonal with respect to the measure dµ(t) := �n(1� t2)(n�3)/2 dt, t 2 [�1, 1],
where �n := � (n2 )/

p
⇡� (n�1

2 ) is a normalizing constant that makes µ a proba-

bility measure, and P
(n)
i (1) = 1 for normalization. Note that P

(n)
i (t) is exactly

the Jacobi polynomial P
(↵,�)
i (t) with parameters ↵ = � = (n � 3)/2 and the

corresponding normalization.

Given a weighted code (C,W ), we consider its (weighted) moments

M`(C,W ) :=

N
X

i,j=1

wiwjP
(n)
` (xi · xj), ` � 1.

It follows from the positive definiteness of the Gegenbauer polynomials that
M`(C,W ) � 0 for every positive integer `. The case of equality for some ` is
especially interesting.

Definition 1. A weighted spherical code (C,W ) is called a weighted spherical
design of strength ⌧ (or a weighted spherical ⌧ -design) if its first ⌧ weighted
moments are zero; i.e.,

M`(C,W ) = 0 for 1  `  ⌧.

In the equi-weighted case w1 = · · · = wN = 1/N one obtains the classical
spherical designs introduced in the seminal paper of Delsarte, Goethals, and
Seidel [8] from 1977. The weighted case can be traced back to 1960’s and 70’s
when cubature formulas for approximate calculation of multiple integrals on
S
n�1 were investigated [14, 16, 15, 13, 10].

Utilizing linear programming, we shall obtain lower bounds for the weighted
h-energy Eh(N,W ) for all absolutely monotone potentials h, that is h(k)(t) � 0
for every k � 0. Our bounds are universal in the sense of Levenshtein (there is a
bound for every weighted code), and in the sense of defining parameters (nodes
and weights) which are independent of the potential function. Also, assuming
existence of attaining codes, the bounds are universal in the sense of Cohn-
Kumar (every attaining code is optimal with respect to all absolutely monotone
potentials). We present examples, where our bounds are very close to the actual
weighted energy of certain weighted spherical designs.

Our bounds are derived as certain solutions of linear programs which arise
naturally as generalizations of the equi-weighted frameworks from [5]. We present
some examples for weighted codes which have attracted attention previously for
their high degree of precision as cubature formulas by Sobolev [14], Goethals
and Seidel [10] and Waldron [17].



2 A general linear programming lower bound for

weighted codes

Given a potential function h, we consider the set of polynomials

Lh := {f(t) =

deg(f)
X

i=0

fiP
(n)
i (t) : f(t)  h(t), t 2 [�1, 1), fi � 0, i = 1, . . . , deg(f)},

where (P
(n)
i )1i=0 are the Gegenbauer polynomials as defined in the Introduc-

tion. The set Lh will be the feasible domain for linear programming bounds for
Eh(N,W ).

Theorem 1. If f(t) =
Pdeg(f)

i=0 fiP
(n)
i (t) 2 Lh, then for every weighted (C,W )

code on S
n�1 with cardinality N

Eh(C,W ) � Ef (C,W ) � f0 � f(1)

N
X

i=1

w2
i . (1)

Consequently,

Eh(N,W ) � sup
f2Lh

 

f0 � f(1)

N
X

i=1

w2
i

!

=: ULB(W,h). (2)

If the equality is attained in (1) for some (C,W ) and f , then f(xi ·xj) = h(xi ·xj)
for every i 6= j and f`M`(C,W ) = 0 for every ` 2 {1, 2, . . . , deg(f)}.

Proof. The first inequality in (1) follows obviously from f  h in [�1, 1). For
the second, we estimate Eh(C,W ) from below as follows:

Eh(C,W ) =
X

i 6=j

wiwjh(xi · xj) �
X

i 6=j

wiwjf(xi · xj)

=
X

i,j

wiwjf(xi · xj)� f(1)

N
X

i=1

w2
i

=

deg(f)
X

`=0

f`
X

i,j

wiwjP
(n)
` (xi · xj)� f(1)

N
X

i=1

w2
i

= f0 +

deg(f)
X

`=1

f`M`(C,W )� f(1)
N
X

i=1

w2
i

� f0 � f(1)

N
X

i=1

w2
i .

We used that the coefficient in front of f0 is
PN

i,j=1 wiwj =
⇣

PN
i=1 wi

⌘2

= 1,

the inequalities f` � 0 for i � 1, and
P

i,j wiwjP
(n)
` (xi · xj) � 0 because of the

positive definiteness of the Gegenbauer polynomials. The conditions for equality
follow immediately from the above. ⇤



Of particular importance is the case when the supremum in (2) is taken over
the class of polynomials Lh \ P⌧ , where P⌧ denotes the polynomials of degree
at most ⌧ . This yields the linear program

maximize f0 � f(1)

N
X

i=1

w2
i

subject to f 2 Lh \ P⌧ .

(3)

For particular parameters h, W , and ⌧ we shall obtain explicit solutions of this
linear program.We shall denote the maximized objective function by ULB⌧ (W,h).
Note that

S(W ) :=

N
X

i=1

w2
i � 1

N
(4)

with equality if and only if w1 = w2 = · · · = wN = 1/N (i.e., in the classical
case of equi-weighted code). Then it follows that

f0 � f(1)
N
X

i=1

w2
i  f0 �

f(1)

N
,

where the right-hand side coincides exactly with the quantity which appears in
the linear programming for the equi-weighted codes. This means that the bounds
from Theorem 1 will be always less than the bounds for the corresponding equi-
weighted case. Anyway, it is important to see that the quantity

NW :=
1

S(W )
= 1/

N
X

i=1

w2
i

has to play an important role since it is going to determine the parameters (nodes
and weights) of the universal lower bound in the same way as the cardinality
N does in [5]. Clearly, as the weights wi get closer in value to one another,
as measured by the variance varW := (1/N)S(W ) � 1/N2 the quantity NW

approaches N from below. The inequality (4), written as N � NW , means that
NW is always less than or equal to the cardinality N (with equality only for
equal weights) and serves to replace N in the framework from [5].

We introduce the necessary parameters as follows. Assume that

D(n, ⌧) < NW  D(n, ⌧ + 1), (5)

where ⌧ = 2k � 1 + ", " 2 {0, 1} shows the parity of ⌧ , and

D(n, ⌧) :=

✓

n+ k � 2 + "

n� 1

◆

+

✓

n+ k � 2

n� 1

◆

is the Delsarte-Goethals-Seidel bound [8]. The numbers D(n, ⌧), ⌧ = 1, 2, 3, . . .,
define a partition of the positive integers into consecutive intervals. It is not
necessary to have NW and N in the same interval (D(n, ⌧), D(n, ⌧ + 1)] but
examples below will suggest that better bounds are obtained for closer values of
NW and N .



3 Universal lower bound for weighted codes

Let the parameters (↵i, ⇢i)
k�i+"
i=0 be determined (see the explanations in the next

paragraph) by the equation

L⌧ (n, s) = NW , ⌧ = 2k � 1 + ", " 2 {0, 1}, (6)

where L⌧ (n, s) is the Levenshtein bound (see [12, Section 6]). The Levenshtein

bound L⌧ (n, s) is valid (and optimal in a sense) in the interval s 2
h

t1,1�"
k�1+", t

1,"
k

i

,

where ta,bk is the largest zero of the Jacobi polynomial P
(a+(n�3)/2,b+(n�3)/2)
k (t),

i � 1, t1,10 = �1 by definition.
The numbers (↵i)

k�i+"
i=0 are the roots of the equation (6) w.r.t. s taking into

account that the largest root ↵k�1+" equals s and ↵0 = �1 whenever " = 1 (this
is for even ⌧ = 2k). Then the weights (⇢i)

k�i+"
i=0 are computed by plugging in the

quadrature formula (7) (see the next paragraph) the Lagrange basis polynomials
`i(t) =

Q

j 6=i(t�↵j) for i = 0, 1, . . . , k� 1+ ". Explicit formulas for (⇢i)
k�i+"
i=0 in

the case " = 0 (this is for odd ⌧ = 2k� 1) were found in [4, Appendix A4]. Note

also the identity
Pk�1+"

i=0 ⇢i = 1�1/NW which is obtained via plugging f(t) = 1
in (7).

It is instrumental for our approach that (see [12, Theorem 5.39]) the quadra-
ture formula (it is a 1/NW -quadrature rule in the framework from [5])

f0 =
f(1)

L⌧ (n, s)
+

k�1+"
X

i=0

⇢if(↵i) =
f(1)

NW
+

k�1+"
X

i=0

⇢if(↵i) (7)

holds true for every polynomial f(t) = f0 +
Pdeg(f)

i=1 fiP
(n)
i (t) of degree at most

2k � 1 + ".
Like in the equi-weighted case (see [5, 6] and [12]) we will need two facts

from the theory of orthogonal polynomials. Namely, the Gegenbauer expansions

of the polynomials P
(n)
i (t)P

(n)
j (t) and (t + 1)P

(n+2)
i (t)P

(n+2)
j (t) have nonnega-

tive coefficients for every i, j. These properties are called Krein conditions and
strengthened Krein conditions, respectively.

We are now in a position to solve the linear program (3).

Theorem 2. (ULB for weighted codes) Let N and W be such that (5) is satis-
fied. Let h be absolutely monotone. Then

Eh(N,W ) � ULB⌧ (W,h) :=

k�1+"
X

i=0

⇢ih(↵i),

where the parameters (↵i, ⇢i)
k�1+"
i=0 are defined as above. This bound can not be

improved by any polynomial from Lh \ P⌧ .

Proof. Let f be the unique Hermite interpolant to h at the nodes (↵i)
k�i+"
i=0

counted twice except for the case ↵0 = �1 (equivalent to ⌧ = 2k) which is



counted once. Then deg(f)  ⌧ , so (7) along with the interpolation conditions
f(↵i) = h(↵i) yields

f0 � f(1)

N
X

i=1

w2
i =

k�1+"
X

i=0

⇢if(↵i) =

k�1+"
X

i=0

⇢ih(↵i).

Moreover, it follows from the Rolle’s Theorem (or from the error formula for the
Hermite interpolation) that f(t)  h(t) for every t 2 [�1, 1).

Let " = 0. Order the multiset of nodes as

(↵0,↵0,↵1,↵1, . . . ,↵k�1,↵k�1) = (t1, t2, . . . , t2k�1, t2k)

(i.e., t2i+1 = t2i+2 = ↵i for i = 0, 1, . . . , k�1; we need to make difference between
the first and the second ↵0, etc.). Then the Newton interpolation formula

f(t) = h(t1) +

2k�1
X

r=1

h[t1, . . . , tr+1]

r
Y

j=1

(t� tj)

(see, for example, [3]) implies that the polynomial f is a nonnegative linear
combination of the constant 1 (obtained when m = 0) and the partial products

m
Y

j=1

(t� tj), m = 1, 2, . . . , 2k � 1. (8)

It follows from [7, Theorem 3.1] that all polynomials (t�↵0)(t�↵1) . . . (t�↵i),

i = 0, 1, . . . , k�2, expand in the system {P
((n�1)/2,(n�3)/2)
i (t)} with nonnegative

coefficients. Since every polynomial P
((n�1)/2,(n�3)/2)
i (t) is positive definite (this

follows directly from the Christoffel-Darboux formula which relates this poly-
nomial to the Gegenbauer polynomials), the Krein condition implies that all
partial products (8) with m  2k � 2 are positive definite. The only remaining
partial product (with m = 2k � 1 in (8)) is exactly the Levenshtein polynomial

f
(n,s)
2k�1(t) which is positive definite as well (see, for example, [12, Theorem 5.42]).
Therefore f is positive definite.

The case " = 1 is dealt similarly by using the strengthened Krein condition.

If g(t) =
Pdeg(g)

i=0 giP
(n)
i (t) is a polynomial from Lh \ P⌧ , then (7) can be

applied to see that the bound of g is

g0�g(1)
N
X

i=1

w2
i =

k�1+"
X

i=0

⇢ig(↵i) 
k�1+"
X

i=0

⇢ih(↵i) = f0�f(1)
N
X

i=1

w2
i = ULB⌧ (W,h),

which completes the proof. ⇤

We next establish the monotonicity of ULB⌧ (W,h) in NW .

Theorem 3. Let V = {v1, . . . , vN} and W = {w1, . . . , wN} be two sets of pos-

itive weights such that
PN

i=1 vi =
PN

i=1 wi = 1, and suppose that NV < NW



(equivalent to S(V ) > S(W )). Let ⌘ and ⌧ be the positive integers associated with
V and W , respectively, via (5). Then ⌧ � ⌘ and ULB⌧ (W,h) > ULB⌘(V, h). If
⌧ = ⌘, then the nodes (↵i)

k�1+"
i=0 for NW are strictly greater than the correspond-

ing nodes for NV .

Proof. The inequality NV < NW implies via (5) that ⌧ � ⌘. If the equality
holds, then (6) and the monotonicity of the Levenshtein function L(n, s) imply
the monotonicity of the nodes ↵i; i.e. these are increasing with s = ↵k�1+" which
is increasing with NW (see [4]).

Let f and g be the (unique) polynomial solutions of (3) associated with W
and V , respectively. Then, as g 2 Lh \ P⌘ ⇢ Lh \ P⌧ the optimality of f over
Lh \ P⌧ yields

ULB⌧ (W,h) = f0 �
f(1)

NW
� g0 �

g(1)

NW
> g0 �

g(1)

NV
= ULB⌘(V, h).

Note that g has positive Gegenbauer coefficients and g(1) = g0+ · · ·+ g⌘ > 0. ⇤

The potential h(t) = �
p

2(1� t) fits in the above scheme because 2 + h(t)
is absolutely monotone. This potential corresponds to the Fejes Tóth problem6

[9] and it has been studied by many authors (see, for example, [2, 1] and ref-
erences therein). The degrees 1-3 ULB for weighted codes and this particular
potential (and their asymptotic consequences) can be extracted from [1] simply
by replacing N by NW and dividing by N2

W .

4 Examples

In contrast to difficulties for derivation of more explicit analytic expressions of
ULB⌧ for ⌧ � 3, the numerical calculations of bounds for given n, N , and W
can be easily programmed. In this subsection we present examples, where the
ULB and the actual weighted energy are computed.

Example 1. Let C32 ⇢ S
2 consist of the 12 vertices of an icosahedron, each of

weight wI = 20/(21 · 32) = 5/168, and the 20 vertices of a dodecahedron, each
of weight wD = 36/(35 · 32) = 9/280. The vertices of the icosahedron are the
centers of the spherical caps defined by the twelve faces of the dodecahedron. In
geometry, this is called pentakis dodecahedron or kisdodecahedron. Note that
(C32,W ) is a weighted spherical 9-design (see [10, Section 5], [11, Example 3.6]).

We proceed with computations of the actual weighted energy of (C32,W ) and
the corresponding ULB9(W,h) for the potential function h(t) = 1/

p

2(1� t).
The weighted energy of (C32,W ) is computed from the information about its

structure from Table 1. There are two types of points – I and D, respectively,
according to whether they belong to the icosahedron or the dodecahedron, which
define the two different distance distributions (the last two rows of Table 1). We

set a :=
q

1� 2/
p
5/
p
3 and b :=

q

1 + 2/
p
5/

p
3 to shorten the notation.

6 Other famous absolutely monotone potentials are named after Riesz, Newton, Gauss,
etc.



Table 1. Structure of (C,W ).

Inner products

−1 ±1/
√
5 ±a ±b ±1/3 ±

√
5/3

Type Number of points

I 1 5 5 5 0 0

D 1 0 3 3 6 3

Therefore,

Eh(C32,W ) =
X

i 6=j

wiwjh(xi · xj) = 12w2
I

⇣

h(�1) + 5h(�1/
p
5) + 5h(1/

p
5)
⌘

+120wIwD (h(a) + h(�a) + h(b) + h(�b))

+ 20w2
D

⇣

h(�1) + 6h(�1/3) + 6h(1/3) + 3h(�
p
5/3) + 3h(

p
5/3)

⌘

⇡ 0.8050318.

We have NW = 1/
P32

i=1 w
2
i ⇡ 31.9565217 which is close to the cardinality

32 of C32. We compute the ULB for n = 3, NW , and h(t) = 1/
p

2(1� t). Since
both N = 32 and NW belong to the interval (D(3, 9), D(3, 10)] = (30, 36], we
have ⌧ = 9 and solve the equation L9(3, s) = NW to derive the parameters
(↵i, ⇢i)

4
i=0 as shown approximately in Table 2.

Table 2. Parameters (αi, ρi)
4
i=0 for (n,N,NW ) = (3, 32,≈ 31.9565).

i 0 1 2 3 4

αi −0.941 −0.674 −0.2109 0.328 0.779

ρi 0.077 0.1889 0.2636 0.261 0.17777

Therefore, Eh(32,W ) � ULB9(W,h) =
P4

i=0 ⇢ih(↵i) ⇡ 0.804786, which is
very close to the actual h-energy ⇡ 0.8050318 of (C32,W ).

Example 2. We consider a weighted union Ccp of a cube and a cross-polytope
on S

n�1 defined by their duality, i.e. each pair of antipodal vertices of the cross-
polytope defines an symmetry axis of two opposite faces of the cube. Each point
of the cross-polytope has weight wp := 1/(2n + n2) and each point of the cube
has weight wc := n2/2n(2n+n2). It is easy to see that the sum of weights of the
union is 1 and, furthermore, Ccp is a weighted spherical 5-design on S

n�1.

In small dimensions, the codes Ccp look as follows. On S
2, each point of the

cross-polytope will have weight 1/15 and each point of the cube will have weight
3/40, giving a weighted spherical 5-design of 14 points; on S

3, each point of the
cross-polytope will have weight 1/24 and each point of the cube will also have
weight 1/24 (we get a 24-cell, a equi-weighted spherical 5-design).



For any h, the actual h-energy of Ccp is

Eh(Ccp,W ) = 2nw2
p (h(�1) + (2n� 2)h(0)) + 2n+1nwpwc

✓

h

✓

1p
n

◆

+ h

✓

� 1p
n

◆◆

+2nw2
c

n�1
X

k=0

✓

n

k

◆

h

✓

�1 +
2k

n

◆

.

Table 3. Approximate parameters and ULB for (n,N,NW ) = (n, 2n + 2n, NW ), 2 ≤
n ≤ 7, and h(t) = (2(1− t))−(n−2)/2 (the Newton potential).

n NW N (αi) (ρi) ULB Energy of (Cqp,W )

−1 1/8

2 8 8 −
√
2/2 1/4 0.875 0.875
0 1/4√
2/2 1/4

−0.8580 0.1832
3 13.95 14 −0.2701 0.3832 0.7058 0.7070

0.5225 0.3618

−0.8173 0.1384
4 24 24 −0.2575 0.4339 0.5781 0.5798

0.4749 0.3858

−0.7428 0.1424
5 41.48 42 −0.1910 0.4680 0.4825 0.4901

0.4684 0.3653

−0.6753 0.1540
6 71.44 76 −0.1327 0.4996 0.4074 0.4314

0.4705 0.3323

−1 0.0022
7 121.16 142 −0.5936 0.1785 0.3462 0.3993

−0.0772 0.5165
0.4748 0.2944

The ULB5(W,h) for corresponding parameters (n, |Ccp| = 2n + 2n, NW ),
where

NW =
1

P2n+2n

i=1 w2
i

=
1

2nw2
p + 2nw2

c

=
n(n+ 2)22n

n3 + 2n+1
,

can be computed as follows. We solve L5(n, s) = NW , that is

�

(n+ 2)(n+ 3)s2 + 4(n+ 2)s� n+ 1
�

(1� s)

2s (3� (n+ 2)s2)
=

(n+ 2)22n

n3 + 2n+1

to obtain the nodes (↵i)
2
i=0. Then the quadrature weights (⇢i)

2
i=0 are computed

by setting the Lagrange basis polynomials in (7). The ULB in dimensions 2 
n  7, calculated for the Newton potential h(t) = 1/(2(1� t))(n�2)/2, are shown



in the sixth column of Table 3. It is ULB7(W,h) for n = 2, ULB5(W,h) for
3  n  6 and ULB6(W,h) for n = 7. Note that the bound ULB7(W,h) is
attaned for n = 2, where it coincides with the ULB for the equi-weighted case
[5] (recall that the attaining (Cqp,W ) is an equi-weighted regular 8-gon).
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Abstract. Civino et al. have characterised diffusion layers that expose
an SPN to vulnerability from differential cryptanalysis when employing
alternative operations coming from groups isomorphic to the translation
group on the message space. In this study, we present a classification of
diffusion layers that exhibit linearity in parallel alternative operations
for ciphers with �-bit s-boxes, enabling the possibility of an alternative
differential attack simultaneously targeting all the s-boxes within the
block. Furthermore, we investigate the differential behaviour with respect
to alternative operations for all classes of optimal �-bit s-boxes, as defined
by Leander and Poschmann (����). Our examination reveals that certain
classes contain weak permutations w.r.t. alternative differential attacks,
and we leverage these vulnerabilities to execute a series of experiments.

Keywords: Differential cryptanalysis · Alternative operations · �-bit
s-boxes

� Introduction and preliminaries

Differential cryptanalysis, originally introduced by Biham and Shamir in the
late ����s [�] and subsequently generalised [�, �, ��, ��], has become one of the
cornerstones for evaluating the robustness of various symmetric primitives. The
fundamental premise of differential cryptanalysis is that analysing the differences
(differentials) between pairs of plaintexts and the corresponding ciphertexts can
unveil undesired biases. While differentials can be calculated with respect to any
difference operator, regardless of which operation is responsible for performing
the sum with the round key during encryption, it is usual for the two operations
to coincide. For this reason, classical differential cryptanalysis of a cipher in which
the key is xor-ed to the state is typically performed by studying the distribution
of xor-differentials, whose propagation is traditionally prevented by the combined
action of the linear diffusion layer and the s-box layer. In particular, s-boxes are
pivotal for ensuring the security of almost all contemporary block ciphers, serving
as the primary non-linear component within the cipher, particularly in the case
of SPNs. Equally relevant, the efficiency of a cipher is significantly influenced by
the size of the s-boxes. In practical scenarios, s-boxes typically have a size of � or
� bits, with � being the most popular choice for ciphers designed to operate on
power-constrained devices [�, �, �, ��]. It is clear that the selection of appropriate
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s-boxes is critical to fortify the cipher against various types of attacks. In this
sense, Leander and Poschmann have classified �-bit s-boxes which are optimal
w.r.t. standard criteria that guarantee poor propagation of xor-differentials [��].

A recent line of research is focused on the study of alternative difference
operators for the differential cryptanalysis of xor-based ciphers [�, �, ��, ��].
These new operators are designed to induce a novel operation with respect to
which differentials are computed. Within this approach, a large class of possible
alternative operations has been studied, all of which have in common that they are
induced by a group of translations isomorphic to the group of translations acting
on the message space by means of the xor addition with the key. In the context
of an SPN, where the encrypted message is generated by iterating through a
sequence of s-box layers, (xor)-linear diffusion, and xor-based key addition layers,
altering the differential operator yields a dual impact. On one hand, it is highly
probable that differentials traverse the s-box layer more effectively, given that its
non-linearity is maximised with respect to xor. On the other hand, differentials
do not deterministically propagate through the diffusion layer, as observed in
classical scenarios. This pivotal limitation effectively restricts the success of the
attack only to cases where the target layer is linear not only concerning xor but
also with respect to the operation under consideration for computing differentials.

A first successful attempt based on the study of the alternative differential
properties of a xor-based toy cipher of the SPN family has shown that it is possible
to highlight a bias in the distribution of the differences calculated compared to an
alternative operation which is instead not detectable by means of the standard
xor-differential-based approach [��]. The target cipher featured five �-bit s-boxes
and the operation used to perform the attack acted as the xor on the last four
s-boxes, while on the first one matched with one of the alternative sums defined
by Calderini et al. [�], coming from another translation groups. The advantage
of employing an alternative operation in this case was only derived from the
benefit induced by a single s-box. In a more recent experimental approach [�],
we showed that better results in a similar context can be obtained using an
alternative parallel operation, in which every s-box can be targeted. In this case,
the diffusion layer of the cipher was determined through an algorithm, ensuring
that it adheres to the constraint of linearity with respect to both xor and the
target operation.

In this paper, we establish a general result that, in the context of an SPN
with �-bit s-boxes, characterises all xor-linear maps that are concurrently linear
with respect to a parallel alternative operation (Sec. �). This finding enables
the execution of a differential attack wherein each s-box affected by a non-
trivial differential contributes to the final differential probability with increased
efficacy compared to the conventional xor differentials. Additionally, differentials
propagate deterministically through the linear layer in this scenario. Moreover,
we examine all possible alternative operations on � bits and investigate the
differential properties of optimal �-bit s-boxes, following the classification outlined
by Leander and Poschmann (a comparable methodology, albeit in the context of
modular addition, was recently employed by Zajac and Jókay [��]). Our analysis
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demonstrates that each class comprises potentially weak permutations (Sec. �).
When coupled with a diffusion layer as described earlier, these permutations
have the potential to render the cipher susceptible to differential attacks with
alternative operations. To substantiate our findings, we conclude the paper by
presenting experimental results on a family of toy SPNs (Sec. �).

�.� Notation

Let V be an n-dimensional vector space over F2 which represents the message
space. We write V = V1 ü V2 ü · · · ü Vb, where each Vj is isomorphic to a vector
space B such that dim(B) = s on which every s-box acts. Thefore we have n = sb.
We denote by {ei}

n
i=1 the canonical basis of V . If G is any finite group acting on V ,

for each g œ G and v œ V we denote the action of g on v as vg, i.e. we use postfix
notation for every function evaluation. We denote by Sym(V ) the symmetric
group acting on V , i.e. the group of all permutation on the message space, by
GL(V, +) the group of linear transformations, and by AGL(V, +) the group of
affine permutations. The identity matrix of size l is denoted by 1l and the zero
matrix of size l ◊ h is denoted by 0l,h, or simply 0l if l = h. We finally denote by
T+ the group of translations on V , i.e. T+ := {‡a | a œ V, x ‘æ x + a} < Sym(V ).
We remind that the translation ‡k acts on a vector x in the same way the
key-addition layer of an SPN acts xor-ing the round key k to the message x, i.e.
x‡k = x + k.

�.� Preliminaries on alternative operations

An alternative operation on V can be defined given any �-elementary abelian
regular subgroup T < AGL(V, +), that we can write as T = {·a | a œ V },
where ·a is the unique element in T which maps 0 into a. Consequently, for all
a, b œV, we can define a ¶ b := a·b, resulting in (V, ¶) forming an additive group.
The operation ¶ induces a vector space structure on V , with the corresponding
group of translation being T¶ = T . Additionally, for each a œ V , there exists
Ma œ GL(V, +) such that ·a = Ma‡a, meaning that for every x œ V ,

x ¶ a = x·a = xMa + a.

It is also assumed throughout that T+ < AGL(V, ¶), where AGL(V, ¶) is the
normaliser in Sym(V ) of T¶ (i.e., the group of affine permutations w.r.t. ¶). This
crucial technical assumption renders the key-addition layer an affine operator
concerning the new operation, enabling the prediction of how the key addition
affects the differentials with a reasonable probability. Further details on this
aspect, which may not be directly relevant to the scope of the current paper, can
be found in Civino et al. [��]. In this context, we define the weak keys subspace as

W¶ := {a | a œ V, ‡a = ·a} = {k | k œ V, ’x œ V x ¶ k = x + k}.

W¶ is a vector subspace of both (V, +) and (V, ¶). It is known [�, �] that W¶ is
non empty and that

2 ≠ (n mod 2) Æ dim(W¶) Æ n ≠ 2. (�)
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Moreover, up to conjugation we can always assume W¶ to be the span of the last
d canonical vectors of V [�]. This allows to represent the new sum in a canonical

way [�]: for each a œ V there exists a matrix Ea œ F
(n≠d)◊d
2 such that

Ma =

3

1n≠d Ea

0d,n≠d 1d

4

. (�)

Fixing such an operation as above is therefore equivalent to defining the matrices

Mei
=

3

1n≠d Eei

0d,n≠d 1d

4

=

Q

c

c

c

a

1n≠d

bi,1

...
bi,n≠d

0d,n≠d 1d

R

d

d

d

b

for 1 Æ i Æ n, where bi,j œ F
d
2. The assumptions on T¶ and on W¶ imply that

Eei
= 0 for n ≠ d + 1 Æ i Æ n, bi,i = � and bi,j = bj,i. In conclusion, the

following result characterises the criteria that the vectors bi,j must adhere to in
order to define an alternative operation as previously described.

Theorem � ([��]). Let T¶ < AGL(V, +) be �-elementary, abelian, and regular,

and let d Æ n ≠ 2. The operation ¶ induced by T¶ is such that d = dim(W¶),
T+ < AGL(V, ¶), and W¶ = Span{en≠d+1, . . . , en} if and only if the matrix

«¶ œ (F2d)(n≠d)◊(n≠d) defined as

«¶ :=

Q

c

c

c

a

b1,1 b1,2 · · · bn≠d,1

b2,1 b2,2 · · · bn≠d,2

...
...

. . .
...

bn≠d,1 bn≠d,2 · · · bn≠d,d

R

d

d

d

b

is zero-diagonal, symmetric and no F2-linear combination of its columns is the

null vector. The matrix «¶ is also called the defining matrix for ¶.

In the subsequent discussion, the term alternative operation refers to an additive
law ¶ on V as defined above.

� Parallel operations and their automorphism groups

Let ¶ be an alternative operation on the block-sized space V . As outlined in the
introduction, if ⁄ œ GL(V, +) represents a (xor)-linear diffusion layer, and ∆ œ V

is an input difference traversing ⁄, predicting the output difference with respect
to ¶, i.e.,

x⁄ ¶ (x ¶ ∆)⁄,

becomes inherently challenging without additional assumptions on ⁄ that ensure
a sufficiently high predictive probability. For this reason, the examination of the
following object becomes crucial: in cryptographic terms, it contains potential
diffusion layers that allow differentials, whether computed with respect to xor or
¶, to propagate with a probability of �.
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Definition �. Let ¶ be an alternative operation on V . Let us define

H¶ := {f œ GL(V, +) | ’a, b œ V : (a ¶ b)f = af ¶ bf}

to be the subgroup of GL(V, +) of permutations that are linear w.r.t. the operation

¶. More precisely, denoting by AGL(V, ¶) the normaliser in Sym(V ) of T¶ and

by GL(V, ¶) the stabiliser of 0 in AGL(V, ¶), we have H¶ = GL(V, +) fl GL(V, ¶).

The structure of the group H¶ in its most general case has not been understood yet.
This work addresses this challenge in a specific scenario, guided by assumptions
that are deemed reasonable within the context of differential cryptanalysis.

Assumption �: ¶ is a parallel operation. While the operation ¶ could,
in theory, be defined on the entire message space V , studying the differential
properties of the s-box layer, considered as a function with 2n inputs, is impractical
for standard-size ciphers. For this reason, we focus on operations applied in a
parallel way to each s-box-sized block, i.e., ¶ = (¶1, ¶2, . . . , ¶b), where for each
1 Æ j Æ b, ¶j is an operation on Vj . In this scenario, every operation is acting
independently on the s-box space B, regardless of the others. This motivates the
following definition.

Definition �. Let ¶ be an alternative operation on V . We say that ¶ is parallel
if for each 1 Æ j Æ b there exists an alternative operation ¶j on Vj such that for

each x, y œ V we have

x ¶ y =

Q

c

a

x1

...

xb

R

d

b
¶

Q

c

a

y1

...

yb

R

d

b
=

Q

c

a

x1 ¶1 y1

...

xb ¶b yb

R

d

b
,

where x = (x1, x2, . . . , xb), y = (y1, y2, . . . , yb) and each component belongs to the

s-box-sized space, i.e., xj , yj œ Vj
≥= B for 1 Æ j Æ b.

In the notation of Sec. �.�, up to a block matrix conjugation, we can assume
that every element x œ V is associated to a translation ·x = Mx‡x, with

Mx =

Q

c

a

M¶1

x1
· · · 0

...
. . .

...
0 · · · M¶b

xb

R

d

b

where M¶i
xi

is the matrix associated to the translation ·xi
with respect to the

sum ¶i, as defined in Eq. (�). Notice that it can be assumed, without loss of
generality, that all the operations ¶j coincide.

Assumption �: dim(W¶j
) = s ≠ 2. According to Eq. (�), every operation

¶j defined at the s-box level must satisfy the bound dim(W¶j
) Æ s ≠ 2, being

s = dim(B). The situation where the (upper) bound is reached holds particular
interest for several reasons, as elaborated further in Civino et al. [��]. Notably,
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– if the s-box size s is four, the case where dim(W¶j
) = 2 is the sole possibility;

– the considered case stands today as the only one for which the structure of
H¶j

is well understood.

For the reader’s convenience, we present the classification result for H¶j
obtained

by Civino et al. in the considered case. Additionally, it is worth recalling that,
according to Theorem �, any ¶j for which dim(W¶j

) = s ≠ 2 is determined by a
single non-null vector b œ (F2)s≠2.

Theorem � ([��]). Let ¶j be an alternative operation such that d = dim(W¶j
) =

s ≠ 2 defined by a vector b œ (F2)s≠2, and let ⁄ œ (F2)s◊s. The following are

equivalent:

– ⁄ œ H¶j
;

– there exist A œ GL((F2)2, +), D œ GL((F2)d, +), and B œ (F2)2◊d such that

⁄ =

3

A B

0d,2 D

4

and bD = b.

We are now prepared to present the first novel contribution of this work,
wherein we characterise the group H¶ for a parallel operation ¶ = (¶1, ¶2, . . . , ¶b)
with components at the s-box level satisfying dim(W¶j

) = s ≠ 2. For the sake of
simplicity and without losing generaly, we assume that the b operations at the
s-box level coincide.

Theorem �. Let ¶ = (¶1, ¶2, . . . , ¶b) be a parallel alternative operation on V

such that for each 1 Æ j Æ b ¶j is an alternative operation on Vj. Let us

assume that every ¶j is such that dim(W¶j
) = s ≠ 2 and it is defined by a vector

b œ (F2)s≠2. Let ⁄ œ (F2)n◊n. Then, ⁄ œ H¶ if and only if it can be represented

in the block form

⁄ =

Q

c

c

c

c

c

a

A11 B11

C11 D11
· · ·

A1b B1b

C1b D1b

...
. . .

...

Ab1 Bb1

Cb1 Db1
· · ·

Abb Bbb

Cbb Dbb

R

d

d

d

d

d

b

,

where

�. Aij œ (F2)2◊2 such that for each row and each column of blocks there exists

one and only one non-zero Aij ; moreover, all the non-zero Aij are invertible;

�. Bij œ (F2)2◊(s≠2);

�. Cij = 0(s≠2)◊2;

�. Dij œ (F2)(s≠2)◊(s≠2) such that if Aij is zero, then bDij = �, and if Aij is

invertible, then bDij = b. Moreover, the matrix D defined by

D :=

Q

c

a

D11 · · · D1b

...
. . .

...

Db1 · · · Dbb

R

d

b
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is invertible.

Proof. The proof involves standard linear algebra techniques, but its extensive
and laborious nature necessitates omission due to page limitations.

� Differential properties of optimal s-boxes

In this section we delve into the examination of the differential properties exhib-
ited by all possible �-bit permutations, with respect to all possible alternative
operations defined as in Sec. �.�. In particular, we set s = 4 and therefore consider
B = F

4
2. We begin by acknowledging that, despite the compact size of the space,

the count of alternative operations on B is considerable:

Proposition � ([�]). There exist ��� different elementary abelian regular sub-

groups groups T¶ in AGL(F4
2, +). Furthermore, each of them satisfies T+ <

AGL(F4
2, ¶) and dim W¶ = s ≠ 2 = 2.

We recall that given a permutation f œ Sym(B) we can define

”f (a, b) = #{x œ B | xf + (x + a)f = b}.

The differential uniformity of f is defined as ”f := maxa”=0 ”f (a, b) and it
represent the primary metric to consider when assessing the resistance of an
s-box to differential cryptanalysis [��].

Several cryptographic properties, including differential uniformity, are pre-
served under affine equivalence for vectorial Boolean functions. Two functions,
denoted as f and g, are considered affine equivalent if there exist two affine
permutations, – and —, in AGL(V, +) such that g = —f–.

Leander and Poschmann [��] provided a comprehensive classification (up to
affine equivalence) of permutations over B = F

4
2. They identified �� classes with

optimal cryptographic properties. All �� classes exhibit a classical differential
uniformity equal to �, which represents the best possible value for s-boxes in
Sym(B). The representatives of the �� classes are listed in Table �, where each
vector is interpreted as a binary number, most significant bit first.

�.� Dealing with affine equivalence

Our goal is to analyse the differential uniformity of each optimal s-box class, with
respect to every alternative operation ¶ on B. The definitions given above can
be generalised in the obvious way setting ”¶

f (a, b) = #{x œ B | xf ¶ (x ¶ a)f = b}
and calling ¶-differential uniformity of f the value ”¶

f := maxa”=0 ”¶
f (a, b).

It is noteworthy that, unlike in the case of classic differential uniformity,
the value of ”¶

f is not invariant under affine equivalence. However, verifying
the ¶-differential uniformity of g2Gig1 for any optimal class and every pair
g1, g2 œ AGL(V, +) would be impractical. Therefore, a reduction in the number
of permutations to be checked is necessary, and for this purpose, we make
the following observations. First, similar to the classical case, the ¶-differential
uniformity is preserved under affine transformations w.r.t. ¶.
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Table �. Optimal �-bit permutations according to Leander and Poschmann

0x 1x 2x 3x 4x 5x 6x 7x 8x 9x Ax Bx Cx Dx Ex Fx

G0 0x 1x 2x Dx 4x 7x Fx 6x 8x Bx Cx 9x 3x Ex Ax 5x

G1 0x 1x 2x Dx 4x 7x Fx 6x 8x Bx Ex 3x 5x 9x Ax 12x

G2 0x 1x 2x Dx 4x 7x Fx 6x 8x Bx Ex 3x Ax Cx 5x 9x

G3 0x 1x 2x Dx 4x 7x Fx 6x 8x Cx 5x 3x Ax Ex Bx 9x

G4 0x 1x 2x Dx 4x 7x Fx 6x 8x Cx 9x Bx Ax Ex 5x 3x

G5 0x 1x 2x Dx 4x 7x Fx 6x 8x Cx Bx 9x Ax Ex 3x 5x

G6 0x 1x 2x Dx 4x 7x Fx 6x 8x Cx Bx 9x Ax Ex 5x 3x

G7 0x 1x 2x Dx 4x 7x Fx 6x 8x Cx Ex Bx Ax 9x 3x 5x

G8 0x 1x 2x Dx 4x 7x Fx 6x 8x Ex 9x 5x Ax Bx 3x 12x

G9 0x 1x 2x Dx 4x 7x Fx 6x 8x Ex Bx 3x 5x 9x Ax 12x

G10 0x 1x 2x Dx 4x 7x Fx 6x 8x Ex Bx 5x Ax 9x 3x 12x

G11 0x 1x 2x Dx 4x 7x Fx 6x 8x Ex Bx Ax 5x 9x Cx 3x

G12 0x 1x 2x Dx 4x 7x Fx 6x 8x Ex Bx Ax 9x 3x Cx 5x

G13 0x 1x 2x Dx 4x 7x Fx 6x 8x Ex Cx 9x 5x Bx Ax 3x

G14 0x 1x 2x Dx 4x 7x Fx 6x 8x Ex Cx Bx 3x 9x 5x 10x

G15 0x 1x 2x Dx 4x 7x Fx 6x 8x Ex Cx Bx 9x 3x Ax 5x

Proposition �. Given f œ Sym(B) and g1, g2 œ AGL(B, ¶) we have

”¶
g1fg2

(a, b) = ”¶
f (g2(a), g≠1

1 (b)).

Moreover, Proposition � establishes that for any ¶ derived from a translation
group in AGL(B, +), the +-translations are affine with respect to ¶. This initial
observation allows us to narrow down the analysis to g2Gig1 with g1, g2 œ

GL(B, +), which still remains impractical. Furthermore, considering that H¶ =
GL(B, +) fl GL(B, ¶), Proposition � establishes that left and right multiplication
by elements in H¶ preserves both ¶ and +-differential uniformity. It is noteworthy
that during this process, the rows of the matrix containing all the ”¶

f (a, b) (DDT¶)
are merely shuffled, thereby preserving the highest element of each row. Therefore,
the following conclusion can be easily obtained.

Proposition �. Let g1, g2 œ GL(B, +) and f œ Sym(B). For any gÕ
1 œ g1H¶

and gÕ
2 œ H¶g2 we have

”¶
g2fg1

= ”¶
gÕ

2
fgÕ

1

.

Proof. Take h1, h2 œ H¶ such that gÕ
1 = g1h1 and gÕ

2 = h2g2. Then,

xgÕ
2fgÕ

1 ¶ (x ¶ a)gÕ
2fgÕ

1 = xh2g2fg1 ¶ (xh2 ¶ ah2g2fg1)h1,

implying that ”¶
gÕ

2
fgÕ

1

(a, b) = ”¶
g2fg1

(ah2, bh≠1
1 ). So, ”¶

gÕ

2
fgÕ

1

= ”¶
g2fg1

. ÙÛ

The final proposition allows us to focus solely on g1 and g2 within the left
and right cosets of H¶. These reductions facilitate the analysis of the potential
¶-differential uniformities attainable across all classes of optimal permutations
for the ��� conceivable alternative sums defined over B. For each of the ���
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alternative operations, we systematically explored each of the �� classes, following
the described procedure, and we recorded the ¶-differential uniformity for every
candidate. To streamline the presentation, we calculated the average across the
��� operations and presented the consolidated results in Tab. �.

Table �. Avg. number of functions with given ¶-differential uniformity

Class
”

¶

� � � � �� �� �� ��

G0 � ��� ���� ���� ��� �� � ��

G1 � ���� ����� ���� ��� � � ��

G2 � ���� ���� ���� ��� �� � ��

G3 � ����� ������ ����� ���� � � �

G4 � ���� ���� ���� ��� � � �

G5 � ���� ����� ���� ��� � � �

G6 � ���� ����� ���� ��� � � �

G7 � ���� ����� ���� ��� �� � �

G8 � ���� ����� ���� ��� �� � ��

G9 � ���� ���� ���� ��� �� � �

G10 � ���� ���� ���� ��� �� � �

G11 � ���� ���� ���� ��� � � �

G12 � ���� ����� ���� ��� � � �

G13 � ���� ���� ���� ��� �� � �

G14 � ���� ���� ���� ��� �� � �

G15 � ���� ���� ���� ��� �� � �

In our examination, we observe that if, for a given operation ¶, certain
elements within an affine equivalence class yield a ¶-differential uniformity ”,
then this value ” is achieved by some element in the entire class for all alternative
operations. Our analysis reveals that certain optimal functions may exhibit the
highest differential uniformity (��) for alternative operations, specifically the
classes G0 (containing, e.g., the s-box S� of Serpent [�]), G1 (containing, e.g., the
s-box of Present [�]), G2, and G8. Conversely, the classes G3, G4, G5, G6, G11,
and G12 demonstrate more favorable behavior concerning alternative operations.

� Experiments on a ��-bit block cipher with �-bit s-boxes

In this concluding section, we aim to apply the results obtained above to a family
of (toy) ciphers. These ciphers may exhibit security under classical differential
cryptanalysis but reveal vulnerabilities to the alternative differential approach.

In our experiments, we set V = F
16
2 , n = 4, and s = 4, defining ¶ as the

parallel sum by applying the alternative operation defined by the vector b = (0, 1)
to each 4-bit block. Moreover, all our ciphers will feature the �-bit permutation
“ : F

4
2 æ F

4
2 defined by the sequence (0x, Ex, Bx, 1x, 7x, Cx, 9x, 6x, Dx, 3x, 4x, Fx,

2x, 8x, Ax, 5x) as its s-box. Precisely, four copies of “ will act on the ��-bit block.
Notice that the s-box “ œ belongs to G0 and has ”γ = 4 and ”¶

γ
= 16.
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In all the experiments described below, we consider the SPN whose i-th round
is obtained by the composition of the parallel application of the s-box “ on every
�-bit block, a ‘diffusion layer’ ⁄ sampled random from H¶, and the xor with the
i-th random round key. We study the difference propagation in the cipher in a
long-key scenario, i.e., the key-schedule selects a random long key k œ F

16r
2 where

r is the number of rounds. To avoid potential bias from a specific key choice,
we conduct our experiments by averaging over 215 random long-key generations.
This approach gives us a reliable estimate of the expected differential probability
for the best differentials in this cipher.

In ��� distinct executions, spanning a range of rounds from � to ��, we calcu-
lated the discrepancy between the most effective ¶-trail and +-trail. To manage
computational resources, our focus was narrowed down to input differences with
a Hamming weight of �.

The results are depicted in Fig. �, where each dot represents an individual
simulation. The x axis corresponds to the negative logarithm of the probability of
the best ¶ differential, while the y axis represents the difference between that value
and the negative logarithm of the probability of the best + differential. Darker
dots indicate a higher number of rounds, as explained in the legend. Notably,
about half of the dots lie above zero, suggesting that the best ¶ differential con-
sistently outperforms the best + differential until they become indistinguishable.
Interestingly, this convergence often occurs when the ¶ probability is already very
close to ��, providing potential candidates for our distinguisher attack.

Fig. �. Comparison of + and ¶ trails for random mixing layers



Optimal s-boxes against alternative operations ��

References

�. Banik, S., Bogdanov, A., Isobe, T., Shibutani, K., Hiwatari, H., Akishita,
T., Regazzoni, F.: Midori: A block cipher for low energy. In: Advances in
Cryptology–ASIACRYPT ����: ��st International Conference on the Theory
and Application of Cryptology and Information Security, Auckland, New
Zealand, November ��–December �, ����, Proceedings, Part II ��, pp. ���–
���, Springer (����)

�. Biham, E., Anderson, R., Knudsen, L.: Serpent: A new block cipher proposal.
In: International workshop on fast software encryption, pp. ���–���, Springer
(����)

�. Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of Skipjack reduced to
�� rounds using impossible differentials. Journal of Cryptology ��, ���–���

(����)
�. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems.

Journal of CRYPTOLOGY �, �–�� (����)
�. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Rob-

shaw, M.J., Seurin, Y., Vikkelsoe, C.: Present: An ultra-lightweight block
cipher. In: Cryptographic Hardware and Embedded Systems-CHES ����: �th
International Workshop, Vienna, Austria, September ��-��, ����. Proceedings
�, pp. ���–���, Springer (����)

�. Borisov, N., Chew, M., Johnson, R., Wagner, D.: Multiplicative differentials.
In: Fast Software Encryption: �th International Workshop, FSE ���� Leuven,
Belgium, February �–�, ���� Revised Papers �, pp. ��–��, Springer (����)

�. Calderini, M., Civino, R., Invernizzi, R.: Differential experiments using parallel
alternative operations. Journal of Mathematical Cryptology ��(�), ��������

(����)
�. Calderini, M., Civino, R., Sala, M.: On properties of translation groups in

the affine general linear group with applications to cryptography. Journal of
Algebra ���, ���–��� (����)

�. Caranti, A., Dalla Volta, F., Sala, M.: Abelian regular subgroups of the affine
group and radical rings. Publ. Math. Debrecen ��(�), ���–��� (����)

��. Civino, R., Blondeau, C., Sala, M.: Differential attacks: using alternative
operations. Designs, Codes and Cryptography ��, ���–��� (����)

��. Knudsen, L.R.: Truncated and higher order differentials. In: Fast Software
Encryption: Second International Workshop Leuven, Belgium, December
��–��, ���� Proceedings �, pp. ���–���, Springer (����)

��. Leander, G., Poschmann, A.: On the classification of � bit s-boxes. In:
Arithmetic of Finite Fields: First International Workshop, WAIFI ����,
Madrid, Spain, June ��-��, ����. Proceedings �, pp. ���–���, Springer
(����)

��. Nyberg, K.: Differentially uniform mappings for cryptography. In: Workshop
on the Theory and Application of of Cryptographic Techniques, pp. ��–��,
Springer (����)

��. Shibutani, K., Isobe, T., Hiwatari, H., Mitsuda, A., Akishita, T., Shirai, T.:
Piccolo: an ultra-lightweight blockcipher. In: Cryptographic Hardware and



�� M. Calderini et al.

Embedded Systems–CHES ����: ��th International Workshop, Nara, Japan,
September ��–October �, ����. Proceedings ��, pp. ���–���, Springer (����)

��. Teşeleanu, G.: The security of quasigroups based substitution permutation
networks. In: International Conference on Information Technology and Com-
munications Security, pp. ���–���, Springer (����)

��. Wagner, D.: The boomerang attack. In: International Workshop on Fast
Software Encryption, pp. ���–���, Springer (����)

��. Zajac, P., Jókay, M.: Cryptographic properties of small bijective s-boxes
with respect to modular addition. Cryptography and Communications ��,
���–��� (����)



On the Properties of the Ortho-Derivatives
of Quadratic Functions

Alain Couvreur1,2, Anne Canteaut1, Léo Perrin1
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Abstract. Quadratic APN vectorial functions are under intense scrutiny
due to their role e.g. in the big APN problem. Recently, a new tool has
emerged to investigate their differential properties: the ortho-derivative.
We present new results about this object. We first generalize it as a
family of functions that can be defined for any quadratic function, even
if not APN. We highlight a relation between the preimages sets of the
ortho-derivative and the set of bent components, and between the ortho-
derivative and some EA-invariants recently introduced by Kaleyski. We
also show it is possible to reconstruct a quadratic function given its
ortho-derivative.
In the APN case, we prove that its algebraic degree is always at most
equal to n − 2 using a previously unknown relation between the ortho-
derivatives and cofactor matrices.

Keywords: Boolean Functions · Quadratic · APN · Ortho-derivative

1 Introduction

Let F2 = {0, 1} be the field with two elements and n > 0 be an integer. We

use x · y =
Pn�1

i=0 xiyi to denote the scalar product of two elements of Fn
2 . The

functions from F
n
2 to F2 are Boolean functions, and those mapping F

n
2 to F

m
2

are vectorial Boolean functions. In this article, we only consider the case where
m = n. We let Fn denote the set of all functions from F

n
2 to itself. Each of

the coordinates of a vectorial Boolean function has a unique representation as
a polynomial of n variables in F2 called its algebraic normal form. The degree
of this representation is the algebraic degree of the Boolean function, and the
algebraic degree of a function of Fn is the maximum algebraic degree of its
coordinates.

A linear combination of some coordinates is a component, and the distance
between a component x 7! b ·F (x) and a linear function x 7! a ·x is given by the
Walsh coefficient WF (a, b) =

P
x2F

n
2
(�1)a·x+b·F (x). The maximum of |WF (a, b)|

taken over all a 2 F
n
2 and b 2 F

n
2\{0} is the linearity of F , denoted L(F ).

The derivative of a vectorial Boolean function F is defined for any a 2 F
n
2 and

is the function �aF mapping x to F (x+a)+F (x). The number of solutions x of



the equation �aF (x) = b is denoted by �F (a, b) and its maximum, taken over all
a 6= 0 and all b in F

n
2 , is called the differential uniformity [19] of the function F

and is denoted by uF . When uF = 2, we say that F is Almost Perfect Nonlinear
(APN). The existence of APN permutations when n is even is an open problem
(known as the big APN problem), except when n = 6 where a sporadic solution
was found by Dillon et al. [6].

A function F 2 Fn is a collection of n coordinates, each being a Boolean
function mapping Fn

2 to F2. Each of these coordinates has a unique representation
as a polynomial of n variables in F2 called its algebraic normal form. Its degree
is the algebraic degree of the Boolean function, and the algebraic degree of a
function of Fn is the maximum algebraic degree of its coordinates.

Let F 2 Fn be a quadratic APN function. Then there exists a unique function
⇡F 2 Fn such that ⇡F (0) = 0, ⇡F (a) 6= 0 for a 6= 0, and

for any (a, x) 2 (Fn
2 )

2, ⇡F (a) ·
�
F (x) + F (x+ a) + F (0) + F (a)

�
= 0. (1)

Functions corresponding to such ⇡F have been studied before [3,20,17,13,14,11],
and ⇡F was called the ortho-derivative of F in [8]. In that paper, the authors
showed that the ortho-derivative was a powerful tool to investigate the CCZ- and
EA-equivalence of quadratic APN functions, as shown by its later use in [2,21].

In this article, we present some new results on the ortho-derivative. First,
we generalize it to any quadratic function, and in particular to non-APN ones
(Section 2). The non-trivial ortho-derivatives of a quadratic function F then
form a family of functions that reduces to a single function if and only if F is
APN. We then discuss the algebraic degree of ortho-derivatives, and in particular
prove that this degree is at most equal to n� 2 for APN functions (Section 3).

We then shift our focus to more practical aspects. First, we prove that some
EA- and CCZ-invariants introduced in [7,16] can be derived from the Hamming
weight of the ortho-derivative in the case of quadratic APN functions. Then,
we show that it is possible to define and to implement an operation that is the
inverse of ortho-derivation, namely the ortho-integration (Section 4).

2 The Ortho-Derivatives of any Quadratic Function

We first recall the definition of the ortho-derivative, generalize it to any quadratic
function, and describe some basic properties (Section 2.1). Then, we investigate
the values an ortho-derivative can take, and highlight some simple relations
between those and the Walsh spectrum of the function in Section 2.2.

2.1 Definition and Basic Properties

Definition 1. Let F : Fn
2 ! F

n
2 be a quadratic function. We say that ⇡ : Fn

2 !
F
n
2 is an ortho-derivative for F if, for any x and a in F

n
2 ,

⇡(a) ·
�
F (x) + F (x+ a) + F (0) + F (a)

�
= 0 .

The set of all ortho-derivatives for a given F is denoted by ⇧(F ).

2



It is worth noting that ⇧(F ) always contains several ortho-derivatives since ⇡(0)
can take any value and, for any a 6= 0, 0 is a valid value for ⇡(a). Therefore, we
say in the following that an ortho-derivative ⇡ 2 ⇧F is non-trivial if ⇡(0) = 0
and ⇡(a) 6= 0 for all nonzero a.

Among all quadratic functions, APN functions are characterized by the fact
that they have a single non-trivial ortho-derivative. More generally, the number
of ortho-derivatives depends on the differential spectrum of the quadratic func-
tion. In order to establish this, we need the following properties (the proof is
omitted due to the page-count limitation).

Proposition 1. Let F : F
n
2 ! F

n
2 be a quadratic function. For any nonzero

a 2 F
n
2 , we define

PF (a) = {x : 9⇡ 2 ⇧(F ) with ⇡(a) = x}.

Then, for any a 2 F
n
2 , PF (a) is a linear space and #PF (a) = maxb2F

n
2
�F (a, b).

Moreover,

#{(a, b) : ⇡(a) = b for some ⇡ 2 ⇧(F )} = 2�n
X

a,b2F
n
2

�F (a, b)
2.

We can then easily establish a link between the APN property and the number
of ortho-derivatives.

Corollary 1. Let F 2 Fn be a quadratic function. Then, the following condi-
tions are equivalent:

(i) F is APN.
(ii) There exists a unique nontrivial ⇡ 2 ⇧(F ).
(iii) #{(a, b) : ⇡(a) = b for some ⇡ 2 ⇧(F )} = 2n + 2(2n � 1).

If we do not assume that F is quadratic, a similar characterization holds for
generalized crooked functions (see Definition 4.2 in [9]).

2.2 On the values an ortho-derivative can take

In the following, we study the set

S = {(a, b) : ⇡(a) = b for some ⇡ 2 ⇧(F )} .

This set can be partitioned into linear spaces PF (a) whose dimensions are deter-
mined by the differential spectrum of F . The existence of vector space partitions
with a given type, i.e., such that the dimensions of the involved vector spaces are
given, is a well-known problem studied by many authors, see [15] for a survey.

We can also partition the same set according to the values of b, i.e. into sets

TF (b) = {a : 9⇡ 2 ⇧(F ) with ⇡(a) = b}.

This provides another partition of S into vector spaces, as already established
by Gorodilova in [14].

3



Proposition 2. Let F 2 Fn be a quadratic function. For any b 2 F
n
2 , we define

TF (b) = {a : 9⇡ 2 ⇧(F ) with ⇡(a) = b} .

Then, TF (b) = LS(Fb) where LS(Fb) denotes the set of all linear structures of
the component x 7! b ·F (x). It follows that, for any b, TF (b) is a linear subspace
of Fn

2 whose dimension has the same parity as n.

We deduce that the partition of S into TF (b), b 2 F
n
2 is derived from the Walsh

spectrum of F , while the partition into PF (a), a 2 F
n
2 corresponds to its differ-

ential spectrum.

Proposition 3. Let F 2 Fn be a quadratic function. Then, for any of its non-

trivial component Fb, we have L(Fb) = 2
n+dimTF (b)

2 .

We then easily recover the characterization of APN functions from their
Walsh spectrum (see e.g [4, Corollary 1]):

X

µ 6=0

X

�2F
n
2

W4
F (�, µ) = (2n � 1)23n+1 .

Indeed, Proposition 3 combined with Corollary 1 leads to the following equivalent
formulation.

Corollary 2. Let F : Fn be a quadratic function and, for any d, 0 6 d 6 n,

Bd = #{b 6= 0 : L2(Fb) = 2n+d}

= #{b 6= 0 : b has 2d preimages by some ⇡ 2 ⇧(F )} .

Then,
Pn

d=1 Bd(2
d � 1) > 2n � 1, with equality if and only if F is APN.

Proof. Recall that ⇡(0) can take any value, and that ⇡(a) = 0 is a valid value

for any a. Let fBd = #
�
b : b has 2d preimages by some ⇡ 2 ⇧(F )

 
, and consider

the set S = {(a, b) : ⇡(a) = b for some ⇡ 2 ⇧(F )}. Then, the size of S is

given by
P

b TF (b) =
Pn

d=0
fBd2

d. Using that L(F0) = 2n, we get
Pn

d=0
fBd2

d =Pn

d=0 Bd2
d + 2n. Moreover,

nX

d=0

Bd2
d =

nX

d=0

Bd(2
d � 1) +

nX

d=0

Bd =

nX

d=1

Bd(2
d � 1) + (2n � 1) .

It follows that #S =
Pn

d=1 Bd(2
d � 1) + 2n+1 � 1. From Corollary 1, we know

that #S > 2n + 2(2n � 1) with equality if and only if F is APN. Equivalently,Pn

d=1 Bd(2
d � 1) > 2n � 1 with equality if and only if F is APN. ut

2.3 Relations between the properties of a function and those of its
ortho-derivative

n odd. When n is odd, all TF (b) have an odd dimension, implying that they
can never have dimension zero. Then, if F is APN, we have that B1 = 2n � 1,
or equivalently that the only nontrivial ⇡ is a permutation. It follows that F is
almost bent, as proved in [10].

4



n even. When n is even, the values taken by (B0, . . . , Bn) are not unique. Some
conditions on B0 can be deduced from Corollary 2.

Corollary 3. Let n > 4 be an even integer and F : Fn
2 ! F

n
2 be a quadratic

APN function. Let B0 denote the number of bent components of F . Then B0 >

2⇥ (2n�1)
3 , with equality if and only if B2 = (2n�1)

3 and all other Bd vanish.
Moreover, B0 ⌘ 2 mod 4, and Bn = 0.

Proof. The first statement corresponds to Corollary 3 in [4]. It is a straightfor-
ward consequence of

Pn

d=1 Bd(2
d � 1) = 2n � 1, where Bd = 0 for all odd d.

Therefore

2n � 1 > 3

 
nX

d=2

Bd

!
= 3(2n � 1�B0),

leading to B0 > 2⇥ (2n � 1)/3 with equality if and only if Bd = 0 for all d > 2.
Also, from

nX

d=2

Bd(2
d � 1) =

nX

d=2

Bd2
d �

nX

d=2

Bd = 2n � 1,

we deduce that

4
nX

d=2

Bd2
d�2 � (2n � 1�B0) = 2n � 1

which implies that B0 ⌘ 2 mod 4. We can also use the same characterization to
prove that a quadratic APN function cannot have linearity 2n. Indeed, if Bn > 0,
then the only possibility isBn = 1 andB0 = 2n�2. Let us assume w.l.o.g that the
component of F with linearity 2n corresponds to the last coordinate. Then, the
function F 0 from F

n
2 into F

n�1
2 derived from F by removing the last coordinate

is bent, i.e. all its components are bent. However, bent functions only exist if the
number of outputs is at most half of the number of inputs, i.e. n � 1 6

n
2 [18].

This cannot occur if n > 4. ut

The previous corollary shows that, for any quadratic APN function F , L(F ) 6
2n�1. It is worth noticing that such quadratic APN functions have been exhib-
ited for n = 6, 8. All classes of quadratic APN functions of 6 variables have the
lowest possible value of B0, i.e. B0 = 42, except one which satisfies

B0 = 46, B2 = 16 and B4 = 1 .

For n = 8 variables, the quadratic APN functions exhibited in [22,2,1] have six
different spectra corresponding to the following (Bd)d6n:

B0 = 170, B2 = 85,
B0 = 174, B2 = 80, B4 = 1,
B0 = 178, B2 = 75, B4 = 2,

B0 = 182, B2 = 70, B4 = 3,
B0 = 186, B2 = 65, B4 = 4,
B0 = 190, B2 = 64, B4 = 0, B6 = 1.
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Thanks to Corollary 2, we can deduce some properties of the differential
spectrum of the ortho-derivative ⇡F from the Walsh spectrum of a quadratic
APN function F .

Corollary 4. Let F 2 Fn be a quadratic APN function, ⇡F be its nontrivial
ortho-derivative, and Bd be the number of components of F with squared linearity
2n+d. Then, for all d, we have that at least Bd(2

d�1) entries in the DDT of ⇡F

are greater than or equal to 2d � 2. In particular,

Bd > 0 =) u⇡F
> 2d � 2 .

For instance, it can be checked that the nontrivial ortho-derivative of the previ-
ously mentioned 8-bit APN function with B6 = 1 has differential uniformity 62.
The converse statement of this corollary is false: there are 8-bit APN functions
with an ortho-derivative with a differential uniformity of 30 but for which Bd = 0
for all d > 3, whereas a true converse statement would have implied that B4 > 0.

3 On the degree of the ortho-derivative(s)

In [14], Gorodilova studied the ortho-derivatives of quadratic APN functions and
identified several of their properties. In particular, she proved that the algebraic
degree of a nontrivial ortho-derivative is either n or at most n � 2, and as an
immediate corollary, that the nontrivial ortho-derivative is of degree at most
n� 2 when n is odd (because then the ortho-derivative is a permutation).

In the case where n is even, she could only conjecture that all nontrivial
components of the ortho-derivative have algebraic degree exactly equal to n� 2
(Conjecture 2 of [14]). In this section, we show that a nontrivial ortho-derivative
of an APN function is always of degree at most n� 2.

Let F : Fn
2 ! F

n
2 be a quadratic APN function. We define J as the function

mapping an element of Fn
2 to the binary n⇥ n matrix such that, for all x 2 F

n
2 ,

Ji,j(x) = �ejFi(x) +�ejFi(0). If F is quadratic, then J is the linear part of its
Jacobian matrix. From [8, Prop. 14], we know that, for every x and a,

J(x)⇥ a = J(a)⇥ x = �aF (x) +�aF (0) . (2)

As established in [8], F is APN if and only if Rank(J(a)) = n � 1 for all
a 6= 0. It is a direct consequence of the fact that a function is APN if and only
if the image of �aF is of dimension n� 1. We deduce that both the left and the
right kernels of J(a) contain a single non-trivial element. First, we remark that
Equation (2) immediately implies

J(a)⇥ a = �aF (a) +�aF (0) = F (a+ a) + F (a) + F (a+ 0) + F (0) = 0 ,

meaning that the right kernel of J(a) is {0, a}. On the other hand, for any c 2 F
n
2 ,

we have that cTJ(a)x is the scalar product of c with an element in the image of
�aF . Let ⇡ be the nontrivial ortho-derivative of F . By definition, we then have
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⇡(a)TJ(a)x = 0, 8x 2 F
n
2 . We deduce that ⇡(a)TJ(a) = 0, meaning that the

left kernel of J(a) consists of {0,⇡(a)T }.
For any n⇥ n binary matrix M , we denote Cof(M) its cofactors matrix:

Cof(M) =

2
64

det(C0,0) · · · det(C0,n�1)
...

...
det(Cn�1,0) · · · det(Cn�1,n�1)

3
75 ,

where det(Ci,j) is the (i, j) minor of M , i.e. the determinant of the submatrix
obtained by removing Row i and Column j from M . Furthermore, it is well-
known that

Cof(M)TM = MCof(M)T = Id⇥ det(M) .

Let us apply this equality to J(a). As it is of rank n� 1 < n, we have that

Cof(J(a))TJ(a) = J(a)Cof(J(a))T = 0 . (3)

Lemma 1. The cofactors matrix of J(a) can be written

Cof (J(a)) =

2
64

⇡0(a)a0 · · · ⇡0(a)an�1

...
...

⇡n�1(a)a0 · · · ⇡n�1(a)an�1

3
75 =

2
64

⇡0(a)
...

⇡n�1(a)

3
75 [a0, . . . , an�1] .

Proof. As we have established, the right kernel of J(a) contains only 0 and a.
This implies that the row space of Cof(J(a)) is contained in {0, a}. On the other
hand, since the left kernel of J(a) is {0,⇡(a)}, we have that the column space of
Cof(J(a)) must be contained in that space.

Since J(a) has rank n � 1, it has at least one nonzero minor. Hence, its
cofactor matrix is nonzero. Thus, the only possibility is Cof(J(a)) = ⇡(a) · aT .

ut

A direct corollary of this lemma is that each minor of J(a) is equal to det(Ci,j) =
⇡i(a)aj .

Since F is quadratic, the entries in J(a) are linear functions in a. Next, from
Leibniz’ formula on an (n� 1)⇥ (n� 1) binary matrix M :

det(M) =
X

�2Sn−1

n�2Y

i=0

mi,�(i) , (4)

we deduce that the degree of each entry in Cof(J(a)) is a Boolean function of
degree at most n� 1 in a as it is a sum of products of n� 1 linear functions.

We deduce that deg(⇡i(a)aj) is at most n� 1, for all j. Indeed, suppose that
there exists a term of degree n � 1 in the ANF of ⇡i for some i, and that it
corresponds to

Q
k 6=j ak. Then the entry at position (i, j) in the cofactors matrix

Cof(J(a)) would be a function of degree n, which is impossible. The next theorem
follows.
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Theorem 1. If ⇡ is the nontrivial ortho-derivative of a quadratic APN function
of Fn

2 , then deg(⇡) 6 n� 2.

Corollary 5. Let F 2 Fn be a quadratic function. Then it is not APN if and
only if at least one of its nontrivial ortho-derivatives is of algebraic degree n.

4 On Ortho-Integration

We call ortho-integration the process that is the inverse of ortho-derivation.

Definition 2 (Ortho-Integral). Let F : Fn
2 ! F

n
2 be a quadratic function, and

let ⇧(F ) be the set of its ortho-derivatives. For all ⇡ 2 ⇧(F ), we say that F is
an ortho-integral of ⇡.

An ortho-integral is not unique: for any affine function A of Fn
2 , F and F +A

have the same ortho-derivatives. This does not necessarily imply that their DDTs
are identical, though it is worth noting that all known examples of APN functions
with the same DDT differ from an affine function [5,13]. In general, it is unclear
whether there exists other “collisions”, i.e. distinct functions with identical ortho-
derivatives.

Recall that, for any ⇡ in ⇧(F ) and any x 2 F
n
2 , it holds that ⇡(a)

TJ(a)x = 0.
Since this equation is linear in x for all a, it is sufficient to consider elements x in
a basis of Fn

2 . Then, recovering J(a) for all a can be achieved by solving a linear
system with n(2n � 1) equations (one per basis vector and per value a 6= 0) and
n
�
n
2

�
unknowns in F2, each modeling the presence of a specific degree 2 product

in a specific output coordinate.
We have implemented such an algorithm and included it in sboxU.3 Using

it, we could verify that the ortho-derivative of F where F is any of the known
quadratic APN functions on 6, 7, and 8 bits has a single ortho-integral (up to
the addition of an affine function), namely F itself. Computing all the ortho-
integrals of 25,624 8-bit quadratic APN functions takes about 20min on a regular
desktop computer, meaning roughly half a second per function.

5 Relation with some EA- and CCZ-Invariants

Kaleyski and his coauthors, motivated by two different problems, introduced
several invariants for Sboxes in [7] and [16]. The CCZ-invariant presented in [7],
called distance invariant, applies to APN functions and provides a lower bound
on the distance between two APN functions. It has a simplified form in the case
of quadratic APN functions. It is observed that this CCZ-invariant takes many
distinct values for APN functions in dimension 8, while it takes the same value
for all APN functions in dimension 7 constructed in [12]. Zero-sum invariants
are EA-invariant presented in [16], and are denoted by ⌃F

k (0). It turns out that

3 https://github.com/lpp-crypto/sboxU, see in particular file quadratic.py start-
ing from line 62.
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they are closely related to ortho-derivatives, as we will see below. First, we recall
both definitions.

Proposition 4 (Zero-sum invariants [16]). Let ⌃F
k (t) be the multiset defined

by ⌃F
k (t) =

nPk

i=1 F (xi) : x1 + · · ·+ xk = t
o
. Then, for any G = A1 �F �A2 +

A3, where A1 and A2 are affine permutations and A3 an affine function, we have

⌃G
k (0) =

⇢
{A1(s) +A1(0) : s 2 ⌃F

k (0)} if k is even
{A1(s) +A3(0) : s 2 ⌃F

k (A2(0))} if k is odd.

It follows that the multiplicities of the elements in ⌃F
k (0), i.e. the values MF

k (s) =

#{(x1, . . . , xk) : x1 + · · · + xk = 0 and
Pk

i=1 F (xi) = s} where s 2 F
n
2 are an

EA-invariant for any even k. The same property holds for odd k if A2 is linear.

Proposition 5 (Distance invariant [7]). Let �F be the multiset defined as
�F = {�F (b, c) : b, c 2 F

n
2} where

�F (b, c) = #{a 2 F
n
2 : 9x 2 F

n
2 , F (x) + F (x+ a) + F (a+ c) = b} .

Then �F is invariant under CCZ-equivalence. Moreover, if F is quadratic, then
�F is equal to the multiset �0

F = {�F (b, 0) : b 2 F
n
2} where each element is

repeated 2n times.

In the case of quadratic functions, and when k = 4, it holds that these
invariants are related with each other, and with the ortho-derivative. To establish
this, we first re-write the definition of MF

4 (s) and obtain the following lemma.

Lemma 2. It holds that MF
4 (s) = #{(x, a, b) : �a�bF (x) = s}.

The following proposition then links MF
4 (s) to �F (s, 0), i.e. it links the zero-

sum invariant to the distance invariant.

Proposition 6. F is APN if and only if M4(0) = 22n+1+22n�2n+1. Moreover,
if degF = 2,

MF
4 (s) = 2n#{(a, b) : �a�bF (0) = s},

and if F is a quadratic APN function with F (0) = 0, then for any nonzero
s 2 F

n
2 we have �F (s, 0) = 2�(n+1)MF

4 (s).

Proof. Because of Lemma 2, MF
4 (s) = #{(x, a, b) : �a�bF (x) = s}.

APN functions are characterized by the fact that their second-order deriva-
tives�b�aF (x) never take the value 0 unless ha, bi does not form a 2-dimensional
vector space, which occurs if a = 0, or b = 0 or a = b, i.e. 2(2n�1)+2n = 3⇥2n�2
times. For each such case, �a�bF is the all-zero function, implying that

MF
4 (0) > 22n+1 + 22n � 2n+1 ,

with equality if and only if F is APN.
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When F is quadratic, all its second-order derivatives are constant, implying
that �b�aF (x) takes the same value for all x 2 F

n
2 . Moreover, if F (0) = 0, then

�F (s, 0) = #{a 2 F
n
2 : 9b 2 F

n
2 ,�aF (b) +�aF (0) = s} .

Then, if F is a quadratic APN function, each function b 7! �aF (b) +�aF (0) is
a linear 2-to-1 function when a 6= 0, which implies that, for any s 6= 0,

2�nMF
4 (s) = #{(a, b) : �aF (b) +�aF (0) = s}

= 2#{a : 9b 2 F
n
2 ,�aF (b) +�aF (0) = s} .

Up to a factor 2n+1, the values in �0
F then correspond to the values MF

4 (s) when
s varies in F

n
2 \ {0}. ut

We are now ready to describe the connection between the invariants of Ka-
leyski and the ortho-derivative. It is described by the following proposition.

Proposition 7. Let F be a quadratic APN function and ⇡ be its nontrivial
ortho-derivative. Then, for any s 2 F

n
2 \ {0}, MF

4 (s) = 2n+1(2n � 1 � wt(⇡s))
where ⇡s denotes the component function x 7! s ·⇡(x). Most notably, if n is odd,
then ⇡ is a permutation, which implies the following equivalent statements:

MF
4 (s) =

(
22n+1 + 22n � 2n+1 if s = 0

22n � 2n+1 if s 6= 0
, �F (b, 0) =

(
2n if b = 0

2n�1 � 1 if b 6= 0 .

Proof. By definition of ⇡, when F is a quadratic APN function, for any nonzero
a 2 F

n
2 , the image set of b 7! �a�bF (0) is the hyperplane composed of all

elements orthogonal to ⇡(a). It follows that, when s 6= 0,

MF
4 (s) = 2n#{(a, b) : �a�bF (0) = s} = 2n#{(a, b), a 6= 0 : �a�bF (0) = s}

= 2n+1#{a 6= 0 : s 2 h⇡(a)i?} = 2n+1#{a 6= 0 : s · ⇡(a) = 0}

= 2n+1(2n � 1� wt(⇡s)) . ut

Thus, for quadratic APN functions, up a to simple transformation, the multiset
{MF

4 (s) : s 6= 0} (and the equivalent invariant �0
F ) used in [7,16] is included in

the multiset formed by the Walsh spectrum of the ortho-derivative.

6 Conclusion

The practical usefulness of the ortho-derivative was established in [8], and then
confirmed in [2] and [21]. In this work, we have shed some more light on the
properties of this object, and in particular established an upper bound on its
degree. We also showed how to obtain a function given its ortho-derivative, which
begs the question: what makes a function an ortho-derivative? It indeed remains
an open problem to find other properties to efficiently determine whether a given
function may be an ortho-derivative, since such a result could now allow us to
construct new quadratic APN functions
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Abstract. We study the n-variable Boolean functions which keep their
algebraic degree unchanged when they are restricted to any (affine) hy-
perplane, or more generally to any affine space of a given co-dimension
k. For cryptographic applications it is of interest to determine functions
f which have a relatively high degree and also maintain this degree when
restricted to affine spaces of co-dimension k for k ranging from 1 to as
high a value as possible. This highest value will be called the restriction
degree stability of f , denoted by deg stab(f). We give several necessary
and/or sufficient conditions for f to maintain its degree on spaces of
co-dimension k. The value of deg stab(f) is determined for functions
which are direct sums of monomial as well as for functions of degrees
r 2 {1, 2, n � 2, n � 1, n}; we also determine the symmetric functions
which maintain their degree on any hyperplane. Finally, using our pre-
vious results and some computer assistance, we determine the behaviour
of all the functions in 8 variables, therefore determining the optimal ones
(i.e. with highest value of deg stab(f)) for each degree.

Keywords: Boolean functions· affine spaces· restriction · algebraic degree.

1 Introduction

Boolean functions are used in many research areas; of particular relevance to our
work is their use in cryptography, sequences and algebraic coding theory. The
existence of some cryptanalysis techniques (such as correlation, fast correlation
and algebraic attacks on stream ciphers, linear and differential attacks on block
ciphers, see e.g. [10, 5, 1]), leads to several criteria required for the Boolean func-
tions used in symmetric cryptography. These cryptographic functions should in

? The research of the first author is partly supported by the Norwegian Research
Council and the two other authors are supported by EPSRC, UK (EPSRC grant
EP/W03378X/1)



particular have a high algebraic degree. Indeed, almost all cryptosystems using
Boolean functions (e.g. the filter or combiner model of stream ciphers) can be
attacked if the considered functions have low algebraic degree (e.g. fast alge-
braic attacks [4, 1]). It is also important that this algebraic degree remains high
even if the function is restricted to an affine hyperplane or to an affine space
of low co-dimension to avoid “guess and determine attacks” where the attacker
would make assumptions resulting in the fact that the input to the function
is restricted to a particular affine space. In [2], an infinite class of functions is
described whose algebraic degree remains unchanged when they are restricted
to any affine hyperplane, but no general characterization was given.

In this paper, we start a systematic study of the functions which keep their
degree unchanged when restricted to affine spaces of a certain co-dimension k.
In Section 3 we define a “degree-drop” space of a function f as being an affine
space A such that the restriction f|A has degree strictly lower than the degree
of f . We also define the notion of restriction degree stability for a function f ,
denoted by deg stab(f), as being the largest k for which f has no degree-drop
space of co-dimension k. The largest value of deg stab(f) over all functions of
degree r in n variables will be denoted by deg stab(r, n). Functions which reach
this value would be optimal from the point of view of their degree stability, and
therefore of interest in cryptographic constructions.

Section 4 gives several necessary and/or sufficient conditions for a function f
to have no degree-drop space of co-dimension k. Notably, we show that a space
A of co-dimension k is not a degree-drop space for f if and only if deg(f1A) =
deg(f)+k (where 1A is the indicator function of A). Furthermore, we prove that
a function f of degree r has a degree-drop hyperplane if and only if it is affine
equivalent to a function x1g + h where g is homogeneous with deg(g) = r � 1
and deg(h) < r. We generalize this condition to any k. We then find more
constructive sufficient conditions for the non-existence of degree-drop spaces.

In Section 5 we examine particular classes of functions. The main result,
Theorem 5, shows that for functions f which are direct sums of p monomials
of degree r (i.e. no variable appears in more than one monomial) the smallest
co-dimension for which a degree-drop space exists is p. Therefore deg stab(f) =
p� 1, which also gives a lower bound of deg stab(r, n) � bn

r
c � 1. We also show

in Theorem 6 that symmetric functions of degree r with 2  r  n� 2 have no
degree-drop hyperplane if and only if r is even.

Finally, in Section 6 we use our previous results alongside computer calcula-
tions to determine the number of degree-drop spaces for all the functions in up
to 8 variables. To do so, it suffices to examine the representatives of affine equiv-
alence classes computed by [7] and [8]. We determined thus all the 8-variable
functions which have optimal restriction degree stability .

2 Preliminaries

We denote by F2 the finite field with two elements and by F
n
2 the vector space over

F2 of all binary vectors of length n. A n-variable Boolean function f : Fn
2 ! F2



can be uniquely represented in Algebraic Normal Form (in brief, ANF) i.e. as a
polynomial function in n variables, of degree at most one in each variable. The
algebraic degree of f , denoted by deg(f), is the degree of its ANF. For every
n-variable Boolean function f , we denote by Var(f) the set consisting of all the
elements i 2 {1, . . . , n} such that xi appears in at least one term with nonzero
coefficient in the ANF of f .

Definition 1. Two Boolean functions f, g : F
n
2 ! F2 are said to be affinely

equivalent, which is denoted by f ⇠ g, if there exists ϕ, an affine automorphism
of Fn

2 , such that f = g � ϕ where � is the operation of composition.

The algebraic degree is invariant to affine equivalence.
The set of all n-variable Boolean functions of algebraic degree at most r shall

be denoted by RM(r, n). Let RM(r, n)/RM(r � 1, n) be the quotient space
consisting of all cosets of RM(r � 1, n) in RM(r, n). Unless otherwise speci-
fied, for each coset we will use as representative the homogeneous polynomial
in the coset, i.e. the unique polynomial which contains only monomials of de-
gree r. The equivalence ⇠ can be extended naturally to an equivalence ⇠r�1 on
RM(r, n)/RM(r� 1, n), or more generally on any RM(d, n)/RM(r� 1, n) with
d � r. Namely, two RM(r � 1, n)-cosets are equivalent under ⇠r�1 if there is a
function f1 in one coset and a function g1 in the other coset such that f1 ⇠ g1.
Equivalently, two functions f and g satisfy f ⇠r�1 g if and only if there is a
function h such that f ⇠ h and deg(g � h)  r � 1.

For any monomialm we shall denote bymc the complement
Q

i2{1,...n}\Var(m) xi

(which also equals x1···xn

m
). If f =

Pp

i=1 mi, where the mi are all monomials of
degree r, then we define f c =

Pp

i=1 m
c
i , also called the complement of f .

Given a function f , let us examine how we can obtain the ANF of f|A,
the restriction of f to an affine space A. The affine space A can be viewed as
the set of solutions of k affine equations, that are, after Gaussian elimination:
xi1 = ai1(y), . . . , xik = aik(y), where i1, . . . , ik are distinct and aj(y) are affine
functions in the n�k variables {y1, . . . , yn�k} = {x1, . . . , xn}\{xi1 , . . . , xik}. We
obtain one of the expressions for the ANF of f|A by substituting the variables
xi1 , . . . , xik with ai1(y), . . . , aik(y) in the ANF of f , obtaining a function in the
remaining n�k variables {y1, . . . , yn�k}. This function depends on the equations
used for defining A (the choice of i1, . . . , ik is not unique), but all choices yield
the ANF of functions which are affinely equivalent to each other and therefore
have the same degree. Clearly, deg(f|A)  deg(f).

3 Degree-drop spaces: definition and basic properties

In this paper, we are interested in the behaviour of the algebraic degree of
Boolean functions when they are restricted to affine spaces of a certain co-
dimension. We introduce the following terminology:

Definition 2. Let f be an n-variable Boolean function and A an affine subspace
of Fn

2 . If deg(f|A) < deg(f), then we call A a degree-drop subspace for f . The



largest k such that f has no degree-drop subspace of co-dimension k will be called
the restriction degree stability of f , denoted by deg stab(f) (with deg stab(f) =
0 if f has degree-drop hyperplanes).

Note that for a fixed affine space A, the property of A being a degree-drop space
for a function f depends only on the monomials of f of algebraic degree deg(f).
Hence, for any polynomials f and g in the same coset of RM(r, n)/RM(r�1, n),
we have that A is a degree-drop subspace of f if and only if A is a degree-drop
subspace of g. It suffices therefore to study the degree-drop spaces of homoge-
neous polynomials.

Notation 1 For all integers k, r, n with 1  k  n and 1  r  n, we denote by
Kk,r,n the subset of RM(r, n)/RM(r � 1, n) consisting of the nonzero elements
f which admit no degree-drop subspace of co-dimension k.
We denote by deg stab(r, n) the largest value of the restriction degree stability
among all functions of degree r in n variables, i.e. the largest k with Kk,r,n 6= ;.

We first collect a few preliminary observations:

Lemma 1. Let f be a homogeneous function of degree r in n variables and let
1  k  n.
(i) If H is a hyperplane defined by an equation involving a variable which is not
in Var(f), then H is not a degree-drop hyperplane of f .
(ii) The hyperplane H defined by the equation xj = 0 is a degree-drop hyperplane
for f if and only if f(x1, . . . , xn) = xjg(x1, . . . , xj�1, xj+1, . . . , xn) for some ho-
mogeneous polynomial g of degree r � 1.
(iii) If f has only one monomial in its ANF, then f has 2r�1 degree-drop linear
hyperplanes.
(iv) If r � 2 and f =

Pp

i=1 mi with mi monomials (i.e. f has p monomials
in its ANF), then f has a degree-drop space of co-dimension p and therefore
deg stab(f)  p� 1.
(v) Kk+1,r,n ✓ Kk,r,n.
(vi) If k > n � r then any space of co-dimension k is a degree-drop space for
f and Kk,r,n = ;. In particular, if f has degree n then all spaces of any co-
dimension k � 1 are degree-drop spaces for f and Kk,n,n = ;.
(vii) Any function of degree 1 has degree-drop hyperplanes, i.e. Kk,1,n = ;.
(viii) deg stab(r, n+ 1)  deg stab(r, n) + 1.
(ix) f 2 Kk,r,n if and only if f 2 Kk,r,n+1 (viewing f as a homogeneous
function in n + 1 variables). In this sense, Kk,r,n ✓ Kk,r,n+1 and therefore
deg stab(r, n)  deg stab(r, n+ 1).

Allowing a degree drop subspace is clearly an affine invariant property:

Lemma 2. Let f, g be n-variable functions of degree r such that f ⇠r�1 g,
i.e. g = f � ϕ + h for some affine automorphism ϕ of F

n
2 and some function

h with deg(h) < r. Let A be an affine space of F
n
2 of co-dimension k. Then

g|A ⇠r�1 f|ϕ(A)
. Therefore, A is a degree-drop space for g if and only if ϕ(A) is

a degree-drop space for f . Consequently, f 2 Kk,r,n if and only if g 2 Kk,r,n.



The next result shows that in order to decide whether a function has degree-
drop affine spaces it suffices to consider linear spaces.

Lemma 3. Let f be an n-variable Boolean function and A = v+E be an affine
space in F

n
2 , where E is a vector subspace and v a vector. Then deg(f|A) = deg(f)

if and only if deg(f|E) = deg(f)

4 Necessary and/or sufficient conditions for a function
not to admit a degree-drop space

The following necessary condition for a function to belong to Kk,r,n was proved
in [2] (and it is easy to check):

Lemma 4. ([2]) Let k, r, n satisfy 1  k  n and 1  r  n and let f =
Pp

i=1 mi where mi are monomials of degree r. If f 2 Kk,r,n then

\p
i=1Var(mi) = ;. (1)

In particular, f 2 Kk,r,n implies p > 1.

Lemma 4 can be generalized as follows:

Lemma 5. Let f be a homogeneous n-variable Boolean function of algebraic
degree r � 2 and write f =

Pp

i=1 mi with mi monomials. Let 1  k  n. If
f 2 Kk,r,n, then for any set of k distinct variables xj1 , ..., xjk there is at least
one monomial in f which does not contain any of the variables xj1 , ..., xjk

The conditions in Lemmas 4 and 5 above are necessary, but not sufficient for
a function to have no degree-drop spaces of a given co-dimension k. However,
they become sufficient when we extend them by affine equivalence.

Theorem 2. Let f be a Boolean homogeneous function of algebraic degree r � 2
in n variables and let a = (a1, . . . , an) 2 F

n
2 \ {0} and a0 2 F2. The following

two statements are equivalent:
(i) f has a degree-drop hyperplane H defined by the equation a0+

Pn

i=1 aixi = 0.
(ii) f can be written as f(x) = (a0 +

Pn

i=1 aixi) g(x) + c(x) for some polynomi-
als g, c with deg(g) = r � 1 and deg(c)  r � 1.
Consequently, f has a degree-drop hyperplane if and only if f(x) ⇠r�1 x1g(x2, . . . , xn)
for some homogeneous polynomial g of degree r � 1 in n� 1 variables.

Theorem 3. Let f be an n-variable homogenous Boolean function of algebraic
degree r  n and let k  n. The following statements are equivalent:
(i) f has a degree-drop affine space of co-dimension k.
(ii) f ⇠r�1 g for some homogeneous function g of degree r such that each mono-
mial of g contains at least one of the variables x1, x2, ..., xk.

Let us recall that for any set A ✓ F
n
2 the function 1A, called the indicator

of A, is the Boolean function such that 1A(x) = 1 if and only if x 2 A. For any
Boolean function f , the product f1A is the Boolean function which is equal to
f(x) if x 2 A and is null otherwise. As far as we know, the next lemma has never
been explicitly stated in a paper, while it is rather basic.



Lemma 6. Let f be an n-variable Boolean function. Let A be an affine subspace
of Fn

2 and 1A its indicator function. If f1A is not the identically zero function,
we have

deg(f1A) = deg(f|A) + deg(1A).

Proof. Let k be the co-dimension of A. By Lemma 2 we can assume that A is
defined by the equations xn�k+1 = · · · = xn = 1. Then 1A(x) =

Qn

i=n�k+1 xi.
The expression of the ANF of f|A is obtained from the ANF of f by substituting
xi by 1 for each i = n� k + 1, . . . , n. This same expression, when multiplied by
Qn

i=n�k+1 xi, gives the ANF of (f1A)(x) (since (f1A)(x) = f(x) for any x 2 A
and (f1A)(x) = 0 for any x 62 A). Note that the ANF of f|A and the ANF of 1A
have no variables in common, which means that the degree of their product (if
the product is not zero) is the sum of their degrees. Since f1A 6= 0, this means
deg(f1A) = deg(f|A) + deg(1A). ⇤

Proposition 1. The affine space A of co-dimension k is not a degree-drop space
for the n-variable function f if and only if deg(f1A) = deg(f) + k.

Theorems 2 and 3 allow us to easily construct functions that have degree-
drop affine spaces. However, if we want to construct a function which does not
have any degree-drop hyperplane, they are less useful. For Theorem 2, it is indeed
unfeasible (exponential complexity) to check that f is not affine equivalent to any
function of the form x1g(x2, . . . , xn), and in the case of Theorem 3, things seem
still more complex. The following results, which under additional constraints
make the conditions in Lemmas 4 and 5 sufficient (but no longer necessary), allow
efficient constructions of families of functions with no degree-drop hyperplanes.

Proposition 2. Let f =
Pp

i=1 mi be an n-variable homogeneous Boolean func-
tion of algebraic degree r with 2  r  n, where the mi’s are monomials.
If f satisfies Condition (1) and the condition

|Var(mi) \Var(mj)|  r � 2, for all i 6= j 2 {1, . . . , p}, (2)

then f 2 K1,r,n i.e. f has no degree-drop hyperplane.
More generally, for any k < r, if

|Var(mi) \Var(mj)|  r � k � 1, for all i 6= j 2 {1, . . . , p}, (3)

and for any set of k distinct variables xj1 , ..., xjk , there is at least one monomial
in f which does not contain any of the variables xj1 , ..., xjk , then f 2 Kk,r,n.

The construction in the first part of Proposition 2 can be generalized:

Theorem 4. Let f =
Pp

j=1 mj be a homogenous n-variable function of degree
r. If for all i 2 Var(f), there exists a monomial mji in f such that:

– i 62 Var(mji)
– for all t 2 Var(mji), the monomial

ximji

xt
is not in f ,

then, f has no degree-drop hyperplane, i.e. f 2 K1,r,n.



In general, if f has no degree-drop hyperplanes it does not necessarily mean
that the same is true for f c. We can however give a sufficient condition similar
to Proposition 2:

Proposition 3. Let f be a homogenous Boolean function of algebraic degree r in
n variables defined by f =

Pp

i=1 mi with mi monomials. If f satisfies Condition
(2) and and is such that [p

i=1Var(mi) = {1, 2, ..., n} then f c 2 K1,n�r,n.
More generally, for any k < r, if f satisfies Condition (3) and is such that,
for any k distinct variables xi1 , ..., xik , there exists a monomial mj such that
{i1, ..., ik} ✓ Var(mj) then f c 2 Kk,n�r,n.

5 Special classes of functions

In this section we study the existence of degree-drop spaces for functions of
degree 2, n � 2, n � 1 (degrees 1 and n are covered in Lemma 1), functions
which are direct sums of monomials, and finally symmetric functions. For degree
r = n� 1 we have:

Lemma 7. Any n-variable Boolean function of degree n�1 has 2n�1�1 degree-
drop linear hyperplanes. Therefore K1,n�1,n = ; and deg stab(n� 1, n) = 0.

Concerning the degree 2 functions, recall that any quadratic function f in
n variables is equivalent under ⇠1 with x1x2 + · · · + x2p�1x2p for some p � 1
such that 2p  n (see [9, 1]). The case of p = 1 (i.e. one monomial) is trivial by
Lemma 1(iii). A part of the next proposition has been addressed in [3, Lemma 3]:

Proposition 4. Let n and p be such that 2  p  bn
2 c. The function

f(x1, . . . , xn) = x1x2 + x3x4 + · · ·+ x2p�1x2p

has no degree-drop space of co-dimension p � 1 but has degree-drop spaces of
co-dimension p; hence, deg stab(f) = p� 1 and deg stab(2, n) = bn

2 c � 1.

For the degree r = n�2, using the fact that f ⇠r�1 g if and only if f c ⇠n�r�1

gc (see [7, Section 4]) we have:

Proposition 5. Let n � 4 be an integer. We have:
(i) if n is odd, then K1,n�2,n = ; and therefore deg stab(n� 2, n) = 0,
(ii) if n is even, then K1,n�2,n = {f : f c ⇠1 x1x2+· · ·+xn�1xn} and K2,n�2,n =
;. Therefore deg stab(n� 2, n) = 1.

Before giving the general result regarding the direct sum of monomial func-
tions, we shall need the following definition and lemmas. Recall that the rank of
a function f in n variables is the minimum integer n1 such that there is a func-
tion g which depends on n1 variables and g ⇠ f . This notion can be extended
to the quotient RM(r, n)/RM(r � 1, n), by defining the rank of an element
f 2 RM(r, n)/RM(r�1, n), denoted by rankr�1(f), as the minimum integer n1

such that there exists g 2 RM(r, n)/RM(r � 1, n) such that g depends on n1

variables and f ⇠r�1 g. Obviously, rankr�1 is invariant under ⇠r�1.



Lemma 8. Let f be a homogeneous function of degree r in n variables with
2  r  n. If f has the property that for any two distinct monomials m,m0 of f
we have |Var(m) \Var(m0)|  r � 2, then rankr�1(f) = |Var(f)|. In particular,
if f is a direct sum of p degree r monomials, then rankr�1(f) = pr.

Lemma 9. Let f be a degree-r function in n variables and let A be an affine
subspace of Fn

2 of co-dimension k. Then rankr�1(f|A)  min(n�k, rankr�1(f)).

Theorem 5. Let 2  r < n and 2  p  bn
r
c. The function of degree r in n

variables which is the direct sum of p monomials

f(x1, . . . , xn) = x1x2 · · ·xr + xr+1xr+2 · · ·x2r + · · ·+ x(p�1)r+1x(p�1)r+2 · · ·xpr

has no degree-drop space of co-dimension p � 1 but has degree-drop spaces of
co-dimension p, i.e. deg stab(f) = p� 1. Consequently deg stab(r, n) � bn�r

r
c.

Proof. By Lemma 1 (iv), f has degree-drop spaces of co-dimension p. We need
to prove that no affine space A of co-dimension p � 1 can be a degree-drop
hyperplane. When p  r, this follows from Proposition 2. Assume now p > r.
The case r = 2 was proven in Proposition 4, so we can assume r � 3. Assume,
for a contradiction, that A is a degree-drop subspace for f . Let the equations
that define A be (in diagonalized form) xi1 = ai1(y), . . . , xip−1

= aip−1
(y), where

i1, . . . , ip�1 are distinct and ai1(y), . . . , aip−1(y) are affine functions in the n�(p�
1) variables {y1, . . . , yn�(p�1)} = {x1, . . . , xn}\{xi1 , . . . , xip−1}. To compute f|A
we substitute the variables xi1 , . . . , xip−1

with ai1(y), . . . , aip−1
(y) respectively.

We partition the monomials of f , writing f = f0 + f1 + f2 where the monomials
in f0 have no variable to be substituted, the monomials in f1 have exactly one
variable that will be substituted and the monomials in f2 have two or more
variables that will be substituted. Let p0, p1, p2 be the number of monomials
in f0, f1, f2 respectively. Obviously p0 + p1 + p2 = p. There are p � 1 variables
to be substituted, p1 of them are in f1 and at least 2p2 are in f2; therefore
p� 1 � 2p2 + p1. Using p0 + p1 + p2 = p, this implies p0 > p2.

As f contains p monomials and no variable appears in more than one mono-
mial, there must exist at least one monomial m which does not contain any of
xi1 , ..., xip−1 (i.e. m is a monomial of f0) and therefore remains unchanged after
substitution. To cancel m there must be at least one other monomial m0 of f
such that all the variables of m0 are substituted (therefore m0 is a monomial of
f2). In other words, p0 6= 0 and p2 6= 0. Obviously f|A = (f0)|A+(f1)|A+(f2)|A.
Since we assumed A is a degree-drop space for f , we have deg(f|A) < r, which
means f|A ⇠r�1 0 and therefore

rankr�1((f0)|A + (f1)|A) = rankr�1(f|A + (f2)|A) = rankr�1((f2)|A). (4)

Since no variables are substituted in f0 and only one variable is substituted in
each monomial of f1, the monomials of f0 do not cancel out in (f0)|A + (f1)|A,
which means Var(f0) ✓ Var((f0)|A + (f1)|A). Moreover, any two monomials in
(f0)|A + (f1)|A have at most one variable in common, and therefore at most
r � 2 variables in common (since r � 3). We apply Lemma 8 to (f0)|A + (f1)|A,



obtaining rankr�1((f0)|A+(f1)|A) = |Var((f0)|A+(f1)|A)| � |Var(f0)| = rp0. On
the other hand, by Lemma 9, rankr�1((f2)|A)  rankr�1(f2) = rp2. Combining
these inequalities with (4), we obtain rp0  rp2, i.e. p0  p2, contradicting the
inequality p0 > p2 proven at the end of the previous paragraph. ⇤

Corollary 1. We have the following bounds when 2  r  n� 1:

�

n� r

r

⌫

 deg stab(r, n)  n� r � 1.

When r = 2 equality is achieved for the lower bound; when r = n � 1 or when
r = n� 2 and n is even, equality is achieved for the upper bound.

Let us consider now the class of symmetric functions i.e. functions which are
invariant to all permutations of the variables. It contains the class of majority
functions (or more generally threshold functions) which is known for having
optimal algebraic immunity (see [6, 1]).

Theorem 6. Let f be a symmetric Boolean function in n variables of degree r,
with 2  r  n� 2.
(i) If r is even, then f has no degree-drop hyperplane.
(ii) If r is odd, then f has exactly one degree-drop linear hyperplane of equation
x1 + x2 + . . .+ xn = 0.

6 Experimental results

We have computed the number of degree-drop spaces for all the functions in
n = 8 variables of degrees 3  r  n� 3 (the other degrees having been settled
for any n in Lemma 1 and Section 5).

In [7], Hou showed that there are 31 non-zero classes of polynomials of degree
3 in 8 variables, under the equivalence ⇠2. We recall them in the Appendix.
For each function f among the representatives f2, . . . , f32 of these 31 classes,
we considered each linear space V of co-dimension up to 3 and we determined
whether V is a degree-drop space for f by computing the degree of the restriction
of f to V . We counted the number of degree-drop linear spaces of f of each co-
dimension from 1 to 3. Moreover, for each degree-drop subspace of co-dimension
k 2 {2, 3} of f , we determined whether it is a “new” degree-drop space, in the
sense that it is not a subspace of a degree-drop subspace of co-dimension k � 1.
These 5 values are presented for each function in Table 1, in lexicographically
decreasing order. For degree 5 in 8 variables, the representatives under ⇠4 are the
complements f c

2 ,..., f
c
32 (see [7, Section 4]). Since f2,..., f12 are actually functions

in 7 or less variables, when we view them as functions in 8 variables and take
the complement we will obtain functions where all the monomials contain the
variable x8, and therefore they have a degree-drop hyperplane.The other 20
representatives f13,..., f32 have no degree-drop hyperplanes, but they all have
degree-drop spaces of co-dimension 2, so K2,5,8 = ; and deg stab(5, 8) = 1.



Table 1. Number of degree-drop linear spaces of f of each co-dimension from 1 to 3
for the 31 representatives of degree 3 in 8 variables

Representative co-dim 1 co-dim 2 co-dim 2 co-dim 3 co-dim 3
lin spaces lin spaces new lin spaces lin spaces new lin spaces

f2 7 875 0 17795 0
f3 1 187 60 6147 0
f7 1 127 0 3747 1080
f4 0 49 49 3059 168
f5 0 35 35 2371 256
f6 0 21 21 1683 360
f8 0 13 13 1427 636
f9 0 7 7 995 568
f13 0 7 7 847 420
f16 0 7 7 739 312
f10 0 3 3 867 678
f29 0 2 2 459 333
f11 0 1 1 563 500
f14 0 1 1 459 396
f15 0 1 1 351 288
f24 0 1 1 307 244
f17 0 1 1 243 180
f28 0 1 1 243 180
f26 0 1 1 135 72
f12 0 0 0 651 651
f31 0 0 0 243 243
f18 0 0 0 167 167
f25 0 0 0 155 155
f19 0 0 0 151 151
f30 0 0 0 151 151
f22 0 0 0 105 105
f23 0 0 0 91 91
f32 0 0 0 91 91
f21 0 0 0 75 75
f20 0 0 0 45 45
f27 0 0 0 15 15

Langevin and Leander [8] computed a representative from each of the 998
classes of functions of degree 4 in 8 variables under the equivalence ⇠3. Again,
for each of them we determined by computer calculations the number of linear
degree-drop spaces of co-dimension k = 1, 2, 3. The function x1x2x3x4 has 15
degree-drop linear hyperplanes, as expected; the functions x1x2(x3x4 + x5x6)
and x1x2(x3x4 + x5x6 + x7x8) each have 3 degree-drop linear hyperplanes; the
functions x8fi where fi 2 {f4, f5, f6, f8, . . . , f12} (with fi being the representa-
tives of function classes of degree 3 in 7 variables mentioned above) have one
degree-drop linear hyperplane. There were 494 classes having degree-drop spaces
of co-dimension 2 but not 1, and the remaining 493 classes (that is, about half
of all the classes) have degree-drop spaces of co-dimension 3 but not 2, i.e. they
have optimal restriction degree stability . Therefore deg stab(4, 8) = 2.
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Appendix

Here we denote the 31 non-zero representatives, of the 31 classes of polynomials
of degree 3 in 8 variables in [7], by f2, . . . , f32 (with fi being the same as the
function denoted by Fi in [7]) and defined as follows, where 123 means x1x2x3:

f2 = 123

f3 = 123 + 145

f4 = 123 + 456

f5 = 123 + 245 + 346

f6 = 123 + 145 + 246 + 356 + 456

f7 = 127 + 347 + 567

f8 = 123 + 456 + 147

f9 = 123 + 245 + 346 + 147

f10 = 123 + 456 + 147 + 257

f11 = 123 + 145 + 246 + 356 + 456 + 167

f12 = 123 + 145 + 246 + 356 + 456 + 167 + 247

f13 = 123 + 456 + 178;

f14 = 123 + 456 + 178 + 478;

f15 = 123 + 245 + 678 + 147;

f16 = 123 + 245 + 346 + 378;



f17 = 123 + 145 + 246 + 356 + 456 + 178;

f18 = 123 + 145 + 246 + 356 + 456 + 167 + 238;

f19 = 123 + 145 + 246 + 356 + 456 + 158 + 237 + 678;

f20 = 123 + 145 + 246 + 356 + 456 + 278 + 347 + 168;

f21 = 145 + 246 + 356 + 456 + 278 + 347 + 168 + 237 + 147;

f22 = 123 + 234 + 345 + 456 + 567 + 678 + 128 + 238 + 348 + 458 + 568 + 178;

f23 = 123 + 145 + 246 + 356 + 456 + 167 + 578;

f24 = 123 + 145 + 246 + 356 + 456 + 167 + 568;

f25 = 123 + 145 + 246 + 356 + 456 + 167 + 348;

f26 = 123 + 456 + 147 + 257 + 268 + 278 + 348;

f27 = 123 + 456 + 147 + 257 + 168 + 178 + 248 + 358;

f28 = 127 + 347 + 567 + 258 + 368;

f29 = 123 + 456 + 147 + 368;

f30 = 123 + 456 + 147 + 368 + 578;

f31 = 123 + 456 + 147 + 368 + 478 + 568;

f32 = 123 + 456 + 147 + 168 + 258 + 348.
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Abstract. Locally recoverable codes deal with the task of reconstruct-

ing a lost symbol by relying on a portion of the remaining coordinates

smaller than an information set. We consider the case of codes over finite

chain rings, generalizing known results and bounds for codes over fields.

In particular, we propose a new family of locally recoverable codes by

extending a construction proposed in 2014 by Tamo and Barg, and we

discuss its optimality.

1 Introduction

Introduced in [6], locally recoverable codes have garnered attention due to their
relevance in distributed and cloud storage systems. Data centers and other mod-
ern distributed storage systems use redundant data storage to protect against
node failures. Indeed they enable local repair of a coordinate by accessing a max-
imum of r other coordinates. This set of r coordinates is commonly referred to
as the recovering set and, if a recovering set exists for every coordinate the code
has locality r. Many research efforts [2, 6, 7, 9, 10, 23, 25] have been focused
on establishing bounds for the minimum distance and developing construction
techniques for locally recoverable codes.
If C is a linear code of length n, dimension k and locality r over the field Fq,
then its minimum distance satisfies [6]

d  n� k �

⇠

k

r

⇡

+ 2 . (1.1)

In [6], using a probabilistic argument, the authors proved that the bound (1.1)
is tight if the field is large enough. Observe that (1.1) is independent of the al-
phabet size q. In [4] a bound for the minimum distance of a locally recoverable
code depending on q is presented.

A central problem in Coding Theory is to construct optimal codes. We re-
mark that usually a code C is said to be optimal if any other code with equal
length and minimum distance has at most the same number of codewords as C.



In this work we follow instead the route established for example in [6], and we
say that a length-n code C with M codewords is optimal if no code over the same
alphabet and with the same parameters has a strictly larger minimum distance.
A code meeting the bound (1.1) is thus an optimal locally recoverable code. Con-
structions of optimal locally recoverable codes are given in [2, 7, 9, 10, 23, 25].
In all these constructions, the i-th coordinate together with its recovering set
form a 1-erasure correcting code. A possible extension is presented in [19], where
the authors introduced the (r, ⇢)-locality, allowing recovering ⇢ � 1 erasures by
looking at other r coordinates. An additional and relevant generalization can be
found in [21], where each coordinate has several pairwise disjoint recovering sets.

In this paper, we present a generalization of the theory, allowing the alphabet
to be a ring [16, 17, 22, 24], rather than a field as in classical Coding Theory.

2 Preliminaries: codes over rings and locality

Let R be a finite commutative ring, with q = |R|. From the structure theorem [14,
Theorem VI.2], R decomposes uniquely (up to the order of summands) as a finite
direct product of local rings, thus R = R1 ⇥ · · ·⇥Rw and Rn = Rn

1 ⇥ · · ·⇥Rn
w.

From now on, let R be a principal ideal ring (PIR), so that the Ri are finite chain
rings. An R-linear code of length n is an R-submodule C ✓ Rn. An R-linear
code C is said to be free if C is a free submodule of Rn. The elements of C are
called codewords. Unless otherwise specified, from now on we consider any code
to be an R-linear code.

Remark 1. Given R = R1 ⇥ · · ·⇥ Rw, we define ei as the element in R repre-
sented by (0, . . . , 0, 1, 0, . . . , 0) in R1 ⇥ · · ·⇥Rw, with 1 in the i-th position. Let
⇡i : R

n
1 ⇥ · · · ⇥ Rn

w ! Rn
i be the i-th canonical projection. If C is a code and

c = (c1, . . . , cw) 2 C, where ci = ⇡i(c) 2 Rn
i , then

eic = (0, . . . , 0, ci, 0, . . . , 0) 2 C .

Hence, up to isomorphism, C can be uniquely written as

C1 ⇥ · · ·⇥ Cw ✓ Rn with Ci = ⇡i(C) for all 1  i  w .

Therefore, whenever convenient, we may restrict our focus on codes over
finite chain rings. In the classical framework R is a finite field, and in this case
an important parameter of a linear code is its dimension as a vector subspace
of Rn. In our context, if R is a finite chain ring with ps elements, we define the
ps-dimension k of the code as k = logps |C| [3]. Observe that if R is a finite field
then the ps-dimension and the dimension coincide.

Definition 2. The rank of C is the minimum K such that there exists a
monomorphism � : C ! RK as R-modules. In addition, if � is an isomorphism
then C is free and k = K.



A minimal generating set of a code C ✓ Rn is a subset of C that generates
C as an R-module and it is minimal with respect to inclusion. If R is a finite
chain ring, as a consequence of Nakayama’s Lemma [14, Theorem V.5], all the
minimal generating sets have the same cardinality, equal to the rank K of C. A
matrix whose rows form a generating set for the code is a generator matrix.

The Hamming metric is a discrete metric counting the number of entries in
which two tuples differ, namely, for any v = (v1, . . . , vn) and u = (u1, . . . , un)
in Rn, the distance d(v, u) = |{i : vi 6= ui, 1  i  n}|. The so-called minimum
distance d = minc1,c22C, c1 6=c2 d(c1, c2) is a relevant parameter related to the
error correction capability of C, which is the number of coordinates of c 2 C
that can be corrupted without compromising our ability of reconstructing c.

Theorem 3 (Singleton bound [13]). If C is a (non-necessarily R-linear) code of
length n over an alphabet of size q, then

d  n� logq|C|+ 1 .

If R is a finite chain ring with |R| = ps and C is a linear code of ps-dimension
k in Rn, the previous bound reads

d  n� k + 1 .

Only free codes can meet this bound and they are said maximum distance sepa-
rable (MDS) codes. However, in the framework of codes over finite chain rings,
the Singleton bound can be improved.

Theorem 4 (Generalized Singleton bound [16]). Let R be a finite chain ring
and let C be an R-linear code of length n and rank K. Then

d  n�K + 1 .

This bound is generally tighter than the Singleton bound, and they coincide
if and only if the code is free. A linear code meeting this bound is said to be
maximum distance with respect to rank (MDR).

For any linear code C ✓ Rn and for any subset S ⇢ {1, . . . , n} of the coor-
dinates, we define CS to be the punctured code of C in S, obtained by deleting
in each codeword all but the coordinates indexed in S. If |C| = |CS | then S is
an information set of size |S| for C. In the following, we will denote with  the
minimal size of an information set. Note that for codes over finite chain rings
the minimum size of an information set coincides with the rank and  = K.

Corollary 5. Let C be a code with minimum distance d and let S be a subset
of coordinates which does not form an information set. Then

|S|  n� d .

As briefly stated in the introduction, the goal of a local recovery technique is
to enable the retrieval of lost encoded data by using only a small portion of the
available information, rather than requiring access to the complete codeword c.



Definition 6. Let C be a (possibly non-linear) code in Rn and let (c1, . . . , cn)
be a codeword. We say that the coordinate i 2 {1, . . . , n} has locality r if there
exists a subset Si ✓ {1, . . . , n} \ {i} such that:

– (locality) |Si|  r,
– (recovery) |CS | = |CS[{i}|.

C is a locally recoverable code (LRC) with locality r if each coordinate has local-
ity r.

In other words, any symbol ci of any codeword c can be recovered by accessing
at most r other symbols of c. If we are presented with a codeword c that is error-
free except for an erasure at position i, we can retrieve the original codeword
by only examining the coordinates in Si. For this reason, Si is referred to as a
recovering set for i. If R is a finite chain ring and C is an R-linear code of length
n, rank K and locality r, we will say that C is an (n,K, r)-code.
Of course, one can choose R = Fq. In this case we recover the classical theory of
locally recoverable codes over finite fields.

In 2014 Tamo and Barg [23] presented a clever construction based on polynomial
interpolation for locally recoverable codes over finite fields attaining the bound
(1.1). In the following sections we extend this construction to finite chain rings.
For the sake of readability, in the following sections we omit the proofs of our
results, which can be found in the preprint version of this work [5].

3 Lower bound on the minimum distance

Let R be a commutative ring, let C be a code of length n over R and let  be
the minimum size of its information sets.

Theorem 7. Let C be a code of length n and locality r over R. Then

d  n� �

⇠



r

⇡

+ 2 and


n


r

r + 1
. (3.1)

Corollary 8 (LRC bound for R-linear codes). Let R be a finite chain ring and
let C be an R-linear code of length n, rank K and locality r. Then

d  n�K �

⇠

K

r

⇡

+ 2 . (3.2)

Note that each coordinate in an R-linear code of rank K has locality at most
K. Thus r satisfies 1  r  K. In particular:

– If r = K, the LRC bound reduces to the generalized Singleton bound and
optimal LRC codes are MDR codes;



– If r = 1, bound (3.2) reads d  2
�

n
2 �K+1

�

. Therefore, by replicating each
symbol twice in an MDR code of length n

2 and rank K, we get an optimal
linear code with locality r = 1.

Codes that attain the LRC bound for finite chain rings can be used as building
blocks to construct codes that achieve the LRC bound on finite PIRs and hence,
we can focus our studies on LRC codes over finite chain rings.

Theorem 9. Let R = R1 ⇥ · · · ⇥ Rw be a finite PIR and let C = C1 ⇥ · · · ⇥
Cw ✓ Rn be an R-linear code. If Ci is an optimal LRC over Ri for all 1  i  w,
then C is optimal LRC over R.

4 Extending the Tamo-Barg construction

The construction by Tamo and Barg [23] allows to obtain optimal LRC codes
over finite fields using a particular class of polynomials called good polynomials.
Polynomial interpolation is used in order to recover erased data. In order to
present our construction, it is important to recall that polynomials over rings
lack some desirable properties of polynomials over fields. For instance, in this
framework, polynomial interpolation problems require a greater attention.

If R is a finite chain ring with maximal ideal M and residue field F = R/M ,
we will denote by ȳ the image of y 2 R under the canonical projection from R
to F . In addition, for a set T ✓ R we define T = {t̄ | t 2 T}. Let N(R) denote
the group of units of R.

Definition 10. [18, Definition 2.2] A subset T ✓ N(R) is said to be subtractive
in N(R) if, for all distinct a, b 2 T , a� b 2 N(R).

Lemma 11. [18, Lemma 2.5] Given z, s 2 R, then z̄ 6= s̄ if and only if z �
s 2 N(R). Thus, T is a subtractive subset of R if and only if |T | = |T |.

Definition 12. [1, Section III.B] A set {a1, . . . , an} is well-conditioned in R if
one of the following conditions is satisfied:

1. {a1, . . . , an} is subtractive in N(R);
2. For some i, {a1, . . . , ai�1, ai+1, . . . , an} is subtractive in N(R) and ai is a

zero-divisor or ai = 0.

The above Definitions and Lemma are useful to work with polynomial recon-
struction, as stated in the following known results.

Proposition 13. [20, Corollary 9] Let f 2 R[x] be a polynomial of degree at
most n� 1 with at least n roots in a well-conditioned set of R. Then f = 0.

Corollary 14. [20, Corollary 10] Let {a1, . . . , an} be a well-conditioned set in
R and let {y1, . . . , yn} be a subset of R. Then there exists a unique polynomial
f 2 R[x] of degree at most n� 1 such that f(ai) = yi for all 1  i  n.



Proposition 13 points out that, unlike polynomials over fields, the number of
roots of a polynomial over a ring is not bounded by its degree. Nonetheless, for
polynomials over local rings, there exists a bound on the number of roots, which
depends on the polynomial’s degree. The following Corollary is a consequence of
the Hensel lifting [14, Chapter XIII, Section (C)].

Corollary 15. Let R be a finite chain ring whose residue field F has size
|F | = pm and |R| = psm. Let f(x) 2 R[x] be a polynomial of degree n. The
number of roots of f in R is at most np(s�1)m.

Let f 2 R[x]. If f is constant on the set A we will denote by f(A) the value
of f on A. Additionally, if the leading coefficient of f is a unit, we will call f a
monic polynomial.

Definition 16. Let l 2 N
+ and A1, . . . , Al pairwise disjoint subsets of R of size

r + 1. A polynomial g 2 R[x] such that

– Its degree is r + 1;
– It is monic;
– It is constant on Ai, i.e., for any 1  i  l, g(Ai) = ci with ci 2 R;

is said to be (r, l)-good on the blocks A1, . . . , Al.

Theorem 17. Let r � 1 and let A1, . . . , Al be subsets of R such that A =
Sl

i=1 Ai

is well-conditioned. Let g(x) 2 R[x] be an (r, l)-good polynomial on the blocks of
the partition of A. For t  l, set n = (r+1)l and K = rt. Let a = (ai,j , 0  i  r�
1, 0  j  t� 1) 2 RK . Define the encoding polynomial fa(x) and the code C as

fa(x) =

r�1
X

i=0

t�1
X

j=0

ai,jg(x)
jxi , C =

⇢

(fa(↵), ↵ 2 A) | a 2 RK

�

. (4.1)

Then C is a free (n,K, r)-code with minimum distance d = n�K� K
r
+2. Hence

C is an optimal locally recoverable code.

Let a 2 RK be the message vector and assume (fa(�), � 2 A) is sent.
Suppose that the symbol cα corresponding to the location ↵ 2 Aj is erased and
let cβ for all � 2 Aj \ {↵} represent the remaining r symbols in the locations of
the set Aj . Since g is an (r, l)-good polynomial on the blocks of the partition of
A, fa(x) is a polynomial of degree at most r�1 when restricted to Aj . Hence, in
order to find cα, we find the unique polynomial �(x) of degree strictly less than
r such that �(�) = cβ for all � 2 Aj \{↵} and we set cα = �(↵). The polynomial
�(x) is called the decoding polynomial for cα.

Remark 18. 1. If r = K the construction does not require good polynomials
and reduces to Reed-Solomon codes.

2. Analogously to the classical case [23, Section 3A], the construction can be
generalized even for the case r - K.



5 Construction of good polynomials over Galois ring

It is known that classes of good polynomials over finite fields exist [12, 15, 23].
In particular, Micheli [15] introduced a framework that allows the generation
of good polynomials over finite fields. The natural question that arises now is
whether there exist good polynomials over rings which are not fields. Indeed,
they do exist. Here we construct a class of good polynomials over Galois rings
exploiting the structure of its group of units.
Let R be a finite chain ring, M ⇢ R be the maximal ideal, and let g 2 R.
In accordance with the notation of Section 4, we denote with ḡ 2 R/M =: F
its canonical projection onto F , and we extend this projection to R[x], i.e. if
f 2 R[x] then f̄ 2 F [x].
Let p be a prime, and let s,m positive integers. The Galois ring GR(ps,m) of
characteristic ps and with psm elements is the quotient ring

GR(ps,m) ⇠= Zps [x]/(f) ,

with f 2 Zps [x] a monic irreducible polynomial of degree m such that f̄ is irre-
ducible in Zp. A Galois ring GR(ps,m) is a local ring with maximal ideal M = (p)
and whose residue field F = GR(ps,m)/M is isomorphic to the finite field Fpm .
Its group of units has a unique maximal cyclic subgroup having order relatively
prime to p (namely pm � 1). Throughout this section let R = GR(ps,m).

Lemma 19. [14, Lemma XV.1] Let f 2 R[x] be a polynomial which is not a
zero divisor. Suppose f̄ has a zero l 2 F . Then f has one and only one zero g
such that ḡ = l.

Proposition 20. [18, Theorem 2.9] Let l 2 F be an element of order j | pm�1
in F . Then there exists a unique g 2 R such that gj = 1 and ḡ = l.

Corollary 21. Let q = pm � 1 and let g 2 R be a primitive qth root of unity.
Then gi � gj is a unit for all 0  j < i  q � 1.

Let G be the cyclic subgroup of N(R) whose elements are the roots of the
polynomial xpm�1 � 1 2 R[x]. Corollary 21 implies that G is a subtractive
subset in N(R). Lemma 11 implies that the size of any subtractive subset of
N(R) cannot exceed pm � 1. A subtractive subset of N(R) of size pm � 1 is said
to be a maximal subtractive subset. Thus, G is a maximal subtractive subset.

Proposition 22. Let H be a subgroup of the cyclic group G. The annihilator
polynomial of H, h(x) =

Q

g2H(x� g) = x|H| � 1 , is constant on the cosets of

H. The same holds true for the polynomial h(x) = x|H|.

The annihilators of subgroups form a class of
�

|H| � 1, (pm � 1)/|H|
�

-good
polynomials that can be employed in constructing optimal codes. If |H| = r+1,
r+1 divides |G| and pm ⌘ 1 mod r+1. Thus, the length of the code is always a
multiple of r+1. It is worth highlighting that the sizes of the possible subgroups
and maximum size of a subtractive subset impose constraints on the parameters
of the code.



6 Removing the constraints on code length

6.1 Codes over well-conditioned sets with arbitrary length

If n is the code length and r is the locality, Theorem 17 requires the assumption
that r + 1 divides n. However, we provide a different construction that relaxes
this condition.

Let R be a finite chain ring, A be a well-conditioned set, |A| = n with n
mod (r + 1) = m 6= 0, 1, and let hA(x) =

Q

a2A(x � a) be the annihilator
polynomial of the set A. Let r,K be positive integers and assume r | K + 1.

Let l = d n
r+1e and let A =

Sl

i=1 Ai be a partition of A in l subsets such that
|Ai| = r + 1 for all  i  m� 1 and |Al| = m < r + 1. Let

FA = {f 2 R[x] | f(Ai) = ci8 i 2 {1, . . . , l} , deg f < |A|}

be the algebra of polynomials over R of degree less than |A| which are constant
on the blocks of the partition of A.

Theorem 23. Let A =
Sl

i=1 Ai be a well-conditioned set, with |Al| = m < r+1.
Let g(x) be a polynomial of degree r+1 vanishing on Al and whose powers span

FA. Let a = (a0, . . . , am�1) 2 RK be the message vector with ai 2 R
K+1

r for

i 6= m� 1 and am�1 2 R
K+1

r
�1. Define the encoding polynomial fa(x) of a as

m�2
X

i=0

K+1

r
�1

X

j=0

ai,jg(x)
jxi +

K+1

r
�1

X

j=1

am�1,jg(x)
jxm�1 +

r�1
X

i=m

K+1

r
�1

X

j=0

ai,jg(x)
jhAl

(x) .

Let

C =

⇢

(fa(↵), ↵ 2 A) | a 2 RK

�

.

Then C is a free (n,K, r)-LRC code with minimum distance d � n�K�
⌃

K
r

⌥

+1 .

6.2 LRC codes from arbitrary MDS codes

We present an alternative construction that relaxes the condition r + 1 | n. In
the following, we will construct a code such that its symbols can be partitioned
into t MDS codes Ci of length ni and rank Ki.

Definition 24. [11, Definition 2] Let C be a code whose coordinates are parti-
tioned into l sets Ai of size ni. Let Ci be the code restricted to the coordinates
in Ai. The code C has (r, ⇢)-locality if for all 1  i  l we have

– ni  r + ⇢� 1;
– dCi

� ⇢.

Theorem 25. Let R be a finite chain ring and let C be a linear code of length
n, rank K and with (r, ⇢)-locality. Then

d  n�K + 1�

✓⇠

K

r

⇡

� 1

◆

(⇢� 1) . (6.1)



Theorem 26. Let r � 1 and let A =
Sl

i=1 Ai be a partition of the well-
conditioned set A into l subsets with |Ai| = r + ⇢ � 1 for all 1  i  l.
Let g(x) 2 R[x] be an (r + ⇢ � 1, l)-good polynomial on the blocks of the
partition of A. For r | K (this constraint can be lifted, see Remark 18), let

a = (a0, . . . , ar�1) 2 RK be the message vector with ai 2 R
K

r for all 1  i  l.
We define

fa(x) =

r�1
X

i=0

K

r
�1

X

j=0

ai,jg(x)
jxi , C =

⇢

(fa(↵), ↵ 2 A) | a 2 RK

�

. (6.2)

Then, C is a free code with (r, ⇢)-locality and rank K. Moreover C is an optimal
(r, ⇢)-LRC code.

The previous construction is a particular case of a more general one based
on the Chinese Remainder Theorem for rings.

Proposition 27. [14, Section V] Let h1(x), . . . , hn(x) 2 R[x] be polynomials
that generate pairwise coprime ideals. Then, for any a1(x), . . . , an(x) 2 R[x],
there exists a unique polynomial f 2 R[x] of degree at most

P

i deg hi such that
f(x) ⌘ ai(x) mod hi(x) for all 1  i  n.

Let R be a finite chain ring, let A be a subtractive subset of N(R), and let

A =
Sl

i=1 Ai be a partition of A. Using the Hensel Lemma [14], one can prove
that the annihilator polynomials of the Ais generate pairwise coprime ideals.

Theorem 28. Let R be a finite chain ring and let A be a subtractive subset of
N(R). Let A =

Sl

i=1 Ai be a partition of A such that |Ai| = ni for all 1  i  l.
Let

 : RK ! FK1
⇥ · · ·⇥ FKl

, a 7! (a1(x), . . . , al(x)) ,

be an injective mapping, where FKi
is the space of polynomials of degree less

than Ki. Let hi(x) be the annihilator polynomial of Ai. For any message vector
a 2 RK we define the encoding polynomial fa(x) as the unique polynomial of
degree less than n such that fa(x) = ai(x) mod hi(x). The LRC code

C =

⇢

(fa(↵), ↵ 2 A) | a 2 RK

�

is a free code of rank K. Moreover it can be partitioned into l disjoint local codes
Ci, where Ci is an (ni,Ki)-MDS code. The minimum distance of C is at least the
minimum between the distances of the local codes Ci.

6.3 LRC codes with non-well-conditioned sets

The most significant limitation in the previous approaches is the restriction on
the code length, which is bounded by the maximum size of a well-conditioned
set. Let R = GR(ps,m) be a Galois ring with residue field R/M ⇠= Fpm and let
N(R) denote the group of units of R having size pm(s�1)(pm � 1).



Let G be the maximal cyclic subgroup of N(R) of order coprime with p and let
H be a subgroup of G. The cosets A1, . . . , Al of H in N(R) induce a partition

of N(R) =
Sl

i=1 Ai. Although H is subtractive in N(R), N(R) is not. However,
N(R) contains a maximal subtractive subset. Up to reordering, we can assume
A =

Sm

i=1 Ai, m < l, to be a maximal subtractive subset in N(R).

Theorem 29. Let r � 1 and let N(R) =
Sl

i=1 Ai be a partition of N(R) into
l subtractive subsets Ai of size r + 1 for all 1  i  l. Let A =

Sm

i=1 Ai, m < l,
be a maximal subtractive subset of N(R). Let g(x) 2 R[x] be an (r, l)-good
polynomial on the blocks of the partition of N(R). For t  l, set n = (r + 1)l
and K = rt. Let a = (ai,j , 0  i  r � 1, 0  j  t� 1) 2 RK . We define

fa(x) =

r�1
X

i=0

t�1
X

j=0

ai,jg(x)
jxi , C =

⇢

(fa(↵), ↵ 2 N(R)) | a 2 RK

�

. (6.3)

Then C is a free (n,K, r)-code where n = |N(R)| = pm(s�1)(pm � 1) and mini-
mum distance

d = n� pm(s�1)

✓

K +
K

r
� 2

◆

.

Note that this construction does not lead to a wider class of good polynomials.
Indeed, if h is the annihilator polynomial of the set A, then the class of (r, l)-good
polynomials coincides modulo h to the class of (r,m)-good polynomials. Even
though we have lifted the constraint on the maximum code length, the code does
not meet the LRC bound and thus it is not known whether it is optimal or not.

6.4 On the maximum length of an optimal LRC over finite chain

rings

A natural question arises: is there any constraint on the maximum length of a
code meeting the LRC bound, as a function of the alphabet size? In the following,
we will see that the problem of determining the maximum possible length of an
optimal LRC code over R is closely related to the same problem over fields.
Let R be a finite chain ring, let � be the generator of the maximal ideal and let
s be its nilpotency index. Let F be the residue field of R, i.e. F = R/(�). For
any C ✓ Rn we define the code (C : t) = {e 2 Rn | te 2 C}. In accordance with
the notation of Section 4, let (C : t) be the projection of (C : t) over F .

Theorem 30. The maximum possible length of an optimal LRC code C over R
is bounded by the maximum possible length of the optimal LRC code (C : �s�1)
over F .

While for small code distances (d = 3, 4) optimal LRC codes with unbounded
length over any fixed alphabet of size q � r + 1 are known, for d � 5 there is
an upper bound on the length of the optimal LRC as a function of its alphabet
size. Guruswami et al. in [8] proved that for d = 5 the length of an optimal LRC
over an alphabet of size q is at most O(q2). Moreover, if d > 5 the length is at
most O(q3).



Bibliography

[1] Marc André Armand. List decoding of generalized Reed-Solomon codes over
commutative rings. IEEE transactions on information theory, 51(1):411–
419, 2005.

[2] Alexander Barg, Kathryn Haymaker, Everett W Howe, Gretchen L
Matthews, and Anthony Várilly-Alvarado. Locally recoverable codes from
algebraic curves and surfaces. In Algebraic Geometry for Coding Theory
and Cryptography: IPAM, Los Angeles, CA, February 2016, pages 95–127.
Springer, 2017.

[3] Eimear Byrne, Anna-Lena Horlemann, Karan Khathuria, and Violetta
Weger. Density of free modules over finite chain rings. Linear Algebra
and its Applications, 651:1–25, 2022.

[4] Viveck R. Cadambe and Arya Mazumdar. Bounds on the size of locally
recoverable codes. IEEE Transactions on Information Theory, 61(11):5787–
5794, 2015.

[5] Giulia Cavicchioni, Eleonora Guerrini, and Alessio Meneghetti. A class of
locally recoverable codes over finite chain rings. preprint: https://arxiv.
org/abs/2401.05286, 2023.

[6] Parikshit Gopalan, Cheng Huang, Huseyin Simitci, and Sergey Yekhanin.
On the locality of codeword symbols. IEEE Transactions on Information
theory, 58(11):6925–6934, 2012.

[7] Sreechakra Goparaju and Robert Calderbank. Binary cyclic codes that are
locally repairable. In 2014 IEEE International Symposium on Information
Theory, pages 676–680. IEEE, 2014.

[8] Venkatesan Guruswami, Chaoping Xing, and Chen Yuan. How long can
optimal locally repairable codes be? IEEE Transactions on Information
Theory, 65(6):3662–3670, 2019.

[9] Lingfei Jin. Explicit construction of optimal locally recoverable codes of
distance 5 and 6 via binary constant weight codes. IEEE Transactions on
Information Theory, 65(8):4658–4663, 2019.

[10] Lingfei Jin, Liming Ma, and Chaoping Xing. Construction of optimal locally
repairable codes via automorphism groups of rational function fields. IEEE
Transactions on Information Theory, 66(1):210–221, 2019.

[11] Govinda M Kamath, N Prakash, V Lalitha, and P Vijay Kumar. Codes
with local regeneration and erasure correction. IEEE Transactions on in-
formation theory, 60(8):4637–4660, 2014.

[12] Jian Liu, Sihem Mesnager, and Lusheng Chen. New constructions of opti-
mal locally recoverable codes via good polynomials. IEEE Transactions on
Information Theory, 64(2):889–899, 2017.

[13] Florence Jessie MacWilliams and Neil James Alexander Sloane. The theory
of error correcting codes, volume 16. Elsevier, 1977.

[14] Bernard R McDonald. Finite rings with identity, volume 28. Marcel Dekker
Incorporated, 1974.

https://arxiv.org/abs/2401.05286
https://arxiv.org/abs/2401.05286


[15] Giacomo Micheli. Constructions of locally recoverable codes which are op-
timal. IEEE transactions on information theory, 66(1):167–175, 2019.

[16] G.H. Norton and A. Salagean. On the hamming distance of linear codes over
a finite chain ring. IEEE Transactions on Information Theory, 46(3):1060–
1067, 2000.

[17] Graham H Norton and Ana Sălăgean. On the structure of linear and cyclic
codes over a finite chain ring. Applicable algebra in engineering, communi-
cation and computing, 10:489–506, 2000.

[18] Graham H Norton and Ana Salagean-Mandache. On the key equation over
a commutative ring. Designs, Codes and Cryptography, 20:125–141, 2000.

[19] N Prakash, Govinda M Kamath, V Lalitha, and P Vijay Kumar. Optimal
linear codes with a local-error-correction property. In 2012 IEEE Inter-
national symposium on information theory proceedings, pages 2776–2780.
IEEE, 2012.

[20] Guillaume Quintin, Morgan Barbier, and Christophe Chabot. On gener-
alized Reed–Solomon codes over commutative and noncommutative rings.
IEEE transactions on information theory, 59(9):5882–5897, 2013.

[21] Ankit Singh Rawat, Dimitris S. Papailiopoulos, Alexandros G. Dimakis, and
Sriram Vishwanath. Locality and availability in distributed storage. IEEE
Transactions on Information Theory, 62(8):4481–4493, 2016.

[22] Keisuke Shiromoto. Singleton bounds for codes over finite rings. Journal of
Algebraic Combinatorics, 12:95–99, 2000.

[23] Itzhak Tamo and Alexander Barg. A family of optimal locally recoverable
codes. IEEE Transactions on Information Theory, 60(8):4661–4676, 2014.

[24] Jay A Wood. Foundations of linear codes defined over finite modules: the
extension theorem and the macwilliams identities. In Codes over rings,
pages 124–190. World Scientific, 2009.

[25] Chaoping Xing and Chen Yuan. Construction of optimal locally recoverable
codes and connection with hypergraph. arXiv preprint arXiv:1811.09142,
2018.



Spread Code Constructions from Abelian

non-cyclic groups

Joan-Josep Climent[0000−0003−0522−0304], Verónica Requena[0000−0002−1497−6456],
and Xaro Soler-Escrivà[0000−0001−7595−7032]

Departament de Matemàtiques, Universitat d’Alacant, Spain

jcliment@ua.es, vrequena@ua.es, xaro.soler@ua.es

Abstract. Given the finite field Fq, for a prime power q, in this paper

we present a way of constructing spreads of Fn

q . They will arise as orbits

under the action of an Abelian non-cyclic group. First, we construct a

family of orbit codes of maximum distance using this group, and then

we complete each of these codes to achieve a spread of the whole space

having an orbital structure.

Keywords: Network coding · subspace codes · Grassmannian · spreads

· group action · general linear group.

� Introduction

Network coding is a part of information theory that describes a method to
maximize the rate of a network which is modelled by a directed acyclic multigraph,
with one or multiple sources and multiple receivers. First introduced in [�], the
key point of this method is allowing the intermediate nodes of the network to
transmit linear combinations of the inputs they receive. The algebraic approach
given by Kötter and Kschischang in [��] provided a rigorous mathematical setup
for error correction when coding in non-coherent networks and, as a result, this
theory was able to advance vastly. In this setting, the transmitted messages
(codewords) are vector subspaces of a given vector space F

n
q , where Fq is the finite

field of q elements and a subspace code is just a collection C of vector subspaces
of F

n
q . When all subspaces of C have the same dimension, we say that C is a

constant dimension code. The minimum distance d(C) of C is computed in the
usual way by using a metric called subspace distance in the set of all subspaces of
F

n
q . We refer the reader to [�, ��] and references therein for further information

regarding network coding and subspace codes.
One of the most important and studied families of subspace codes are spread

codes (or simply spreads). A spread code is a constant dimension code such that
all its elements intersect pairwise trivially and their union covers the whole vector
space. Spreads are clearly a relevant family of constant dimension codes since
they reach the maximum distance and, at the same time, the maximum size for
that distance. For this reason, many papers in the literature about subspace codes
are devoted to the study and construction of this type of codes (see [�, ��, ��, ��]
for instance).
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A relevant way of constructing constant dimension codes is by considering
the natural action of the general linear group, GLn(Fq), on the Grassmannian
Gq(k, n), which is the set of all k-dimensional vector subspaces of F

n
q (for an

integer k œ {1, . . . , n}). Using this technique, the codes arise as orbits under
the action of some specific subgroup of GLn(Fq). Constant dimension codes
constructed in this way are called orbit codes. In the linear network coding
setting, they were first introduced in [��], where their main properties are given.
Due to the group action point of view, orbit codes have a nice mathematical
structure, and they have been investigated by many di�erent authors since then
(see for instance [�, �, ��, ��, ��]). Using powerful tools from group theory,
the distance of this kind of codes can be calculated in a simpler way and we
can compute the size of the code in terms of the order of the acting group and
the order of the corresponding stabiliser subgroup [��]. In addition, there exist
di�erent algorithms for decoding orbit codes [��, ��] and several of the known
algebraic constructions of constant dimension codes can be seen as orbit codes.
Most of the research on this topic focus on the use of cyclic subgroups of GLn(Fq),
in which case we speak about cyclic orbit codes. In particular, in [��] appears the
first construction of spreads with an orbital structure. From here, we can find
several works on spreads with an orbital structure provided by a cyclic group
(for instance, [�, ��]).

While research on cyclic orbit codes abounds, the same is not true when we
want to focus on other types of subgroups of the general linear group. As a first
step, in [�] we approach the study of orbit codes through the action of Abelian
non-cyclic subgroups of GLn(Fq), giving a specific construction of maximum
distance. Pursuing this line of research, the papers [�, ��] are also concerned
with Abelian non-cyclic orbit codes. Nevertheless, as far as we know, the only
construction on spreads through the action of a non-cyclic Abelian group is given
in [�]. In this paper, the authors construct an Abelian non-cyclic orbit code of
F

2k
q of dimension k having maximum distance and then obtain a k-spread of F2k

q

just by adding two k-subspaces of F2k
q .

Our main objective in this paper is to pursue the research of orbit codes
constructed by using non-cyclic Abelian groups. Specifically, we generalize the
results obtained in [�] in the following sense: For an even integer n and k a divisor
of n, we firstly construct an Abelian non-cyclic orbit code of Fn

q of dimension k

having maximum distance. Then, we achieve to complete this orbit code with a
nice family of k-subspaces of Fn

q in such a way the resulting code is a k-spread
of Fn

q with an orbital structure which is not cyclic. This generalization is not
immediate and has required the use of new techniques, not used in [�].

The paper is structured as follows. In Section 2, we collect all the background
on finite fields and subspace codes that will be needed in the subsequent sections.
Section 3 is devoted to our orbital constructions of maximum distance codes and
is divided into two parts. Firstly, we construct a non-cyclic Abelian group H and
from it a maximum distance family of orbit codes of dimension k in F

n
q . Secondly,

we find suitable H1 and H2 subgroups of H that allow us to generate new orbit
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codes completing each orbit code previously obtained, until a k-spread of Fn
q is

obtained.

� Preliminaries

�.� Finite fields

In this section, we recall some basic notions and results concerning finite fields
that will be needed later. The reader can find more details in any basic book on
this subject, e.g. [��].

Given a finite field Fq and a positive integer n, we will denote by F
n×n
q the

set of all n ◊ n matrices with entries in Fq and by GLn(Fq) the general linear
group of degree n over Fq.

Assume that n = ks, for some positive integers k, s and consider a primitive
element – of the field Fqk , that is, a generator of the cyclic group F

∗

qk . The

companion matrix of the minimal polynomial p(x) = a0 +a1x+· · ·+ak−1xk−1 +xk

of – over Fq is the matrix

Mk =

Q

c

c

c

c

c

a

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
≠a0 ≠a1 ≠a2 · · · ≠ak−1

R

d

d

d

d

d

b

œ GLk(Fq).

It turns out that p(x) is the characteristic polynomial of Mk and, then, Fqk =
Fq[–] can be realized as a set of matrices of F

k×k
q through the following field

isomorphism:

„ : Fq[–] ≠æ Fq [Mk]
qk−1

i=0 ai–
i ‘æ

qk−1
i=0 aiM

i
k.

(�)

Therefore, Mk can be seen as a primitive element of the finite field Fq [Mk].
Equivalently, the multiplicative order of Mk, denoted by o(Mk), is qk ≠ 1 and

Fq [Mk] = {0k×k} fi ÈMkÍ, where ÈMkÍ =
)

Ik, Mk, M2
k , . . . , M

qk
−2

k

*

is the multi-
plicative group generated by Mk.

On the one hand, the isomorphism „ provided in (�) allows to map vector
subspaces of Fs

qk into vector subspaces of Fn
q (this is the well-known field reduction

technique, see [��] for instance). Specifically, each line of F
s
qk , will produce a

subspace of dimension k of Fn
q with the following injective map:

Ï : Gqk (1, s) ≠æ Gq(k, n)
rowsp

!

u1 . . . us

"

‘æ rowsp
!

„(u1) . . . „(us)
"

.
(�)
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On the other hand, „ is also useful to embed GLs(Fqk ) into GLn(Fq). By
using it, we obtain the following group monomorphism:

Â : GLs(Fqk ) ≠æ GLn(Fq)
Q

c

a

a11 · · · a1s

...
. . .

...
as1 · · · ass

R

d

b
‘æ

Q

c

a

„(a11) · · · „(a1s)
...

. . .
...

„(as1) · · · „(ass)

R

d

b
.

(�)

�.� Subspace codes

In this section, we present the main results of subspace codes that we need to
understand this work.

The Grassmannian Gq(k, n) can be seen as a metric space endowed with the
following subspace distance (see [��]):

dS(U , V) = dim(U + V) ≠ dim(U fl V) = 2(k ≠ dim(U fl V)),

for all U , V œ Gq(k, n).
If C is a non-empty subset of Gq(k, n) then we say that C is a constant

dimension code and its minimum distance is defined as

dS(C) = min {dS(U , V) | U , V œ C, U ”= V} Æ

I

2k, if 2k Æ n,

2(n ≠ k), if 2k Ø n.
(�)

If |C| = 1, we put dS(C) = 0; in any other case, dS(C) > 0. When the upper
bound in expression (�) is attained, we say that C is a constant dimension code of
maximum distance. Note that dS(C) = 2k only if 2k Æ n and all the codewords in
C intersect trivially. This class of codes of maximum distance are known as partial
spread codes, and they were introduced in [��] as a generalization of the class of
spread codes, previously studied in [��]. The code C will be a spread code, if the
subspaces in C pairwise intersect trivially, and they cover the whole space F

n
q (see

[��]). These codes only occur in the case where k | n and have cardinality qn
−1

qk−1
.

In this way, it can be said that spread codes are partial spreads of maximum size,
since the size of a partial spread code of dimension k (or k-partial spread code)
is always upper bounded by

qn ≠ qm

qk ≠ 1
, (�)

where m is the reminder obtained dividing n by k (see [��]). Notice that any
code of lines C ™ Gq(1, n) with |C| Ø 2 is in particular a partial spread code with

size |C| Æ qn
−1

q−1 , whereas Gq(1, n) can be seen as the spread of lines of Fn
q .

In case that we have C ™ Gq(k, n) with 2k Ø n, then we can consider the dual
code of C, that is, the set C⊥ = {V⊥ | V œ C}, which is a constant dimension
code of dimension n ≠ k with the same cardinality and distance as C (see [��]).
In particular, if dS(C) = 2(n ≠ k), then C⊥ is an (n ≠ k)-partial spread code and
the size of C can be also upper bounded in terms of (�). This is the reason why
from now on we consider that 2k Æ n.
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An important class of constant dimension codes are those called orbit codes,
introduced in [��]. These codes are defined as orbits under the action of some
subgroup of the general linear group. Consider V œ F

k×n
q a full-rank matrix

generating a subspace V = rowsp(V ) œ Gq(k, n). The map

Gq(k, n) ◊ GLn(Fq) ≠æ Gq(k, n)
(V, A) ‘æ V · A = rowsp(V A),

defines a group action from the right on Gq(k, n) (see [��]) since it is independent
of the choice of the generating matrix V . Given a subgroup H of GLn(Fq), the
orbit code OrbH(V) is the orbit generated by the action of H on V, that is,

OrbH(V) = {V · A | A œ H} ™ Gq(k, n).

The size of this orbit code is |OrbH(V)| = |H|
|StabH(V)| , where StabH(V) = {A œ

H | V · A = V} is the stabilizer subgroup of the subspace V under the action of
H. If H = StabH(V), then OrbH(V) = {V} and dS(OrbH(V)) = 0. In any other
case, the minimum distance of the orbit code OrbH(V) can be calculated as (see
[��]):

dS(OrbH(V)) = min{dS(V, V · A) | A œ H \ StabH(V)}.

Recall that we are assuming n = ks and consider the field reduction map Ï

defined in (�) which maps lines of Fs
qk into vector subspaces of dimension k of

F
n
q .

Since Ï is injective, it preserves intersections and, therefore, it follows that
dS(Ï(C)) = kdS(C) = 2k, for any C ™ Gqk (1, s). In other words, Ï(C) is a k-partial
spread of F

n
q , for any code of lines C of F

s
qk . In particular, if we consider the

spread of all lines of Fs
qk , it turns out that

Ï(Gqk (1, s)) ™ Gq(k, n), (�)

is a k-spread of Fn
q , which is called the Desarguesian k-spread of Fn

q (see [��]).
Originally due to Segre (see [��]), in the network coding setting, this construction
appears for the first time in [��].

Notice that the field reduction map Ï together with the group monomorphism
Â defined in expression (�) allow us to establish a relation between the group
action of GLs(Fqk ) on Gqk (1, s) and the group action of GLn(Fq) on Gq(k, n) as
follows (see [�, ��]):

Ï(V · A) = Ï(V) · Â(A), (�)

for all V œ Gqk (1, s) and A œ GLs(Fqk ). In particular, when we consider a
subgroup H Æ GLs(Fqk ) and an orbit code OrbH(V), for some V œ Gqk (1, s),
then

Ï(OrbH(V)) = {Ï(V · A) | A œ H}

= {Ï(V) · Â(A) | Â(A) œ Â(H)} = OrbÂ(H)(Ï(V)). (�)
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� Our construction

The main purpose of this section is to show how we can construct the Desarguesian
k-spread code of Fn

q given in (�) starting from the action of a specific Abelian

non-cyclic subgroup H̄ of GLn(Fq). To do so, in Subsection �.� we will first
present our group H̄ and then we will construct a k-partial spread of Fn

q as an

orbit generated by the action of H̄. Following this, in Subsection �.� we will
explain how to achieve the whole k-spread.

We consider n, k, s, t positive integers such that n = ks, with s = 2t Ø 2 and
gcd(t, qk ≠ 1) = 1.

�.� A k-partial spread with an orbital structure

In this subsection we provide an explicit description of a k-partial spread of Fn
q

with an orbital structure. For this purpose, firstly, we will construct an Abelian
non-cyclic subgroup H of GLs(Fqk ) with a suitable action on certain lines of Fqk .

Let Mt œ GLt(Fqk ) be the companion matrix of a primitive polynomial of
degree t over Fqk . As we introduce in Section �.�, we have that Fqkt

≥= Fqk [Mt]

and, therefore, the order of Mt is o(Mt) = qkt ≠ 1. Consider C = M
qk

−1
t whose

multiplicative order, clearly, is r = qkt
−1

qk−1
; and, let – œ Fqk be a primitive element,

whose multiplicative order is qk ≠ 1.
We construct the matrices

h1 =

3

C It

0t×t –It

4

, h2 =

3

–It ≠It

0t×t C

4

œ GLs(Fqk ). (�)

The following result will be useful in order to compute the multiplicative
order of h1 and h2.

Lemma �. For any positive integer ¸, one has that

gcd(¸, q ≠ 1) = 1 if and only if gcd

3

q¸ ≠ 1

q ≠ 1
, q ≠ 1

4

= 1.

Proof. First we notice that if p is a prime dividing q ≠ 1, then q © 1 (mod p)
and so qi © 1 (mod p) for i Ø 1. Therefore,

q¸ ≠ 1

q ≠ 1
= q¸−1 + q¸−2 + · · · + q + 1 © ¸ (mod p).

Then, it is clear that p | ¸ if, and only if, p | q¸
−1

q−1 and the result follows.

Note that, since we are assuming that gcd(t, qk ≠ 1) = 1, Lemma � states that
gcd(r, qk ≠ 1) = 1.

The following result is a generalization of Lemmas �.�, �.� and �.� of [�]. The
proof runs analogously, and thus we omitted it.
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Lemma �. Consider the matrices h1, h2 defined in expression (�). The following
statements are satisfied:

�. The multiplicative order of h1 and h2 is qkt ≠ 1.
�. The matrices h1 and h2 commute.
�. Èh1Í fl Èh2Í = {I2t}.

Notice that we can express the elements of H = Èh1, h2Í as,

H = Èh1ÍÈh2Í =
)

ha
1hb

2 | 1 Æ a, b Æ qkt ≠ 1
*

,

where an arbitrary element can be written as

ha
1hb

2 =

3

–bCa
qa

j=1 –j−1Ca+b−j ≠
qb

j=1 –j−1Ca+b−j

0t×t –aCb

4

(��)

for any integers 1 Æ a, b Æ qkt ≠ 1. We will denote by (ha
1hb

2)i the i-th row of the
matrix ha

1hb
2 œ H, for 1 Æ i Æ s.

Let us denote ei œ F
s
qk the i-th canonical vector, for 1 Æ i Æ s. We are

interested in the action of the group H on the lines generated by ei, for 1 Æ i Æ t.
For this reason, we analyse the corresponding stabilizer subgroup. First, we need
the following technical lemma.

Lemma �. If 1 Æ a, b Æ qkt ≠ 1, then

a
ÿ

j=1

–j−1Ca+b−j ≠
b

ÿ

j=1

–j−1Ca+b−j = 0t×t if and only if a = b.

As a consequence of this result, we are able to obtain the stabilizer subgroup
of H corresponding to the lines generated by ei, for i œ {1, . . . , t}.

Theorem �. For all i œ {1, . . . , t}, one has that

StabH(rowsp(ei)) = È(h1h2)rÍ = È–IsÍ.

Thus, we construct the following 1-dimensional orbit codes of Fs
qk , for i œ

{1, . . . , t}:

Ci = OrbH(rowsp(ei)) = {rowsp((ha
1hb

2)i) | 1 Æ a, b Æ qkt ≠ 1} ™ Gqk (1, s). (��)

For all i œ {1, . . . , t}, the size of the orbit code Ci will be

|Ci| =
|H|

|StabH(rowsp(ei))|
=

(qkt ≠ 1)2

qk ≠ 1
.

Now, from the lines rowsp(ei) œ F
s
qk and the group H ™ GLs(Fqk ), the

injective map Ï defined in (�) and the group monomorphism Â defined in (�),
allow us to construct constant dimension codes of Gq(k, n). Starting from the
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field isomorphism „ defined in (�), one has that „(0) = 0k×k and „(1) = Ik. Thus,
we consider the vector subspace

Uk,i = Ï(rowsp(ei)) = rowsp
!

0k×k . . . Ik . . . 0k×k

"

™ Gq(k, n).

Moreover, we also consider the group H̄ = Â(H) ™ GLn(Fq). Now, according to
expressions (�) and (�), for any 1 Æ i Æ t, we construct

C̄i = Ï(Ci) = Ï(OrbH(rowsp(ei)))

= OrbÂ(H)(Ï(rowsp(ei))) = Orb
H̄

(Uk,i). (��)

Since Ï is an injective map and dS(Ci) = 2, one deduces that C̄i is a k-
partial spread of Fn

q , that is, it has dimension k and minimum distance dS(C̄i) =
kdS(Ci) = 2k, for any 1 Æ i Æ t. Moreover,

|C̄i| = |Ci| =
(qkt ≠ 1)2

qk ≠ 1
= (qkt ≠ 1)r.

Since a k-spread of Fn
q has size qn

−1
qk−1

(see Section �), we can calculate how far

each of the C̄i codes is from being a k-spread. Specifically, we obtain that

|C̄i| + 2r = (qkt ≠ 1)r + 2r = r(qkt + 1) =
qkt ≠ 1

qk ≠ 1
(qkt + 1) =

qn ≠ 1

qk ≠ 1
.

�.� Achieving a k-spread from each C̄i

In this section, we explain how we can obtain the Desarguesian k-spread of
F

n
q given in (�) starting from each k-partial spread C̄i defined in (��), for any

1 Æ i Æ t. That is, fixing a k-partial spread C̄i, we explicitly construct 2r subspaces
of Fn

q having dimension k and trivial intersection between them and also with

the subspaces of C̄i.
To do so, always starting from our group H = Èh1h2Í Æ GLs(Fqk ), for each

i œ {1, . . . , t} and j œ {t + 1, . . . , s}, we construct two sets of lines Ai and Bj of
Gqk (1, s), such that |Ai| = |Bj | = r and Gqk (1, s) = Ci fi Ai fi Bj . Afterward, we
will use the field reduction technique to obtain a k-spread of Fn

q .

Recall that the matrices h1 and h2 of H have multiplicative order qkt ≠ 1 =
r(qk ≠ 1), with gcd(r, qk ≠ 1) = 1. We are going to use the following subgroups
of the group H œ GLs(Fqk ):

H2 = Èhqk
−1

2 Í, N = È(h1h2)rÍ and T = Èh1, h
qk

−1
2 Í = Èh1ÍH2.

Lemma �. Consider the previous groups H, H2, N and T. One has:

�. |H2| = r.
�. N fl T = {Is} and H = NT.

Our interest for the subgroup T is explained in the following result.
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Theorem �. For each i œ {1, . . . , t} it follows that

Ci = OrbH(rowsp(ei)) = OrbT(rowsp(ei)).

From the general expression of elements of H given in (��), we easily obtain
the following expression of elements in T:

ha
1h

(qk
−1)l

2 =

3

Ca Da,l

0t×t –aCqk
−1)l

4

, (��)

where

Da,l =

a
ÿ

j=1

–j−1Ca+(qk
−1)l−j ≠

(qk
−1)l

ÿ

j=1

–j−1Ca+(qk
−1)l−j œ Fqk [Mt],

for any integers a œ {1, . . . , qkt ≠ 1} and l œ {1, . . . , r}. Since qkt ≠ 1 = (qk ≠ 1)r,
we can put

{1, . . . , qkt ≠ 1} = A1 fi A2 fi · · · fi Ar, (��)

where Am = {amr + m | 0 Æ am Æ qk ≠ 2}, for m œ {1, . . . , r}. And notice that
these sets form a partition of the set {1, . . . , qkt ≠ 1}.

Now, according to Theorem �, for each i œ {1, . . . , t}, the orbit code Ci can
be described as the set of lines generated by the i-th row of each matrix of T.
We are going to use the partition of {1, . . . , qkt ≠ 1} provided in (��) in order to
analise these lines.

Lemma �. For any integers a œ {1, . . . , qkt ≠ 1} and l œ {1, . . . , r}, consider
the matrices Ca and Da,l given in (��).

�. For any m œ {1, . . . , r} it follows that Ca = Cm if and only if a œ Am.
�. For each m œ {1, . . . , r}, there exists Bm œ Fqk [Mt] such that Bm ”= Da,l,

for all a œ Am and for all l œ {1, . . . , r}.

Next, for each i œ {1, . . . , t}, we use the matrices Bm obtained in Lemma �,
in order to define the following sets of lines

Ai = {rowsp((Cm|Bm)i) | 1 Æ m Æ r} (��)

Finally, we use the action of the group H2 on the lines of Fs
qk generated by

the canonical vectors ej , for j œ {t + 1, . . . , s} and we consider the orbit codes

Bj = OrbH2
(rowsp(ej)) ™ Gqk (1, s). (��)

We now have all the ingredients to complete each orbit code Ci until we get
the whole space of lines Gqk (1, s) of Fs

qk .

Theorem �. Consider integers i œ {1, . . . , t}, j œ {t + 1, . . . , s} and the one
dimensional codes of Fs

qk given by Ci, Ai and Bj in (��), (��) and (��). One has:
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�. |Ai| = |Bj | = r.
�. Gqk (1, s) = Ci fi Ai fi Bj.

Next, just as we construct the k-partial spreads C̄i of F
n
q , we construct

now k-partial spreads from the codes Ai and Bj , for any i œ {1, . . . , t} and
j œ {t + 1, . . . , s}. Denote H̄2 = Â(H2). We have that

Āi = Ï(Ai) = {Ï(rowsp((Cm|Bm)i)) | 1 Æ m Æ r} (��)

and

B̄j = Ï(Bj) = Ï(OrbH2
(rowsp(ej)))

= OrbÂ(H2)(Ï(rowsp(ej))) = Orb
H̄2

(Uk,j). (��)

are k-partial spreads of Fn
q .

Finally, we present our last result, which describes how we can obtain the
Desarguesian spread given in (�) from these three partial spreads.

Theorem �. For any i œ {1, . . . , t} and j œ {t + 1, . . . , s}, consider the orbit
code C̄i defined in (��), the code Āi defined in (��) and the orbit code B̄j defined
in (��). Then, the code C̄i fi Āi fi B̄j is a k-spread of Fn

q .

� Conclusions

In this paper, we have dealt with the orbital construction of a k-dimensional
spread in F

n
q , where n is an even number and k divides n, using a non-cyclic

Abelian group. Our results generalize the results obtained by Chen and Liang
in [�] for F

2k
q . However, the techniques we have used are new and not easily

detached from this work.
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Abstract. Cryptographic group actions have gained significant atten-
tion in recent years for their application on post-quantum sigma protocols
and digital signatures. In NIST’s recent additional call for post-quantum
signatures, three relevant proposals are based on group actions: LESS,
MEDS, and ALTEQ. This work explores signature optimisations lever-
aging a group’s factorisation. We show that if the group admits a fac-
torisation as a semidirect product of subgroups, the group action can be
restricted on a quotient space under the equivalence relation induced by
the factorisation. If the relation is efficiently decidable, we show that it
is possible to construct an equivalent sigma protocol for a relationship
that depends only on one of the subgroups. Moreover, if a special class
of representative of the quotient space is efficiently computable via a
canonical form, the restricted action is effective and does not incur in
security loss. Finally, we apply these techniques to LESS and MEDS,
showing how they will affect the length of signatures and public keys.

Keywords: Digital signatures · Post-quantum · Code equivalence

1 Introduction

Cryptographic Group Actions. The topic of cryptographic group action has raised
a lot of interest in recent years. They represent a generalisation of the Discrete
Logarithm Problem, and the underlying problem can be stated as follows: given
a group action (G,X, ?) and two elements x, y in X, find, if any, an element g of
G such that y = g?x. A first appearance of group actions in cryptography can be
found in [4], while in [1] are given the formal assumptions linked to them. This
interest has grown since a proposal for a post-quantum Diffie-Hellman is based on
the commutative action of the isogenies of elliptic curves CSIDH [6]. After that,
many post-quantum proposals have emerged, but the most impactful application
is the one related to sigma protocols and digital signatures. For instance, three
candidates to the NIST’s call for the post-quantum standardisation are based
on group actions: LESS [2], MEDS [9] and ALTEQ [16].
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Our contribution. The goal of this work is to investigate the cryptographic op-
timisations taking advantage of a factorisation of the group G. To do this, we
introduce a framework that exploits the fact that, to be infeasible to invert, the
group action relies only on a part of the group G. More in detail, we show that
the group action can be restricted on a quotient space under an appropriate
equivalence relation, induced by the group factorisation. From this relation, we
propose two optimisation techniques. First, if the relation is decidable in poly-
nomial time, we show that it is possible to define an equivalent sigma protocol
for the action (G,X, ?) with shorter responses and without changing the secu-
rity assumption. Unfortunately, the resulting sigma protocol lacks commitment
recoverability, leading to larger signatures. This problem can be overcome with
the following technique. We prove that the restricted action can be efficiently
computed if an efficiently computable canonical form exists for the equivalence
relation. Moreover, we show that this approach can be extended to groups G

that are semidirect products of subgroups. We apply these techniques to reduce
the size of the public key, secret key and signature of the textbook instantiation
of schemes based on code equivalence problems. In particular, we analyse LESS
and MEDS. The group acting in the former is GLk(q) o Mon(n, q), that can
be further factorised as

�

GLk(q)⇥ (F⇤

q)
n
�

o Sn. This, along with the existence
of a canonical form for the action of GLk(q) ⇥ (F⇤

q)
n, implies that the secret

can consist of just a permutation of Sn. Moreover, in the sigma protocol, this
means that the response of each round is a permutation instead of an element of
GLk(q)oMon(n, q) or a monomial matrix when the systematic form is involved.
Concerning MEDS, we have the action of GLn(q) ⇥ GLm(q) ⇥ GLk(q) on the
set of n ⇥m matrix spaces of dimension k. We consider the factorisation given
by GLn(q)⇥ (GLm(q)⇥GLk(q)), and, after presenting a canonical form for the
action of the group (GLm(q)⇥GLk(q)), we describe a compressed variant of the
MEDS signature.

Concurrent works. Numerous optimisations for signature schemes based on cryp-
tographic group actions have been proposed. Many of these are generic optimi-
sations that can be applied to any scheme within the framework of Fiat-Shamir
signatures. For instance, [12] proposes an approach to reduce the signature size
by expanding the public key; while [3] proposes the use of unbalanced challenges
when the size of responses varies significantly between distinct challenges. Other
optimisations, instead, are closely linked to the specific security assumption. As
a reference, LESS includes a variant of the code equivalence introduced in [15]
where the size of the signatures is reduced by modifying the commitment gen-
eration and the verification procedure. Recently, in [10], the authors introduced
a new notion of code equivalence using canonical forms with respect to certain
equivalence relations. Compared to our work, the optimisation of [10] cannot
be easily extended outside linear equivalence without explicitly proving the re-
duction from the original assumption. On the other hand, their work exploits a
decomposition of the group G that does not require the use of subgroups, leading
to increased signature compression.



2. PRELIMINARIES 3

2 Preliminaries

2.1 Notation

With Sn and GLn(q) we denote the group of permutations acting on n elements
and the group of n ⇥ n invertible matrices with coefficients in the finite field
with q elements, respectively. Mon(n, q) is the subgroup of GLn(q) of monomial
matrices, consisting of matrices with exactly one non-zero element in each row
and column. Given a group G, we write G = G1 o G2 to denote the internal
semidirect product of subgroups G1, G2 of G, with G1 normal in G. If G2 is
normal in G, then G = G1 ⇥G2 is an internal direct product of G1 and G2.

2.2 Cryptographic Group Actions

We recall the definition of group action and some related properties for their use
in cryptography. In the rest of the paper, we will use groups with multiplicative
notation.

Definition 1. Let G be a group, X be a set and ? be a map from G⇥X to X.
The triple (G,X, ?) is called group action if for any g, h in G and x in X, we
have g ? (h ? x) = (gh) ? x, and, if e is the neutral element of G, then e ? x = x

for any x in X.

In [1] are defined the requirements that a group action must accomplish to be
manipulated and used in cryptography. This leads to the definition of effective
group actions.

Definition 2. Let � be a positive integer. Given a group action (G,X, ?) with
log(|G|) = poly(�) and log(|X|) = poly(�), we say that the action is effective
if the following algorithms are polynomial time computable in �: unique string
representation, sampling and equality testing for both G and X, product and
inverse in G and the map ?.

Along with the above polynomial time algorithm, we need some hard prob-
lems to use group action in cryptography. The main computational problem
related to them is a generalisation of the Discrete Logarithm in the language of
group actions.

Definition 3. Given a group action (G,X, ?), the Group Action Inverse Prob-
lem (GAIP?) takes as input a pair of elements x and y in X and asks to find g

in G such that y = g ? x, if any.

Observe that this problem was introduced in [11] with the name of “vectorisa-
tion problem” and the related cryptographic assumption is called “one-wayness”
of the group action in [1].
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2.3 Code Equivalence and related problems

A k-dimensional linear code is a subspace of dimension k of a vector space V

endowed with a metric d : V ⇥ V ! N. An isometry  : V ! V for d is a
map that does not affect the metric, d ( (u), (v)) = d(u, v). Two codes are said
equivalent if there exists an isometry between them and the set of isometries is
a group with the group operation given by the composition. This means that a
group action on codes can be defined using the group of isometries.
In this work, we will concern linear codes of two types: subspaces of F

n
q en-

dowed with the Hamming metric dH(u, v) = |{i : vi � ui 6= 0}|, and subspaces
of the vector space of matrices Fn⇥m

q endowed with the rank metric drk(U, V ) =
rank(V � U). Linear codes in the rank metric are also called matrix codes.
We now model the equivalence of codes in the two metrics above as group actions.
For the Hamming metric, we have the following.

Definition 4. Let G = GLk(q) ⇥ Mon(n, q) and X ✓ F
k⇥n
q the set of all full

rank k ⇥ n matrices over Fq. The group action is given by (L,Q) ?G = LGQ.

The Group Action Inversion Problem for the above action is usually called
Linear Code Equivalence (LEP). In the rank metric, we have the following mod-
elling.

Definition 5. Let G = GLn(q) ⇥ GLm(q) ⇥ GLk(q) and let X be the set of
k-dimensional subspaces of F

n⇥m
q represented by their bases. The group ac-

tion is given by (A,B,C) ? hM1, . . . ,Mki = hAM 0

1B, . . . , AM 0

kBi, where M 0

i =
Pk

j=1
CijMj.

The GAIP for this action is known as Matrix Code Equivalence (MCE).

3 Equivalence Relations from Groups Factorisations

Given a group action (G,X, ?), suppose that we can write G as G1 oG2. Let  
be the homomorphism from G2 to the automorphism group of G1 used in the
semidirect product, sending h 2 G2 to the automorphism of G1  h : G1 ! G1.
In the rest of the paper, we assume that the group factorisation is efficiently
computable, i.e. for any g 2 G, it is feasible to find its decomposition into
(g1, g2) 2 G1 oG2. From (G,X, ?), it is natural to define the following relation
on X ⇥X

x ⇠ y () 9g1 2 G1 such that y = (g1, e) ? x

and it is easy to show that ⇠ is an equivalence relation. Given the quotient
space X⇠ with respect to the equivalence ⇠, we can define a new group action
(G2, X⇠, ?⇠) as follows

g2 ?⇠ [x]⇠ 7! [(e, g2) ? x]⇠. (1)

To show that the action is well-defined, let g2 2 G2 and let x ⇠ y. Then, there
exists g1 2 G1 such that y = (g1, e) ? x and

g2 ?⇠ [y]⇠ = [(e, g2) ? ((g1, e) ? x)]⇠ = [( g2(g1), g2) ? x]⇠

= [(e, g2) ? x]⇠ = g2 ?⇠ [x]⇠.
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Note that if the relation is defined via G2, the action above is not well-defined.
In fact, it is possible to show that to obtain a well-defined action, G1 must be
normal in G.

3.1 Verifying Orbit Equivalence

To deal with the orbits, our first approach requires the existence of an efficient
algorithm that checks the equivalence. As an additional feature for the security
reductions, on input x0 and x1, if they are in the same orbit with respect to ⇠, we
need that this algorithm returns an element g1 of G1 such that x1 = (g1, e) ?x0.

Definition 6. Let (G,X, ?) be a group action such that G = G1oG2. An orbit
equivalence algorithm for G1 is a polynomial-time computable map OE : X⇥X !
G1 [ {?} such that OE(x0, x1) 2 G1 and (OE(x0, x1), e) ? x0 = x1 if and only if
x0 and x1 are in the same orbit with respect to ⇠, and OE(x0, x1) = ? otherwise.

Restricting the action to G2 without a canonical representation of the ele-
ments in X⇠ would require a new security assumption. However, the existence of
an orbit equivalence algorithm allows us to define a modified sigma protocol for
the action (G,X, ?), with short responses, without changing the assumptions.

In short, we build a sigma protocol for the following relation

RG1
= {((x0, x1), g2) 2 (X ⇥X)⇥G2 | 9g1 2 G1 s.t. (g1, g2) ? x0 = x1} .

Observe that the existence of an orbit equivalence algorithm OE implies that
RG1

is an NP-relation. Let R be standard relation of the action (G,X, ?)

R = {((x0, x1), g) 2 (X ⇥X)⇥G | g ? x0 = x1} ,

then RG1
and R define the same language in NP. In particular, given a pair

(x0, x1), the problems of finding a g in G such that x1 = g ? x0 can be reduced
to the problem of finding g2 in G2 such that [x1]⇠ = g2 ?⇠ [x0]⇠. Hence, one can
store and send only elements in the group G2 for the secret, without incurring
in security losses.

The sigma protocol for RG1
we define runs as follows. The Prover and the

Verifier have a statement (x0, x1) 2 X ⇥ X, while the Prover knows a witness
g2 2 G2 for it. We suppose that an orbit equivalence algorithm OE for G1 is
known.

1. P1((x0, x1), g2): picks at random an element (h1, h2) 2 G1 o G2 and sends
to the Verifier com = (h1, h2) ? x0 as a commitment.

2. V1((x0, x1), com): generate a random challenge ch 2 {0, 1} and sends it to
the Prover.

3. P2((x0, x1), g2, com, ch): if ch = 0 set rsp = h2, otherwise they set rsp =
h2g

�1

2
and send it to the Verifier.

4. V2((x0, x1), com, ch, rsp): first, they set y = (e, rsp) ? xch. Then, they check
that OE(y, com) 6= ?. If the check succeeds, then they accept; otherwise
reject.
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Theorem 1. The sigma protocol for the relation RG1
presented above is correct,

2-special sound and perfect honest-verifier zero-knowledge.

Proof. The sigma protocol for the relation RG1
presented above is a slight mod-

ification of the standard one used for group actions, i.e. a generalisation of the
protocol for Graph Isomorphism from [13]. Here, we use the action (G2, X⇠, ?⇠)
given by the subgroup G2 on the set X⇠ of the orbits of X under the action of
G1. The existence of the map OE implies that the action of G1 over X is easy to
invert. Moreover, since the initial action (G,X, ?) is effective, so is (G2, X⇠, ?⇠),
except for the unique string representation property for X⇠. In the sigma pro-
tocol, this is addressed using the map OE in point 4. of the algorithm.

From the above sigma protocol, an identification scheme can be derived. The
key generation algorithm, sample at random (g1, g2) 2 G and x0 2 X, then sets
(x0, (g1, g2) ?x0) as public key and g2 as private key. To reach a security level of
� bits, the interactive phase is then repeated � times in parallel.
This scheme can be turned into a digital signature through standard techniques
in the ROM. Unfortunately, since the verifier needs to check the orbit equiva-
lence between (e, rsp) ? xch and com, the resulting signature is not commitment-
recoverable, i.e. the commitment cannot be computed from the knowledge of ch
and rsp. Hence, compared to the signatures analysed in Section 4, there would
be no gain with respect to signature size.

3.2 Canonical Forms

The second approach concerns a class of functions that leads to efficient orbit
equivalence algorithms. To prove that two orbits of X⇠ are the same, we use a
special class of representative computable via a canonical form.

Definition 7. A canonical form with failure for a relation ⇠ on X ⇥ X is a
map CF⇠ : X ! X [ {?} such that, for any x, y 2 X,

1. if x ⇠ y then CF⇠(x) = CF⇠(y);
2. if CF⇠(x) 6= ? then CF⇠(x) ⇠ x.

If CF⇠(x) = ? we say that CF⇠ fails on the element x. Notice that when
CF⇠(x) = CF⇠(y) 6= ?, the second property implies x ⇠ y. Moreover, if ⇠
is defined as above, we will use CF⇤

⇠
to define the map that returns both the

canonical form and the moving element g1 2 G, and we assume that CF⇤

⇠
can be

always obtained from CF⇠.

If there exists an efficiently computable canonical form CF with low failure
probability, such that x ⇠ y if and only if CF(x) = CF(y) for every x and y in X,
then the above action is efficiently computable as follows. We identify the orbits
of X⇠ with the representatives given by the canonical form CF and the action is
given by

g2 ?⇠ x 7! CF((e, g2) ? x).

Similarly to the action of Equation (1), the map above is well-defined, and it
leads to an effective group action.
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Proposition 1. If there exists a polynomial-time computable canonical form
CF for the equivalence ⇠, the Group Action Inverse problems for (G,X, ?) and
(G2, X⇠, ?⇠) are polynomially equivalent.

Proof. We refer to the Group Action Inverse problems for (G,X, ?) and (G2, X⇠, ?⇠)
as GAIP? and GAIP?⇠

, respectively.
The reduction from GAIP?⇠

to GAIP? is as follows. Let (x, y) be an instance
of GAIP?⇠

. This means that y is in canonical form and CF(y) = y. The pair
(x, y) can be seen as an instance of GAIP?, and finding g = (g1, g2) such that
(g1, g2) ? x = y implies that

g2 ?⇠ x = CF((e, g2) ? x) = CF((g1, e)(e, g2) ? x) = CF((g1, g2) ? x) = CF(y) = y,

and we are done.
Vice versa, one can reduce GAIP? to GAIP?⇠

as follows. Let (x, y) be an
instance of GAIP?. For every z 2 X, let gz the element of G1 returned by
CF⇤(z), so that (gz, e) ? z = CF(z). Let (x,CF(y)), with CF(y) = (gy, e) ? y, be
an instance of GAIP?⇠

whose solution is given by g2. This means that

CF(y) = g2 ?⇠ x = CF((e, g2) ? x) = (g̃, g2) ? x,

where g̃ is obtained from CF⇤. Then, we have that

(g�1

y g̃, g2) ? x = (g�1

y  e(g̃), g2) ? x = (g�1

y , e)(g̃, g2) ? x

= (g�1

y , e) ? ((g̃, g2) ? x) = (g�1

y , e) ? CF(y) = y

and we found a solution for the instance (x, y) of GAIP?.

The above results imply that, if one is able to factorise G and a polynomial-
time computable canonical form with respect to the relation for a factor G1,
then the induced action (G2, X⇠, ?⇠), where G2 is the remaining factor, can
be used without introducing new computational assumptions. This means that,
instead of using elements from the whole group G, one can use elements from G2,
potentially reducing the sizes of the elements involved. This is implicitly used in
the Linear Code Equivalence Problem when the systematic form is employed.

4 Applications

4.1 Matrix Code Equivalence

Here we show an application of the above technique to reduce the sizes of MEDS
[9], a digital signature scheme based on the equivalence of matrix codes. Its
security relies on the hardness of the Matrix Code Equivalence problem, based on
the action of Definition 5. Given the group G = GLn(q)⇥GLm(q)⇥GLk(q), in [9],
using the systematic form for the action of the last factor GLk(q), they implicitly
use only the action of the remaining part of the group GLn(q)⇥GLm(q). Here
we go further, quotienting on the factors GLm(q) ⇥ GLk(q) and using in the
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sigma protocol (and hence in the signature) only elements in GLn(q).
Let us start by recalling that the action on n ⇥m k-dimensional matrix codes
can be seen as the action of G on n⇥mk matrices as follows. Let M1, . . . ,Mk be
a basis of a matrix code, then the action of (A,B,C) is defined as CM(AT ⌦B),
where M = [M1 | M2 | . . . | Mk] 2 F

n⇥mk
q .

One can notice that if we factor G = G1 ⇥G2 where G1 = GLm(q)⇥GLk(q)
and G2 = GLn(q), the action of G1 is equivalent to a special case of the Matrix
Space Conjugacy problem that is solvable in polynomial time [5,14,7]. Even if
this approach leads to an efficient orbit equivalence algorithm, to obtain a gain in
the signature size, we need to present a canonical form for the following relation

M ⇠ N () 9(B,C) 2 GLm(q)⇥GLk(q) such that N = CM(In ⌦B).

From now on, we assume n = m as in the parameter sets from the MEDS
submission [8].

Let M = [M1 | M2 | . . . | Mk] 2 F
n⇥nk
q , with Mi 2 F

n⇥n
q , the canonical form

(with failure) CF(M) is computed as follows:

1. Let 1  j  k be the smallest index for which the j-th block Mj is invert-
ible and compute M̄ = M�1

j M . If an invertible block does not exist, the
procedure fails and returns ?.

2. Let j0 = j + 1 (mod k). Find the solution set V of invertible matrices B 2
GLn(q) such that B�1M̄j0B is equal to the circulant matrix circ(en) on the
first n � 1 columns. If the solution set is empty, the procedure fails and
returns ?.

3. Let j00 = j + 2 (mod k). Given a total ordering on F
n
q , find the unique

solution B 2 V (up to a constant factor) that minimizes the first column of
B�1M̄j00B.

4. The canonical form of M is computed as CF(M) = (MjB)�1M(Ik ⌦B).

Proposition 2. CF is a canonical form for the relation ⇠.

Proof. We prove that CF is a canonical form according to Definition 7. Let
M = [M1 | M2 | . . . | Mk] 2 F

n⇥nk
q , Mi 2 F

n⇥n
q . Suppose CF(M) 6= ?, then

CF(M) = (MjB)�1M(Ik ⌦ B), for some 1  j  k and B 2 GLn(q). Then the
i-th block of CF(M) is given by (MjB)�1MiB, which implies CF(M) ⇠ M .

Let M ⇠ N , i.e. there exists X,Y 2 GLn(q) such that Ni = XMiY , for
all 1  i  k. Then, since Mj is invertible, so is Nj and it holds CF(N) =
(NjB

0)�1N(Ik ⌦ B0) for some B0 2 GLn(q). Let V (resp. V 0) be the solu-
tion set of invertible matrices B 2 GLn(q) (resp. B0) such that B�1M�1

j Mj0B

(resp. B0�1N�1

j Nj0B
0) is equal to the circulant matrix circ(en) on the first n�1

columns. Then, there is a one-to-one correspondence between V and V 0 given
by B 7! Y �1B. It follows that

CF(N) = (NjB
0)�1N(Ik ⌦B0) = (XMjY B0)�1XM(Ik ⌦ Y B0)

= (Y B0)�1M�1

j M(Ik ⌦ Y B0) = (MjB)�1M(Ik ⌦B) = CF(M).
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Table 1. Signature sizes (in bytes) for MEDS.

Parameter set Sec. Level MEDS [8] This work Gain

MEDS-13220 I 12976 7516 42.1%
MEDS-69497 III 54736 29788 45.6%
MEDS-167717 V 165332 86462 47.7%

Unfortunately, this canonical form, even if it can be computed in expected
polynomial time, is not efficient for practical applications. Observe that the most
burdensome task is given by step 3 of the computation of CF. To overcome this
limitation, we can slightly modify the sigma protocol by including additional
information in the response to quickly identify a particular class representative.
Consider the standard sigma protocol for a cryptographic group action. The
commitment is the element CF(h2 ?⇠ [x]⇠) for a random h2 2 G2. In the com-
putation of the canonical form, during step 3, the signer chooses the column
instead of finding the minimal one as in the algorithm. This column is then sent
with the response, so the verifier can efficiently compute the same representative
by constraining the choice of column during step 3. This strategy leads to more
efficient signing and verifying processes, making the signature doable.

Concerning the version of MEDS using the action of GLn(q)⇥GLm(q) from
[9], our proposal allows to reduce the size of the signature of about 45% for the
last version of the parameter sets given in [8], as reported in Table 1. The gain
in the signature dimensions comes at the cost of running the canonical form
algorithm both in the signing and verification phases.

4.2 Linear Code Equivalence

LESS is a digital signature scheme based on the equivalence of linear codes,
which can be described in the framework of group actions. For 1  k  n, let
F
k⇥n
q be the linear space of k ⇥ n matrices over Fq. Let Mon(n, q) be the group

of n ⇥ n monomial matrices over Fq. We consider the group action ? described
in Definition 4 of G = GLk(q)⇥Mon(n, q) on X ✓ F

k⇥n
q , the set of all full rank

k ⇥ n matrices over Fq.
It is well known that Mon(n, q) is isomorphic to the semidirect product Snn

(F⇤

q)
n, where (F⇤

q)
n is isomorphic to the group of non-singular n ⇥ n diagonal

matrices. The group in the previous definition can then be factorised as G =
GLk(q)⇥ (Sn n (F⇤

q)
n). Observe that G is isomorphic to (GLk(q)⇥ (F⇤

q)
n)o Sn

and we can apply the framework of the previous section by defining the following
relation on X ⇥X:

G ⇠ G0 () 9(L,D) 2 GLk(q)⇥(F⇤

q)
n such that G0 = LGD = (L, (In, D))?G.

To show that the induced group action (Sn, X⇠, ?⇠) can be efficiently com-
puted, we introduce the following canonical form (with failure) CF for ⇠.

Let G 2 X, the canonical form CF(G) is computed as follows:
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Table 2. Signature sizes (in bytes) for LESS.

Parameter set Sec. Level LEP IS-LEP [15] CF-LEP [10] This work

LESS-1b I 15726 8646 2496 9096
LESS-3b III 30408 17208 5658 18858
LESS-5b V 53896 30616 10056 34696

1. Compute the Reduced Row-Echelon Form (RREF) of G.

2. Let 1  j  n be the smallest index for which the j-th column gj =
(g1,j , . . . , gk,j) of RREF(G) has only non-zero elements. If a column of this
form does not exist, the procedure fails and returns ?. Compute Dr =
diag(g�1

1,j , . . . , g
�1

k,j) 2 F
k⇥k
q .

3. Let bj be the first non-zero element of each column of Dr RREF(G), for
1  j  n. Compute Dc = diag(b�1

1
, . . . , b�1

n ) 2 F
n⇥n
q .

4. The canonical form of G is computed as CF(G) = Dr RREF(G)Dc.

Proposition 3. CF is an efficient canonical form for the relation ⇠.

LESS implicitly use the framework with canonical form by working with the
RREF of elements in X. Compared to this basic form, in our version, the re-
sponse size changes from n(dlog2 ne + dlog2(q � 1)e) bits, required to represent
an element of Mon(n, q), to ndlog2 ne, required for an element of Sn. However,
the version of LESS submitted to NIST includes the Information Set-LEP vari-
ant introduced in [15]. With this variant, the commitment generation and the
verification procedure are modified so that it is possible to reduce the response
size to k(dlog2 ne+ dlog2(q � 1)e) bits. Moreover, the authors of LESS recently
presented in [10] a new notion of equivalence for codes and proved that it reduces
to linear equivalence. This leads to an even more significant reduction in the size
of responses. This last variant can partially be framed within our framework. In
particular, let H be a subgroup of G and S be a subset of G such that e 2 S, and
suppose that for each g 2 G there exist unique elements h 2 H, s 2 S such that
g = hs. Then, as in Section 3, we can take the relation ⇠ on X ⇥X induced by
H and consider the quotient space X⇠. However, we cannot define a new group
action restricted to S since it is not a group. On the other hand, if we know
a canonical form CF⇠ for ⇠, this is enough to define a sigma protocol based
on the original group action, where responses are computed as the factor in S

of the considered element in G. This requires the definition of a new security
assumption based on a variant of the original problem where the action is taken
on X⇠ via the canonical form4. Unlike in our framework, this variant must be
explicitly shown to be equivalent to the original assumption. Further research
should consider the possibility of extending the results of Section 3 to a generic
factorisation involving a subset of G. See Table 2 for a comparison.

4 In the context of LEP, the authors of [10] refer to this variant as Canonical Form-LEP
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Abstract. We provide a new construction of quantum codes that en-

ables integration of a broader class of classical codes into the mathe-

matical framework of quantum stabilizer codes. Next, we present new

connections between twisted codes and linear cyclic codes and provide

novel bounds for the minimum distance of twisted codes. We show that

classical tools such as the Hartmann-Tzeng minimum distance bound are

applicable to twisted codes. This enabled us to discover five new infinite

families and many other examples of record-breaking, and sometimes

optimal, binary quantum codes.
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1 Introduction

Let Fq be the finite field of q elements. An F2-linear subspace C ✓ F
n
4 is called

an additive code over F4. Additive codes are especially important due to their
application in the construction of binary quantum codes. The class of additive
twisted codes is possibly the most structured family of additive codes. They were
first introduced as a subclass of additive cyclic codes by Jürgen Bierbrauer and
Yves Edel [7]. Twisted codes, like linear cyclic codes, are defined and constructed
using (unique) defining sets, and the BCH minimum distance bound holds for
them [7]. Moreover, several families and examples of good quantum codes are
constructed using dual-containing twisted codes [2]. While the original work
on the additive twisted codes has been widely referenced in literature, twisted
codes have not been developed much since their invention. This is likely due to
their study being technically much more difficult than the study of many other
common families of codes.

Quantum error-correcting codes, or simply quantum codes, are applied to
protect quantum information from corruption by noise (decoherence) on the
quantum channel in a way that is similar to that of classical error-correcting
codes. This extended abstract exclusively deals with binary quantum codes. The
parameters of a binary quantum code that encodes k logical qubits into n phys-
ical qubits and has minimum distance d are denoted by Jn, k, dK. The most
common approach to construction of quantum codes is by using the stabilizer



formalism which builds a bridge between certain dual-containing additive codes
and quantum (stabilizer) codes [4, 8]. One of the main challenges of quantum sta-
bilizer codes is its dual-containment condition, which only allows a small number
of classical codes to be used to construct good quantum codes.

In this extended abstract, we first give a novel construction of binary stabi-
lizer quantum codes that makes it possible to also use additive codes that are not
dual-containing. Next, we introduce a new perspective on twisted codes by view-
ing each code as an additive subcode of a particular linear cyclic code. This new
approach provides a stronger connection between twisted codes and linear cyclic
codes, enabling us to give novel minimum distance lower and upper bounds for
twisted codes and show new similarities between twisted codes and linear cyclic
codes. In particular, we prove that the Hartmann-Tzeng bound holds for twisted
codes. We demonstrate that five infinite families of record-breaking, and some-
times optimal, quantum codes can be constructed from twisted codes using these
bounds. To recognize that a quantum code is record-breaking and/or optimal
we refer to the tables maintained by Markus Grassl [9].

Remark 1. A comprehensive elaboration of the material introduced in this ex-
tended abstract can be found in [6, Chapter 3]. In this extended abstract, we
mainly list our main results without a complete proof. For a more in-depth
exploration of the details, we suggest consulting the aforementioned reference.

2 Background

Let F4 = {0, 1, w, w2} be the field of four elements, where w2 = w + 1. An
additive code C ✓ F

n
4 with F2-dimension k will be denoted by (n, 2k). Similar to

linear codes, the minimum weight among all non-zero codewords of an additive
code C is called the minimum distance of C, and it will be denoted d(C).

Let u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vn) 2 F
n
4 . The trace map Tr :

F4 ! F2 is defined by Tr(x) = x + x, where x = x2. We define conjugate of
the vector u by u = (u1, u2, . . . , un). The dot product of vectors u and v will be
denoted u · v. The trace inner product of u and v is defined by

u ⇤ v = Tr(u · v) = (u · v) + (u · v) =

n
X

i=1

(uivi + uivi). (1)

If C is an (n, 2k) additive code, its trace dual with respect to the trace inner
product is defined by

C?t = {u 2 F
n
4 : u ⇤ v = 0 for all v 2 C}.

It is easy to see that ⇤ is non-degenerate and C?t is an (n, 22n�k) additive code.
We call an additive code C a dual-containing (respectively self-dual) code with
respect to the trace inner product if C?t ✓ C (respectively C?t = C).

The mathematical formalism of quantum stabilizer code, as described in the
next theorem, provides a sufficient condition for constructing binary quantum
codes from additive codes over F4.



Theorem 1. [4] Let C ✓ F
n
4 be an (n, 2n+k, d) additive code such that C?t ✓ C.

Then an Jn, k, d0K binary quantum stabilizer code can be constructed, where d0 is
the minimum weight in C \ C?t if k > 0 and d0 = d if k = 0.

Proof. The proof follows from [4, Theorem 2].

If d = d0 the above quantum code is called pure, and otherwise (d < d0) impure.

2.1 Additive twisted codes

In this subsection, we provide a brief overview of the construction of additive
twisted codes and highlight certain key properties. For more in-depth details,
interested readers are encouraged to refer to [1, Section 17.2], [2], or [6, Chap-
ter 3].

Let n be a positive integer such that n | 2r�1 for some positive integer r, and
F2r be the field of 2r elements. The surjective F2-linear map φγ : F2r ! F2 ⇥F2

is defined by
φγ(x) = (Trr1(x),Tr

r
1(γx)), (2)

where γ 2 F2r \ F2 and Trr1 is the trace map from F2r to F2. Since n | 2r � 1,
the multiplicative group F

⇤
2r contains all the n-th roots of unity, namely W =

{1,α1,α2, . . . ,αn�1}, where α is a primitive n-th root of unity in F
⇤
2r . Let A ✓

Z/nZ. We define B(A) to be the matrix over F2r whose rows and columns are
labelled by elements of A and W , respectively, and the entry in row j and
column αi is αij . Let C(A) be the length n linear cyclic code over F2r with
the defining set A. Then B(A) is a generator matrix for the code C(A)?, the
Euclidean dual of C(A). We define φγ(C(A)?) to be the F2-linear code

φγ(C(A)?) = {φγ(c) : c 2 C(A)?}. (3)

Let v = (v1, v2, . . . , vn) be a vector in C(A)?. In this extended abstract, we
represent the vector φγ(v) by φγ(v) =

�

(v11, v12), . . . , (vn1, vn2)
�

, where vi1 =
Trr1(vi) and vi2 = Trr1(γvi) for each 1  i  n.

Definition 1. Let h, is : F2n
2 ⇥ F

2n
2 ! F2 be the nondegenerate symplectic F2-

bilinear form defined by

h
⇣

(a11, a12), . . . , (an1, an2)
⌘

,
⇣

(b11, b12), . . . , (bn1, bn2)
⌘

is =
n
X

i=1

ai1bi2 � ai2bi1.

(4)

Definition 2. Let n | 2r �1 for some integer r and A be a subset of Z/nZ. The
dual of the code φγ(C(A)?) with respect to the symplectic inner product h, is is
called a twisted code of length n over F2⇥F2. Such a twisted code will be denoted
by Cγ(A). In other words,

Cγ(A) =
�

φγ(C(A)?)
�?s

.



The F2-linear isomorphism ψ : F2n
2 ! F

n
4 defined by

ψ
�

(a11, a12), . . . , (an1, an2)
�

= (a11ω + a12ω
2, a21ω + a22ω

2, . . . , an1ω + an2ω
2)
(5)

maps each twisted code into an additive code over F4. Moreover, we have

hu, vis = ψ(u) ⇤ ψ(v)

for each u, v 2 F
2n
2 .

In general, the set A in the above definition is not unique, that is, a twisted
code can be constructed using different subsets of Z/nZ. We denote κ = [F2(γ) :
F2], which is an integer greater than one. For each a 2 Z/nZ, the set

Z(a) = {(a2j) mod n : 0  j  m� 1},

where m is the smallest positive integer such that a2m ⌘ a (mod n), is called
the 2-cyclotomic coset modulo n containing a.

Definition 3. [1, 2] Let A ✓ Z/nZ and a 2 A. If κ | |Z(a)| and κ | i�j for each
2ia, 2ja 2 Z(a)\A, then Z(a)\A is called unsaturated. Otherwise, Z(a)\A is
called saturated.

Let A ✓ Z/nZ and Z be a 2-cyclotomic coset modulo n such that Z \ A is
unsaturated and a 2 Z \A. We define

(Z \A)H = {a2κi : 0  i 
|Z(a)|

κ
� 1}.

In this case, there exists a subgroup H of the Galois group of F2r/F2 of size
|Z(a)|

κ
that acts transitively on (Z \A)H . Lemma 3 of [2] shows that the set

Ã =
[

Z\A sat

Z
[

Z\A unsat

(Z \A)H (6)

is the largest defining set (called the complete defining set) that the twisted code
Cγ(A) can have. Moreover Cγ(A)?s = φγ(C(A)?) = Cγ(Ad), where

Ad =
[

Z\A=;

�Z
[

Z\A unsat

�((Z \A)H). (7)

This observation implies that a twisted code Cγ(A) is dual-containing if and
only if A ✓ Ad. The dimension of each twisted code is computed using the
following theorem.

Theorem 2. [2, Theorem 5] Let n | 2r � 1 be a positive integer and A ✓ Z/nZ.

Then the F2-dimension of Cγ(A) is
X

Z

cZ(A), where the sum runs over all 2-

cyclotomic cosets modulo n and



cZ(A) =

8

>

<

>

:

2|Z| if Z \A = ;

|Z| if Z \A is unsaturated

0 if Z \A is saturated.

Example 1. Let n = 15. Note that n | 24� 1 and therefore γ can be any element
of F16 \ F2. The 2-cyclotomic coset of 1 modulo 15 is Z(1) = {1, 2, 4, 8} and
Z/15Z = Z(0) [ Z(1) [ Z(3) [ Z(5) [ Z(7).

Let γ 2 F16 \ F4 and A = {1, 4}. Then κ = [F2(γ) : F2] = 4. In this case,
A \ Z(1) is saturated and A is an incomplete defining set. So we apply (6) to
form the complete defining set of A, namely Ã = Z(1). The twisted code Cγ(A)
has dimension 2|Z(0)|+ 2|Z(3)|+ 2|Z(5)|+ 2|Z(7)| = 22 over F2. Applying (7)
to A, we get Cγ(A)?s = Cγ(Ad), where Ad = Z(0) [ Z(1) [ Z(3) [ Z(5). Hence
the fact that A ⇢ Ad implies that Cγ2

(A) is dual-containing.
Note that choosing γ 2 F4 \F2 (κ = 2) implies that A is a complete defining

set and A \ Z(1) is unsaturated. In this case the code Cγ(A) has dimension 26
over F2.

3 Quantum codes from nearly dual-containing additive

codes

In this section, we present a new method of constructing quantum stabilizer
codes from additive codes over F4 that are not dual containing with respect
to the trace inner product (1). In reality, there exist many classical codes with
good parameters that are not dual-containing but are nearly dual-containing,
meaning they contain a large subset of their dual. We quantify this by proving
formulas for dual-containment deficiency of a code. Using this formula, we give
a novel construction of binary stabilizer quantum codes that makes it possible
to also use the additive codes that are not dual-containing as its ingredients to
construct quantum codes.

Let C be an additive code over F4. The dual-containment deficiency of the
code C is defined by

dimF2
(C?t)� dimF2

(C \ C?t). (8)

In particular, if C is dual-containing, then the value of (8) is zero.
In the next theorem we show that the dual-containment deficiency of additive

codes is always an even number. Furthermore, we find a basis for C?t such that
the first r vectors form a basis for C \C?t and the remaining vectors are paired
up such that non-orthogonal vectors occur only as the elements of a pair.

Lemma 1. Let C ✓ F
n
4 be an additive code. Then s = dimF2

(C?t)�dimF2
(C \

C?t) is even. Moreover, if dimF2
(C \ C?t) = r and s = 2e, then we can find a

basis for C?t in the form {V1, V2, . . . , Vr,M1,M2, . . . ,M2e} such that

1. The set {V1, V2, . . . , Vr} forms a basis for C \ C?t .



2. For all 1  i, j  2e we have Mi ⇤Mj = 1 if and only if {i, j} = {2t� 1, 2t}
for some 1  t  e.

Proof. The proof follows from the properties of symplectic bilinear forms. For
more details see [6, Lemma 3.2.1].

The next theorem, which is a generalization of the result of [12, Theorem
2] to additive codes, states the parameters of a binary quantum code that is
constructed from a nearly dual-containing additive code.

Theorem 3. Let C be an (n, 2n+k) additive code over F4 and dimF2
(C?t) �

dimF2
(C \C?t) = 2e. Then we can construct an Jn+e, k+e, dK binary quantum

code, where

d � min{d(C), d(C + C?t) + 1}.

Proof. We only give a sketch for the proof, and for more details see [6, Theorem
3.2.3]. We first apply Lemma 1 to find a basis for C?t in the given form. Then
we add e new coordinates to make new longer vectors corresponding to Mi,Mj

symplectic orthogonal for each (i, j) = (2t � 1, 2t) and each 1  t  e. This
way we produce a dual-containing additive code of length n + e. The results
concerning the minimum distance and dimension follow by considering this new
basis.

This result is very important as it allows us to construct quantum codes from
the twisted codes which are not symplectic dual-containing.

4 Minimum distance bounds for twisted codes

Similar to linear cyclic codes, the minimum distance of twisted codes can be
bounded using the BCH bound [2]. Currently, this is the only known minimum
distance bound for the family of twisted codes. Throughout this section, n is a
positive integer such that n | 2r � 1 for some positive integer r. Let A ✓ Z/nZ.
In this section, we first give a connection between the weight of vectors in the
length n twisted code Cγ(A) and C(A), where C(A) is the linear cyclic code of
length n over F2r with defining set A. Then we present new minimum distance
bounds for twisted codes.

Recall that L ✓ Z/nZ is called a consecutive set of length s if there exists
an integer c with gcd(c, n) = 1 such that

{(cl) mod n : l 2 L} = {(j + t) mod n : 0  j  s� 1}

for some t 2 Z/nZ. The next proposition gives the BCH minimum distance
bound for twisted codes.

Proposition 1. [2] Let A be a defining set of a twisted code Cγ(A) such that A
contains a consecutive set of size t� 1. Then d(Cγ(A)) � t.



The following theorem establishes a more powerful connection between twisted
codes and linear cyclic codes.

Theorem 4. Let A ✓ Z/nZ be a defining set of a twisted code Cγ(A) of length n
over F2 ⇥ F2. Then the following statements are equivalent.

1. The vector y = ((b11, b12), (b21, b22), . . . , (bn1, bn2)) 2 Cγ(A).
2. The vector x = (γb11 + b12, γb21 + b22, . . . , γbn1 + bn2) 2 C(A).

Proof. Let y = ((b11, b12), (b21, b22), . . . , (bn1, bn2)) and x = (γb11 + b12, γb21 +
b22, . . . , γbn1 + bn2) for arbitrary bi1 and bi2 2 F2, where 1  i  n. Let z =
(z1, z2, . . . , zn) be an arbitrary element of C(A)?. Since Trr1 is linear over F2,
one can easily verify that

hφγ(z), yis =
n
X

i=1

(bi1Tr
r
1(γzi) + bi2Tr

r
1(zi)) = Trr1(

n
X

i=1

zi(γbi1 + bi2)) = Trr1(z · x).

(9)
1 ) 2 : Suppose that y 2 Cγ(A). Equation (9) implies that hφγ(z), yis =

Trr1(z ·x) = 0 holds for each z in C(A)?. Hence z ·x = 0 as otherwise we can find
z0 2 C(A)? such that 0 = hφγ(z

0), yis = Trr1(z
0 ·x) = 1, which is a contradiction.

Hence x 2 C(A).
2 ) 1 : Suppose that x 2 C(A). Then for each z in C(A)?, we have z ·x = 0.

Now, equation (9) implies that hφγ(z), yis = Trr1(z · x) = 0 for each z in C(A)?.
Hence y 2 Cγ(A).

The following minimum distance bounds are direct consequences of this result.

Corollary 1. Let A ✓ Z/nZ be a defining set of a twisted code Cγ(A) of length n
over F2 ⇥ F2. If Cγ(A) contains a weight t vector, then C(A) also contains a
weight t vector. In particular, d(Cγ(A)) � d(C(A)).

The Hartmann-Tzeng bound (HT bound) is one of classical bounds on the
minimum distance of linear cyclic codes [11, Theorem 4.5.6]. A generalization of
the HT bound is given in [6]. Based on this generalization we state the following
minimum distance lower bound for twisted codes.

Corollary 2. Let A be a defining set of a twisted code Cγ(A) of length n over
F2 ⇥ F2 such that A contains a subset in the form

B = {(l + i1c1 + i2c2 + · · ·+ ikck) mod n : 0  ij  sj , gcd(cj , n) = 1},

where l, cj 2 Z/nZ and sj is a non-negative integer for 1  j  k. Then

d(Cγ(A)) � (

k
X

j=1

sj) + 2.

The next theorem provides a sufficient condition for the twisted code Cγ(A)
to have minimum distance at least five.



Theorem 5. Let A ✓ Z/nZ be a symmetric (A = �A) complete defining set of
a twisted code of length n over F2 ⇥ F2 such that 0 /2 A. If d

�

Cγ(A [ {0})
�

� 5,
then Cγ(A) has no codeword of weight 4. If in addition gcd(n, 3) = 1, then
d
�

Cγ(A)
�

� 5.

Proof. We only give a sketch of the proof, and for a complete proof see [6, Theo-
rem 3.7.2]. Using the result of Theorem 4, each weight 4 codeword of Cγ(A) gives
rise to a linear equation over F2r involving 4 unknowns. Using the symmetric
property of A, one can show that these equations have no solution. The same
idea holds for weight 2 and 3 codewords of Cγ(A) when gcd(n, 3) = 1.

In general, the choice of γ is a critical factor in the construction of twisted
codes. Interestingly, the literature appears to have ignored the impacts of γ on
the parameters of twisted codes. The next example shows that choice of γ can
improve the code’s parameters.

Example 2. Let n = 69, κ = 22, and A = {1,�1}[Z(�3). Let α be a primitive
element of F222 defined by the PrimitiveElement function in Magma [3], which
is a root of α22 + α12 + α11 + α10 + α9 + α8 + α6 + α5 + 1 = 0. Let γ1 = α

and γ2 = α89. (Note that γ2 is not a primitive element of F222 .) The quantum
codes Cγ1

(A) and Cγ2
(A) are J69, 3, 15K and J69, 3, 16K binary quantum codes,

respectively. The latter is a new record-breaking binary quantum code.
Through further computations, we find that the minimum distance 16 is at-

tainable by some elements γ with the algebraic degree 22 over F2 (both primitive
and non-primitive). Choosing various primitive elements as values of γ yields
twisted codes with minimum distances of 6, 8, 10, 11, 12, 13, 14, 15, and 16
(this list may not be exhaustive). On the other hand, if the algebraic degree of
γ is 11 over F2, then the minimum distance typically tends to be at most 11,
occasionally reaching 12. When γ 2 F4 \ F2, then the minimum distance is 11.

We have also developed new theoretical results regarding the selection of the
γ value and equivalence of twisted codes in [6, Section 3.10]. Due to the page
limit of this extended abstract, these results will be included in the full version
of the paper.

5 Infinite classes of binary quantum codes

In this section we give five infinite families of binary quantum codes that pro-
duce good (record-breaking or optimal) binary quantum codes. First, the next
theorem gives a secondary construction of binary quantum codes that are con-
structed from twisted codes.

Theorem 6. Let A ✓ Z/nZ and Cγ(A) be a pure binary quantum code with
parameters Jn, k, tK. Then the following results hold.

(i) If d(Cγ(Ā)) � t+1, where Ā = A[{0}, then there exists an Jn+1, k�1, t+1K
quantum code.



(ii) If κ = 2 and {a, n � a} is a 2-cyclotomic coset such that d(Cγ(Ā)) � t + 1
for Ā = A [ {a}, then there exists an Jn+ 1, k � 1, t+ 1K quantum code.

Proof. Proof of both cases follow from the fact that the code Cγ(Ā) has the
dual-containment deficiency e = 1. Applying Theorem 3 to Cγ(Ā) gives the
results.

Next, we construct an infinite family of quantum codes with minimum dis-
tance of at least four.

Theorem 7. Let r > 5 be an even integer. Then there exists a binary quantum
code with parameters J2r, 2r � 3

2r � 2, d � 4K.

Proof. Let n = 2r � 1, κ = r
2 , and A = {1, a, b}, where a = 2

r

2 + 1 and b = 2
r

2 .
The code Cγ(A) is a J2r � 1, 2r � 3

2r � 1, 3K pure quantum code. Moreover,
Ā = {0, 1, a, b} = {0, 1}+ {0, b}. The HT bound implies that d(Cγ(Ā)) � 4 and
therefore Theorem 6 gives a J2r, 2r � 3

2r � 2, d � 4K quantum code.

For instance, if r = 6, this construction gives a record-breaking J64, 53, 4K
quantum code Q. Applying the shortening construction given in [10, Theorem
11] or [13, Theorem 3] to the code Q, we get the following new quantum codes

J38, 27, 4K, J44, 33, 4K, J46, 35, 4K, J48, 37, 4K, J50, 39, 4K, J56, 45, 4K, (10)

which all have better minimum distance than the previously best-known quantum
codes with the same length and dimension. Next, we present two new infinite
families of quantum codes with minimum distance of at least five.

Theorem 8. (i) Let t = 22k+1 for some integer k � 1 and n = t2 + t+1. Then
there exists an Jn, n� 12k � 6, d � 5K binary quantum code.

(ii) Let t = 22k for some integer k � 1 and n = t2 � t+ 1. Then there exists
an Jn, n� 12k, d � 5K binary quantum code.

Proof. We use the result of Theorem 5 to prove the minimum distance of both
cases is five.
(i) : Let κ = 2k+1 and A = {±1,±t,±(t+1)}. The code Cγ(A) is dual-containing
and has parameters

�

n, 22n�6(2k+1), d � 5
�

. Now the quantum construction given
in Theorem 1 implies an Jn, n� 12k � 6, d � 5K binary quantum code.
(ii) : Let κ = 2k and A = {±1,±t,±(t� 1)}. The code Cγ(A) is dual-containing
and has parameters

�

n, 22n�12k, d � 5
�

. Now the quantum construction given in
Theorem 1 gives a quantum code with parameters Jn, n� 12k, d � 5K.

We construct one optimal as well as two new record-breaking quantum codes
with minimum distance of five using the above results.

Example 3. (i) Let t = 22, n = t2 � t + 1 = 13, and A = {±1,±3,±4}. The
construction given in part (ii) of Theorem 8 gives an optimal quantum code with
parameters J13, 1, 5K.



(ii) Let t = 23, n = t2 + t + 1 = 73, and A = {±1,±8,±9}. Then Theorem
8 part (i) gives a quantum code with parameters J73, 55, 5K. This code is a record-
breaking quantum code. Extending the defining set toA = {±1,±8,±9, 20, 14, 39}
allows to construct a record-breaking binary quantum code with parameters
J73, 46, 7K.

(iii) Let t = 24, n = t2 � t + 1 = 241, and A = {±1,±15,±16}. The
construction given in part (ii) of Theorem 8 implies a record-breaking quantum
code with parameters J241, 217, 5K. Extending the defining set to

A = {±1,±3,±4,±12,±15,±16,±45,±48,±49,±60,±61,±64}

enables us to construct a record-breaking binary quantum code with parame-
ters J241, 193, 8K. Applying the secondary constructions gives 27 other record-
breaking binary quantum codes. Moreover, this code can be used to construct
58 other binary quantum codes with missing constructions (red coloured entries
in the tables [9]).

Theorem 9. (i) Let t � 4 be an even integer and n = 2t + 1. Then there exists
a pure quantum code with parameters J2t + 1, 2t � 2t+ 1, d � 4K.

(ii) Let t � 3 be an odd integer and n = 2t + 1. Then there exists a pure
quantum code with parameters J2t + 2, 2t � 2t, d � 4K.

Proof. (i) Let A = {1, 2
t

2 ,�1,�2
t

2 } and κ = t
2 (note that κ | r = 2t). Since

A = {1,�2
t

2 } + {0, 2
t

2 � 1}, the HT bound implies d(Cγ(A)) � 4. Thus the
quantum construction given in Theorem 1 implies a binary quantum code with
parameters J2t + 1, 2t + 1� 2t, d � 4K.

(ii) A similar proof as above by considering A = {�1, 1} and κ = t gives the
result.

The following codes are all obtained from the above construction:

J10, 2, 4K, J17, 9, 4K, J34, 22, 4K, J65, 53, 4K. (11)

The quantum Hamming bound [8] states that a pure Jn, k, dK binary quantum
code with e = bd�1

2 c satisfies

e
X

j=0

✓

n

j

◆

3j  2n�k. (12)

Recently it has been shown that each quantum code (pure or impure) with
minimum distance d < 127 satisfies the quantum Hamming bound [5]. Let Q be
an Jn, k, dK binary quantum code. The code Q will be called optimal, if there is
no Jn, k, d0K binary quantum code with d0 > d. Next, we prove that some of our
quantum codes are optimal.

Theorem 10. All quantum codes in (10) and (11) along with the code J64, 53, 4K
are optimal quantum codes.

Proof. The proof follows from the fact that improving the minimum distance in
each of the mentioned quantum codes implies a contradiction with the Hamming
bound of (12).
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[12] P. Lisoněk and V. Singh. Quantum codes from nearly self-orthogonal qua-
ternary linear codes. Des. Codes Cryptogr., 73(2):417–424, 2014.

[13] E. M. Rains. Nonbinary quantum codes. IEEE Trans. Inform. Theory,
45(6):1827–1832, 1999.



O6

PG(3, q)

1[0000�0002�5827�4560]

2[0000�0002�7961�0260]

2[0000�0001�5476�5365]

1

2

PG(3, q)

O6

q O6

PG(3, q)

· · ·

PG(3, q) Fq

q C

q + 1 PG(3, q)
Pt = (t3, t2, t, 1) t 2 Fq P1 = (1, 0, 0, 0)

(q+1) PG(3, q)

PG(3, q) Gq
⇠=

PGL(2, q) C PG(3, q)
Gq



[q+1, q�3, 5]q
4

PG(3, q) Gq

O6

q � 2
q � 23 > 3

q � 2
O6

PG(3, q)

O6 q 6⌘ 0 (mod 3)

PG(3, q)
> 3

Fq q � 5
O6 5  q  37 q = 64

PG(3, q) q = 2n n � 3 (q+1) A = {(1, t, t2
h

, t2
h+1) | t 2 F

+
q }

F
+
q = Fq[{1} gcd(n, h) = 1 h = 1

Gh A G1

Gh

q

q Oµ

O6 `µ µ
F
⇤

q \ {1} F
⇤

q = Fq \ {0} OL L
Oµ OL

O6

O6 q q ⌘ 0 (mod 3)



Oµ OL

Fq > 3
O6

Fq

Gq

PG(3, q)

Lρ ⇢ F
⇤

q

L q 6⌘ 0 (mod 3)
Lρ O6

Lρ q ⇢

Gq Lρ

Lρ

Lρ Oµ

PG(3, q)

⇡(c0, c1, c2, c3) PG(3, q) c0x0+c1x1+c2x2+
c3x3 = 0 ci 2 Fq P(x0, x1, x2, x3) PG(3, q)

xi 2 Fq C ⇢ PG(3, q) q + 1
C

C = {P (t) = P(t3, t2, t, 1) | t 2 F
+
q }.

C P (t1) P (t2)
C

t1 = t2 = t Tt C P (t)
P (t) 2 C

⇡ (t) = ⇡(1,�3t, 3t2,�t3) t 2 F
+
q

q 6⌘ 0 (mod 3) Γ C

q 6⌘ 0 (mod 3) A

P(x0, x1, x2, x3)A = ⇡(x3,�3x2, 3x1,�x0)
q 6⌘ 0 (mod 3) Γ PG(3, q)

Γ



q ⌘ ⇠ (mod 3) ⇠ 2 {�1, 0, 1}
⇠ 6= 0

Gq PG(3, q) C ;

#S S;

AB A B;

, .

Γ Γ;

dC dC C , dC 2 {0, 2, 3};

1C Γ 1 C ;

P ⇡ , P , {Γ, 2C , 3C , 1C , 0C };

⇡ ⇡ 2 P.

C C ;

µΓ C µ ,

µΓ 2 {0Γ, 1Γ, 3Γ};

T C C ;

M p ,M , {C , 0Γ, 1Γ, 3Γ,T};

p p 2 M.

Nπ ⇡ Gq, ⇡ 2 P;

Mp p Gq, p 2 M;

EnΓ C Γ

O6 = OEnΓ EnΓ .

C

• M Gq

M =

2
664

a3 a2c ac2 c3

3a2b a2d+ 2abc bc2 + 2acd 3c2d
3ab2 b2c+ 2abd ad2 + 2bcd 3cd2

b3 b2d bd2 d3

3
775 , a, b, c, d 2 Fq, ad� bc 6= 0.

• Gq q � 5 Nπ

N1 = NΓ = {Γ }, N2 = N2C
= {2C }, N3 = N3C

= {3C },

N4 = N1C
= {1C }, N5 = N0C

= {0C }.

• q 6⌘ 0 (mod 3) Gq Mj

M1 = MC = {C }, M2 = MT = {T }, M3 = M3Γ = {3Γ },



M4 = M1Γ = {1Γ }, M5 = M0Γ = {0Γ }; MjA = Nj , j = 1, . . . , 5.

• PG(3, q) Oi O0

i =
OiA Gq q

O6 = OEnΓ = {EnΓ } #O6 = (q2�q)(q2�1) O6 = O0

6 = O6A

EnΓ L OL q 6⌘ 0 (mod 3)

Qβ = P(1, 0,�, 1), � 2 F
+
q PG(3, q) EnΓ

L = Q0Q1 = P(1, 0, 0, 1)P(0, 0, 1, 0) = {P(1, 0,�, 1) |� 2 F
+
q }.

OL L Gq q ⌘ ⇠

(mod 3) ⇠ 6= 0 OL

#OL =

8
>><
>>:

(q3 � q)/3 ⇠ = 1, q 2 Fq;
(q3 � q)/12 ⇠ = 1, q 2 Fq;
q3 � q ⇠ = �1, q ;
(q3 � q)/2 ⇠ = �1, q .

EnΓ `µ Oµ

q ⌘ ⇠ (mod 3) µ 2 F
⇤

q \ {1} q ⇠ = 0 µ 2 F
⇤

q \ {1, 1/9}
q ⇠ 6= 0 Rµ,γ = P(�, µ, �, 1) � 2 F

+
q PG(3, q)

EnΓ

`µ = Rµ,0Rµ,1 = P(0, µ, 0, 1)P(1, 0, 1, 0) = {P(�, µ, �, 1)|� 2 F
+
q , µ }.

q ⌘ ⇠ (mod 3)
• Oµ `µ Gq ⌥q,µ

µ = �1/3, q ⌘ 1 (mod 12) �1/3 Oµ

#Oµ =

8
>><
>>:

(q3 � q)/2 q µ Fq;
(q3 � q)/4 µ Fq ⇠ = 0;
(q3 � q)/4 q , µ Fq, ⇠ 6= 0,⌥q,µ ;
(q3 � q)/12 q , ⇠ 6= 0,⌥q,µ ;

• q ⇠ 6= 0 Oµ nq(µ) 2 {0, 2, 4} T
• q Oµ nq(µ) = 2 T

EnΓ Lρ

Kρ,γ = P(⇢, 0, �, 1), � 2 F
+
q , ⇢ 2 F

⇤

q PG(3, q) Kρ,0 =
P(⇢, 0, 0, 1), Kρ,1 = P(0, 0, 1, 0). Lρ Kρ,0 Kρ,1

Lρ = P(⇢, 0, 0, 1)P(0, 0, 1, 0) = {P(⇢, 0, �, 1)|� 2 F
+
q , ⇢ }.



Lρ Lρ Lρ = (0, ⇢, 0, 0, 0,�1).
⇢ = 0 L0 T0 ⇢ 2 F

⇤

q

L L1

Lρ = LρA

• q 6⌘ 0 (mod 3) Lρ EnΓ
• q ⌘ 0 (mod 3) Lρ EnΓ

Lρ q 6⌘ 0 (mod 3)
↵ Fq log

� 2 F
⇤

q b 2 [0, . . . , q� 1] ↵b = � Rm m = 0, 1, 2

⇢ Rm , {⇢ 2 F
⇤

q | log ⇢ ⌘ m (mod 3)}.

q ⌘ 1 (mod 3) � 2 F
⇤

q log � ⌘ 0
(mod 3)

� 2 F
⇤

q ⌘ F
⇤

q

⌘(�) = 1 � F
⇤

q ⌘(�) = �1

⇢

Oρ Gq Lρ;

Ππ ⇡ Oρ, ⇡ 2 P;

Λπ Oρ ⇡ , ⇡ 2 P;

Pp p Oρ, p 2 M;

Lp Oρ p , p 2 M.

Oρ Lρ

ΠΓ = ΛΓ = PC = LC = 0; PT = Π2C
, P0Γ = Π0C

, P1Γ = Π1C
,

P3Γ = Π3C
; LT = Λ2C

, L0Γ = Λ0C
, L1Γ = Λ1C

, L3Γ = Λ3C
.

Oρ Lρ

Ππ,Λπ Pp,Lp

Lρ

Lρ Tt C

P (t) $(Lρ, Tt) = �2⇢t� t4, t 2 Fq, ⇢ 2 F
⇤

q ; $(Lρ, T1) = �1. Lρ

Tt $(Lρ, Tt) = 0 t4 + 2⇢t = 0

nq(⇢) , #{t |t4 + 2⇢t = 0, t 2 Fq, ⇢ 2 F
⇤

q , q 6⌘ 0 (mod 3)}.

nq(⇢) T Lρ

nq(µ) nq(⇢) 6= nq(µ) Oρ Oµ



q q q 6⌘ 0 (mod 3) �2⇢ Fq

$(Lρ, Tt) = 0 t = 0 nq(⇢) = 1
Oρ Oµ

q q ⌘ ⇠ (mod 3) ⇠ 6= 0 �2⇢ Fq

$(Lρ, Tt) = 0 t = 0, t = 3
p
�2⇢

Lρ Oρ

G1

q Gq Kρ,1 = P(0, 0, 1, 0)
M1 G1

q

M1

M1 =

2
664

1 0 0 0
0 d 0 0
0 0 d2 0
0 0 0 d3

3
775 , d 2 F

⇤

q .

Lρ Gq

G
Lρ

q Gq Lρ MLρ

G
Lρ

q

q �2⇢ Fq

MLρ G
Lρ

q d

q ⌘ �1 (mod 3) Lρ O1

q ⌘ �1 (mod 3) q G
Lρ

q 2

MLρ G
Lρ

q

a = 3

p
1/2⇢, b = 1, c = 3

p
2/⇢2, d = � 3

p
1/2⇢.

q ⌘ 1 (mod 3) q �2⇢ Fq G
Lρ

q

A4 MLρ G
Lρ

q

d
a = 3

p
1/2⇢, b = 1, c = �d/⇢a2, d = 3

p
�1/2⇢.

q ⌘ 1 (mod 3) q �2⇢

Fq G
Lρ

q Gq EnΓ Lρ

#G
Lρ

q = 3 Lρ Gq (q3 � q)/3.
q ⌘ 1 (mod 3) q �2⇢ Fq

G
Lρ

q Gq EnΓ Lρ #G
Lρ

q = 12

G
Lρ

q
⇠= A4 Lρ Gq (q3 � q)/12.

q ⌘ �1 (mod 3) q #G
Lρ

q = 1
Lρ Gq q3 � q.

q ⌘ �1 (mod 3) q #G
Lρ

q = 2
Lρ Gq (q3 � q)/2.



q

q �, t 2 Fq Kρ,γ = P(⇢, 0, �, 1)
⇡ (t) ⇢, �, t

eFρ,γ(t) = t3 + �t2 + ⇢ = 0, � 2 Fq, ⇢ 2 F
⇤

q , q .

eNm(⇢) � eFρ,γ(t) m
t Fq, m = 0, 1, 2, 3

Tr2(�) � 2 Fq q

fWq(⇢) , #

⇢
� | Tr2

✓
�3

⇢
+ 1

◆
= 1, � 2 Fq, q = 2c, ⇢ 2 F

⇤

q

�
.

• q = 22m�1 m � 2 eN1(⇢) = fW22m�1(⇢) = q/2.
• q = 22m ⌘ 1 (mod 3) m � 2

eN1(⇢) = fW22m(⇢) =

⇢
22m�1 + (�2)m ⇢ Fq

22m�1 + (�2)m�1 ⇢ Fq
.

q Oρ Lρ

PT = 1, P0Γ = eN0(⇢), P1Γ = eN1(⇢) = fWq(⇢), P3Γ = eN3(⇢).

q Oρ Lρ

• q = 22m�1 #Oρ = q3 � q ⇢ fWq(⇢) = q/2

PT = 1,LT = q � 1; 2P1Γ = L1Γ = q; 6P3Γ = L3Γ = q � 2; 3P0Γ = L0Γ = q + 1.

• q = 22m #Oρ = 1
3 (q

3 � q) ⇢ fWq(⇢)

PT = 1, LT =
1

3
(q � 1); P1Γ = fWq(⇢), L1Γ =

2

3
fWq(⇢); P3Γ =

q � 1�fWq(⇢)

3
,

L3Γ =
2(q � 1�fWq(⇢))

3
; P0Γ = L0Γ =

2q � 2fWq(⇢) + 1

3
.

Ππ,Λπ

Pp,Lp

q Lρ

`µ
• q = 22m Lρ0 Lρ00 Gq

log ⇢0 6⌘ log ⇢00 (mod 3) ↵ Fq 3
1
3 (q

3 � q) Lρ ⇢ = ↵j j = 0, 1,�1
• q = 22m�1 ⌘ �1 (mod 3) Lρ (q3 � q)



q

• q 6⌘ 0 (mod 3) Kρ,γ = P(⇢, 0, �, 1)
⇡ (t) �, t 2 F

⇤

q ⇢, �, t

Fρ,γ(t) = t3 � 3�t2 � ⇢ = 0, �, t, ⇢ 2 F
⇤

q , q 6⌘ 0 (mod 3).

• q ⌘ ⇠ (mod 3) Fρ,γ(t) 1 t 2 Fq

4�3 + ⇢ 6= 0 1 + 4⇢�1�3 Fq ⇠ = �1
⇠ = 1

• N1(⇢) � 2 F
⇤

q Fρ,γ(t) t 2 F
⇤

q

•• q ⌘ �1 (mod 3) N1(⇢) = (q � 3)/2
•• q ⌘ 1 (mod 3) ⌘(�) N1(⇢) = Nq,ρ

Nq,ρ , #{� | � 2 F
⇤

q , ⌘(1 + 4⇢�1�3) = �1}, q ⌘ 1 (mod 3).

q Nq,ρ Oρ

Lρ

• PT = 2 q ⌘ �1 (mod 3) PT = 1 q ⌘ 1 (mod 3) �2⇢
Fq PT = 4 q ⌘ 1 (mod 3) �2⇢ Fq

• P1Γ = N1(⇢) + 1 = (q � 1)/2 q ⌘ �1 (mod 3)
• P1Γ = N1(⇢) = Nq,ρ q ⌘ 1 (mod 3)

q Oρ Lρ

• q ⌘ �1 (mod 3) #Oρ = (q3 � q)/2 ⇢

PT = 2, LT = q � 1; P1Γ = L1Γ =
q � 1

2
; 6P3Γ = 2L3Γ = q � 5;

3P0Γ = 2L0Γ = q + 1.

• q ⌘ 1 (mod 3) �2⇢ Fq #Oρ = (q3 � q)/3

PT = 1, LT =
q � 1

3
; P1Γ = Nq,ρ, L1Γ =

2

3
Nq,ρ; P3Γ =

q � 1�Nq,ρ

3
,

L3Γ =
2(q � 1�Nq,ρ)

3
; P0Γ = L0Γ =

2q + 1� 2Nq,ρ

3
.

• q ⌘ 1 (mod 3) �2⇢ Fq #Oρ = (q3 � q)/12

PT = 4, LT =
q � 1

3
; P1Γ = Nq,ρ, L1Γ =

1

6
Nq,ρ; P3Γ =

q � 7�Nq,ρ

3
,

L3Γ =
q � 7�Nq,ρ

6
; P0Γ =

2(q � 1�Nq,ρ)

3
, L0Γ =

q � 1�Nq,ρ

6
.

Ππ,Λπ

Pp,Lp



Oρ q

q ⌘ 1 (mod 3) Rm

⇢ 2 F
⇤

q R0,R1,R2

#Rm = (q�1)/3, m = 0, 1, 2. log(�2) ⌘  (mod 3)  2 {0, 1, 2}

• Rm �2⇢ Fq ⇢ 2 Rm

R1,R2  = 0 R0,R1  = 1 R0,R2  = 2.
• Rm �2⇢ Fq ⇢ 2 Rm

R0  = 0; R2  = 1; R1  = 2.

q ⌘ 1 (mod 3)
• ⇢1 6= ⇢2 Lρ1

Lρ2
Gq

log ⇢1 6⌘ log ⇢2 (mod 3) ⇢1, ⇢2 Rm

Lρ Oρ (q � 1)/3
Lρ ⇢ Rm

• Oρ O
(1)
ρ O

(2)
ρ

1
3 (q

3 � q)
Lρ �2⇢ Fq

O
(1)
ρ O

(2)
ρ Oµ

• Oρ O
(3)
ρ

1
12 (q

3 � q)
Lρ �2⇢ Fq

• q 6⌘ 1 (mod 12) �1/3 Fq

⌥q,µ O
(3)
ρ

Oµ

• q ⌘ 1 (mod 12) �1/3 Fq O
(3)
ρ = O�1/3

q ⌘ �1 (mod 3) Lρ
1
2 (q

3 � q) O1 OL

O1 Oµ

q ⌘ �1 (mod 12) O1 O�1/3

`�1/3



PG(3, q)
H(q)

(q+1) PG(3, q) q

PG(3, q)

PG(3, q)

PG(3, q)
O6

PG(3, q)
O6

PG(3, q)

O6 PG(3, q)

> 3

PGL2(q) PG(3, q)

k



New Models for the Cryptanalysis of ASCON

Extended Abstract

Mathieu Degré1, Patrick Derbez1, Lucie Lahaye2, and André Schrottenloher1

1 Univ Rennes, Inria, CNRS, IRISA (firstname.lastname@irisa.fr)
2 ENS de Lyon (firstname.lastname@ens-lyon.fr)

Abstract. This paper focuses on the cryptanalysis of the ASCON fam-
ily using automatic tools. We analyze two different problems with the
goal to obtain new modelings, both simpler and less computationally
heavy than previous works (all our models require only a small amount
of code and run on regular desktop computers).
The first problem is the search for Meet-in-the-middle attacks on reduced-
round ASCON-XOF. Starting from the MILP modeling of Qin et al.
(EUROCRYPT 2023 & ePrint 2023), we rephrase the problem in SAT,
which accelerates significantly the solving time and removes the need
for the “weak diffusion structure” heuristic. This allows us to reduce the
memory complexity of Qin et al.’s attacks and to prove some optimality
results.
The second problem is the search for lower bounds on the probability
of differential characteristics for the ASCON permutation. We introduce
a lossy MILP encoding of the propagation rules based on the Hamming
weight, in order to find quickly lower bounds which are comparable to
the state of the art. We find a small improvement over the existing bound
on 7 rounds.

Keywords: ASCON, Symmetric Cryptanalysis, Meet-in-the-middle Cryptanal-
ysis, Differential Cryptanalysis, Mixed Integer Linear Programming, SAT

1 Introduction

Ascon [4] is a family of permutation-based authenticated encryption and hash-
ing, which was selected in 2023 as the winner of the NIST Lightweight Encryp-
tion standardization process [15]. The Ascon permutation operates on a 320-bit
state represented as an array of bits with 64 columns and 5 rows. Variants of the
permutation are obtained by iterating the round function p = pL �pS �pC where
the linear layer pL applies row-wise, the S-Box layer pS (of degree 2) column-wise
and pC is a constant addition. The n-round Ascon permutation is then simply
written as pn.

Our work targets both the permutation and the Ascon-XOF function, which
is defined using a Sponge mode of operation with a 12-round permutation, a rate
r = 64 and a variable output length size. We select a size h = 128 bits, whereas
the hash function Ascon-Hash has an output of 256 bits. The inner part is
located on the first row of the state.



Automatic Tools for Cryptanalysis. Automatic tools have been widely used
in order to find and optimize attacks on the Ascon family, either reducing the
search of an attack to a SAT, SMT or MILP problem [14] or an ad hoc problem
which is solved automatically [9]. The main issue with Ascon is its large state
size (320 bits) and weakly aligned structure, which essentially requires a model to
define at least 320 variables for each round. The resulting SAT or MILP problems
can be complex, computationally heavy to solve, and often do not terminate.

Contributions. In this work, we target two cryptanalytic problems with the
aim of simplifying the models and reducing their runtime. The first problem is
the optimization of Meet-in-the-middle preimage attacks on Ascon-XOF, which
currently allow to attack the 3- or 4-round versions. Following a framework of
Qin et al. [13,14], we design a simple SAT modeling (whereas they used MILP).
With this new modeling, we reduce the memory footprint of the attacks and
prove some impossibility results (under the assumption of a symmetry in the
attack paths).

Note that in an independent line of work, Li et al. [11] optimized a different
algebraic preimage attack using a SAT modeling as well. This led to small im-
provements in time complexity with respect to [14] and reduction of the memory
to negligible. Therefore, the attacks that we present here are not strictly the best
preimage attacks on Ascon-XOF, but the best MITM attack paths.

The second problem is the search for differential characteristics of the per-
mutation. We observe that a simple MILP model, with a lossy approximation
of the differential transition table of the S-Box, allows to recover quite good
lower bounds on the probabilities. We improve the current best lower bound on
7 rounds of Ascon.

The code of our models is available at:

https://gitlab.inria.fr/capsule/ascon-new-models

2 New SAT Model for MITM Preimage Attacks

The Meet-in-the-middle attacks on Ascon-XOF using automatic tools were de-
veloped by Qin et al. in two works [13,14]3. They provide currently the best
preimage attacks on Ascon-XOF together with the algebraic attacks of Li et
al. [11].

In Ascon-XOF, the attack focuses on the second-to-last permutation call,
which is reduced to R rounds instead of 12. The last message block M3 is ab-
sorbed and the first hash block H1 is returned. The goal is to find a block M3 so
that H1 matches the target image. Afterwards, the attack is repeated until H2

also matches. This situation is represented in Figure 1.

3 We note that after our work, the ePrint report [14] was withdrawn, but to the best
of our knowledge, its results remain valid.
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Fig. 1: Representation of the Ascon-XOF structure in the context of this attack.
This figure uses the “TikZ library for crypto” of [5].

2.1 Overview of the Attack

At M3, the 64 bits of the inner part are separated into three sets of bits: red bits
xR, blue bits xB and gray xG bits (the remaining ones). Red and blue bits will
form two independent computation paths, starting from M3 (and the current
state of the outer part). Gray bits are fixed constants (this includes the padding
bits in M3).

After a configuration of M3 is selected, the propagation of red and blue bits
throughout pR is a deterministic process. In subsequent rounds, a bit remains
blue if it can be computed entirely from the knowledge of the initial blue bits
(and gray), and likewise for red bits. Qin et al. [13] also introduce green bits,
which can be expressed as a linear combination of blue and red degrees of free-
dom. The other bits are white (unknown). This coloring scheme produces figures
like Figure 2.

A MITM path can lead to an attack if there exists green bits in the inner
part after pR, denoted matching bits. Indeed, such bits immediately translate into
equations of the form: h = f(xR, xG)� g(xB , xG)� c for some constant c. One
can find solutions to these equations by enumerating f(xR, xG) and g(xB , xG)
independently, the core of the MITM attack. The time and memory complexities
of the attack depend on the number of red bits Dr, of blue bits Db and matching
bits Dm as follows:

(

T = 263−Dr−Db max
�

2Dr , 2Db , 2Dr+Db−Dm

�

M = min
�

2Dr , 2Db

� . (1)

The attack runs in several episodes which fix the value of xG first and find a
list of candidates for M3. (The true formula is also more complicated because it
involves fixing constraints on the outer part before pR, but this additional cost
remains non-dominating in the attacks).

This first attack framework is improved by Qin et al. using red bit cancel-

lations. Roughly speaking, a red degree of freedom can be removed from any
bit within the propagation, by paying an additional cost. More precisely, we
will select Ar bits in the path with a red component. For each such component
f(xR, xG), we equate it with a new bit-variable y, and we add y to the blue

3



degrees of freedom. This turns the red degree of freedom into a new internal
matching point. The (simplified) complexities become:

(

T = 263−Dr−Db max
�

2Dr , 2Db+Ar , 2Dr+Db−Dm−Ar

�

M = min
�

2Dr , 2Db+Ar

� . (2)

2.2 Automatic Search Strategies

The configuration of a MITM preimage attack is given by the coloring pattern of
bits, the choice of cancellation points and conditions on the outer part. Consider-
ing the log2 of time and memory complexities, and the highest term, minimizing
them is a linear optimization problem.

Qin et al. used a Mixed-Integer Linear Programming modeling, i.e., opti-
mization under linear inequalities using real, integer and Boolean variables. Due
to the large number of Boolean variables required for the entire Ascon state,
the MILP solver cannot prove the optimality of the solutions that it finds. This
is why the 3-round attack on Ascon-XOF of [13] could be improved in [14]
with the heuristic method of “weak-diffusion structure”, that fixes part of the
configuration to accelerate the search of solutions.

2.3 New SAT Modeling

In our SAT modeling, the color of each bit xi is encoded differently than before,
using three Boolean variables (xb

i
, xr

i
, xw

i
). The variable xb

i
indicates whether the

bit has a “blue part”, xr
i

whether it has a “red part”, xw
i

whether it is white (xw
i

dominates). The cancellation of red bits are also indicated by Boolean variables.
Because they ultimately serve to avoid nonlinear effects, cancellations occur only
in the state before pS .

The propagation of colors from M3 is deterministic. While the initial state
requires a specific modeling, due to the additional constraints on the inner part
in Qin et al.’s framework [13], the rest of the path is encoded as follows. • through
pL: each bit after pL is the XOR of three bits located at different columns. If
x1, x2, x3 are the previous bits, the color of y = x1 � x2 � x3 is determined by
three implications. If one of the xi is white, then y is white. If one of the xi is
blue, then y is blue. If one of the xi is red and there is no cancellation, y is red.
• through pS : we simply look at the algebraic expression of each output bit as
a function of the input bits. Blue (resp. red, white) colors propagate from the
inputs to the outputs, and if a quadratic term of blue and red appears, then the
output becomes also white.

Objective. To optimize the time complexity, we use Boolean cardinality con-
straints, which translate into a set of clauses an inequality of the form

Pn

i=1
xi 

k where xi are Boolean variables and k is a constant. To simulate the minimiza-
tion of the time, we manually impose an upper bound on T and let the solver
find a solution (or declare the problem “unsat”). To minimize the memory, we
constrain the number of gray bits in M3 (as the memory complexity primarily
depends on them).
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Table 1: Summary of results obtained. ?: optimal among MITM attacks of this
form, under the symmetry constraint. ??: optimal when the time complexity is
at 2124. We consider only the dominating term in the complexity.

Number of Rounds Authors Time Complexity Memory Complexity

3 rounds
[14] 2

114
2
30

Ours 2
114

2
24

4 rounds
[13] 2

124
2
54

Ours 2
124 (?) 2

34 (??)

5 rounds Ours 2
128 (?) —–

Optimizations. Further optimizations of the model allowed to reduce the typical
solving time down to less than an hour on a desktop computer, using the Glucose4

solver within the Python library PySAT [10]. First, we hard-coded a specific
cancellation strategy for the last S-Box in the 4-rounds attack, where all inputs
to the last S-Box are green, and we cancel two bits to obtain a constraint. Second,
we noticed that all solutions generated by our solver for the 4-round attack were
circularly symmetric, meaning that the diffusion pattern repeated 32 positions
later. In fact, the solutions found in [13,14] also exhibit a strong symmetry, and
we have not found to date better solutions which would be non-symmetric. By
imposing this symmetry, we reduced the number of variables by a factor 2. This
was the key factor in allowing our model to run effortlessly.

2.4 Results

While we did not improve the time complexities reported in [13] for 4-round
Ascon (around 2124, using 4 bits of matching) and in [14] for 3-round Ascon

(around 2114, using 14 bits of matching), we reduced the memory complexities
as seen in Table 1. The path for the 4-round attack is shown in Figure 2, with
Db = 4, Dr = 34, Dm = 4, Ar = 30.

We also obtained some optimality results. For Ascon with 4 rounds, im-
proving the time complexity would mean setting Dm � 5. With about 3 hours
of computation, we could show that such a path does not exist (assuming sym-
metry). Next, fixing the time complexity of the 4-round attack at 2124, we find
that it is impossible to increase the number of gray bits further, proving that
our memory complexity is also optimal. Finally, we found that there is no valid
configuration with Dm � 1 for a 5-round path, i.e., this technique cannot reach
5 rounds. Our results are summarized in Table 1.

3 New MILP Model for Differential Bounds

Our second simple model aims at obtaining lower bounds on the probability of
differential characteristics for the Ascon permutation. The bounds proven so

5



Fig. 2:
Optimal 4-round attack found with our SAT-based approach, improving the one of [13].

Cancellations of red bits are represented by yellow squares. There are 52 bits of additional constraints
which are imposed on the inner part of the first state to guarantee the first transition through pS .
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far are only tight up to 3 rounds despite years of investigation as summarized
in Table 2, with different methods such as MILP [12], SAT and SMT [6]. The
state of the art for lower bounds is given by a tree extension model from [9].

Table 2: Currently known differential bounds of the Ascon permutation re-
stricted to R rounds.

Upper bound Lower Bound
R Bound Method Ref. Bound Method Ref.

1 2
−2 DDT 2

−2 DDT
2 2

−8 DDT + � 2
−8 DDT + �

3 2
−40 ndltool

[3]
2
−40 MILP [12]

4 2
−107 ndltool 2

−86 Tree extension

[9]

5 2
−190 CP [3],[7] 2

−100 Tree extension
6 2

−305 CP [7] 2
−129 Tree extension

7 2
−131 Tree extension

8 2
−172 Tree extension

9 2
−186 Tree extension

10 2
−215 Tree extension

11 2
−229 Tree extension

12 2
−258 Tree extension

One interesting remark is that many of the lower bounds on the probability
are computed from the lower bounds of a lower number of rounds. For example,
the current lower bound on 12 rounds is computed from the bound on 4 rounds:
2−258 = 2−86×3. As such, improving the lower bounds give us immediate results
for higher rounds. This also means that the results for higher rounds are most
likely far to be tight, which is especially visible for the bound on 7 rounds:
2−131 = 2−129 ⇥ 2−2.

Our main objective was to reduce the gap between the lower and upper
bounds. For now, the bounds for 4 rounds are [86, 107] (or to be more exact,
since the bounds are probabilities, [2−107, 2−86]). However, [12] showed that there
exists a 4 round trail with 43 active S-boxes. This mean that, if we want to reduce
the gap by improving the lower bound on the weight, we cannot take the number
of active S-boxes as objective, since we know that the minimum number of active
S-boxes will be  43 and as such we will not be able to tell a better precision
than 43⇥ 2 = 86 but have to model the transition weights.

3.1 A new MILP Approach: using the Hamming Weight

Our idea to improve the existing bounds is to consider a lossy model, as it was
done in [2] regarding division property related problems. This would allow us
to get calculations done much quicker, but at the cost of getting less accurate
results. The main difficulty is to find a right balance between accuracy and time
complexity. As such, we tried to model the internal state of Ascon using the
Hamming weight of columns.
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Table 3: hwDDT of Ascon’s S-box: maximum number of solutions as a function
of the Hamming weight of the input and output.

hw 0 1 2 3 4 5

0 32 0 0 0 0 0

1 0 0 8 8 8 4

2 0 8 8 8 8 4

3 0 8 8 4 4 4

4 0 4 4 4 4 2

5 0 4 4 4 0 0

The Hamming weight of a column is defined by the total number of active
bits in this column. As such, instead of modeling 320 bits, we can manipulate
64 integers between 0 and 5. This approach works particularly well with MILP
models, as they deal natively with integer variables.

3.2 Modeling pS

To model the nonlinear layer, we need a way to represent the weight of each
transition through the Ascon S-Box. Each transition has a weight of 2, 3, 4
or 0 (for the trivial 0 ! 0 differential transition), and thus for each of them
we create binary variables w2, w3, w4 and w0 with the constraint that w2[i] +
w3[i] + w4[i] + w0[i] = 1.

Now that we have a way to represent the weights of the transition, we then
have to find a way to model the DDT, then link both of them together. The
classical way of modelling the DDT into inequalities is to use the convex hull
operator. This operator takes a cloud of points in n dimensions and returns
the convex hull associated with this cloud of points, which can take the form
of inequalities, which is what we want. In our case, we want to know what is
the minimum weight (the worst case) of a differential transition where the input
difference has a Hamming weight of hw(i) and the output has a Hamming weight
of hw(j). As such, our hwDDT can be expressed (i, j) 2 {0, ..., 5} as:

hwDDT(i, j) = max(DDT(a, b) | hw(a) = i, hw(b) = j),

and is given in Table 3.

More precisely, this new DDT contains the best transitions between an input
and an output of given Hamming weight. Hopefully, it is quite straightforward
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to describe a transition a ! b through this DDT:

a � 2w4

a  5� w4

b � w4

a � w3

b � w3

a  5� 5w0

b  5� 5w0

b  5� w2

a  5� 2w2

a+ b � 3w2

a � w2

b � w2

2a+ b  15� 7w2

Note that for the first and last non-linear layers, the constraints are simpler
since we can assume that the best input or output will be selected. Furthermore,
we only model Ascon from the output of the first non-linear layer to the input
of the last one.

3.3 Modeling pL

To model the linear layer, we need to express the relation between the bits of
the state before and after this step. If we denote respectively by y and x these
states, we have for all (i, j) 2 {0, ..., 5}⇥ {0, ..., 64}:

x[i][j] = y[i][j]� y[i][(j � d1) mod 64]� y[i][(j � d2) mod 64],

where d1 and d2 depend on the row index. In [12], the authors proposed to use an
extra binary variable per state bit to model the equation in a MILP-compliant
form:

y[i][j] + y[i][(j � d1) mod 64] + y[i][(j � d2) mod 64] + x[i][j] = 2z[i][j].

However this modeling seems to be quite inefficient, making the model very
slow to solve. Our idea is to describe as accurately as possible the possible
transitions through the linear layer without going down to the bit level. To do
so we introduce the variables xrow, xcol, yrow and ycol corresponding to the
Hamming weight of the rows and columns of both states x and y (note that xcol

and ycol are not new since they respectively correspond to the Hamming weight
of the input and output of the S-boxes which are used in the modelization of the
non-linear part).

First there are many straightforward relations between those states. For in-
stance,

P4

i=0
xrow[i] =

P6

i=0
3xcol[i] and the same equality holds for y. It is also

easy to add a constraint ensuring that an active column of y should at least
activate the same column on x or one of the 10 associated columns of y. We also
add the following constraint on rows:

3yrow[i] = xrow[i] + 2z,

where z is an extra integer variable, representing the number of cancellations
occurring on the row.
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3.4 Callbacks

Our model is very fast compared to previous ones, and in particular compared
to [12]. However, the results are far from being accurate as many false trails are
solutions of the model. To strengthen the model we use the callback functionality
of the Gurobi MILP solver [8]. It allows to add an extra verification each time a
solution of the model is found. First, for each linear layer, we check whether the
pattern of active columns is possible using Gaussian elimination as it was done
in [1]. If not we add an extra constraint to remove the pattern and the model
continues to search for another solution. Finally, the whole trail is checked using
an exact model. Note that the inequalities added to the model during the callback
only involve the weight of the transitions as they all are binary variables.

3.5 Results

Our model is fast enough to retrieve the lower bound of the weight of differential
characteristics up to 3 rounds. We also improve the lower bound for 7-round,
showing that the minimal weight is at least 135 while the previous bound was 131.
Note that these results were obtained on a laptop in few hours/days of compu-
tation, thus it makes no doubt that running the model on a bigger machine will
lead to new results.

4 Conclusion

In this work we proposed several improvements for the modelization of impor-
tant cryptanalysis problems related to the security of Ascon. We successfully
decrease the running times required to search for some instances of both meet-
in-the-middle preimage attacks on Ascon-XOF and lower bounds on the weight
of differential characteristics on Ascon inner permutation, and obtained new
results as well. The techniques we described show that it is sometimes more ef-
ficient to rely on simple modelizations, even though they are not exact, and we
believe they could be used to improve models dedicated to other primitives.

Acknowledgments. This work has been partially supported by the French
Agence Nationale de la Recherche through the OREO project under Contract
ANR-22-CE39-0015, and through the France 2030 program under grant agree-
ment No. ANR-22-PECY-0010.
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Abstract. This paper focuses on equivalences between Generalised Feis-
tel Networks (GFN) of type-II. We introduce a new definition of equiv-
alence which captures the concept that two GFNs are identical up to
re-labelling of the inputs/outputs and are therefore cryptographically
equivalent for several classes of attacks. It induces a reduction of the
space of possible GFNs: the set of the (k!)2 possible even-odd GFNs
with 2k branches can be partitioned into k! different classes.
From a designer perspective, it means that a much wider spectre of
candidates can be explored to choose a good permutation. This leads to
the suggestion of five 62-branches permutations performing better than
WARP regarding the number of differentially/linearly active S-Boxes and
to a new family of permutations with good diffusion properties.

1 Introduction

A Feistel network is a widely spread structure for symmetric cryptography prim-
itives. Invented by Feistel and Coppersmith in 1973 for IBM’s Lucifer cipher,
it was later standardised in the block cipher DES in 1976 [S+77]. In a Feistel
network, the internal state is divided into two parts of the same size: the left
branch x and the right branch y. The round function of the i-th round of the
Feistel network is the involutive operation Fi := (x, y) 7! (x, y � fi(x)), where
fi is a keyed function, followed by the swap of x and y as depicted in Figure 1a.

Later, Zheng et al. [ZMI90] generalised the original construction so that the
state is now divided into 2k same-size parts (x0, x1, . . . , x2k�1). These parts are
also called branches. Several generalisations – named type-I, type-II and type-III
– were suggested, but in this paper we will focus on type-II, which seems to be
the design favoured by the community. The round function of the i-th round of
a type-II generalised Feistel network is

F k
i := (x0, x1, . . . , x2k�1) 7! (x0, x1 � fi(x0), . . . , x2k�2, x2k�1 � fi(x2k�2)),

followed by a circular shift of the 2k parts of the state, sending each branch to
the next one: (x0, x1, . . . , x2k�1) 7! (x2k�1, x0, x1, . . . , x2k�2).

At Asiacrypt ’96, Nyberg proposed to replace the circular shift by another
specific permutation [Nyb96]. Then, in [SM10], Suzaki and Minematsu proposed
the Generalised Feistel Network (GFN) by replacing the circular shift by a gen-
eral permutation P (see Figure 1b), aiming to improve the diffusion. Among
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(b) A type-II Generalised Feistel
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(c) A GFN with an even-odd
permutation.

Fig. 1: 2 rounds of some types of (Generalised) Feistel Networks.

others, two type-II GFN with 16 branches (LBlock [WZ11], TWINE [SMMK13])
and one with 32 branches (WARP [BBI+20]) were later proposed.

The main problem in the search of optimal permutations for a certain prop-
erty (diffusion, resistance against differential or linear attacks, etc.) comes from
the huge search space: there are (2k)! different permutations for a 2k-branch
GFN. In [CGT19], Cauchois et al. consider equivalence classes based on conju-
gacy: two GFNs relying on 2k-permutations P and Q respectively are equivalent
if and only if there exists a permutation of pairs A such that P = AQA�1, where
a permutation of pairs is a permutation A such that A(2i+1) = A(2i)+1 for all
i between 0 and k�1. It allowed them to describe an efficient generation of even-
odd Feistel permutations (i.e. permutations that map even indices to odd indices
and reciprocally), based on the cycle type of the left-branches permutation.

Our contribution In this paper, we present a wider definition of equivalence of
the underlying permutations of GFNs: we say that two permutations P and Q
are expanded-equivalent if and only if there exists a permutation of pairs A such
that for all positive integer i, QiAP�i is a permutation of pairs. This definition
takes into account several rounds of the GFN and therefore captures equivalence
which are not visible on one round. Our motivation comes from the observation
that equivalence notions introduced in previous works do not cover all the cases.
For example, both the Feistel networks depicted in Figure 2 share the exact same
properties while the inner permutations are not isomorphic (it would imply that
the identity permutation and the rotation are conjugates).

Our new equivalence relation comes with two different characterisations. The
first one reveals that the equivalence of GFNs can be observed as a cyclic be-
haviour on a finite number of rounds, which provides a new way to test whether
two GFNs are equivalent. The second one, only valid for even-odd permutations,
captures the structure of the equivalence classes and leads to the fact that the
k!2 GFNs associated with even-odd permutations on 2k branches can be grouped
in exactly k! equivalence classes, each of them containing k! GFNs.

Moreover, we show how to enumerate only one element per expanded equiv-
alence class. Exploring this smaller space of candidates, we obtain a new family
of GFNs with good diffusion but also 5 good 32-branch permutations which
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(b) With Amapping i to (i+1) mod 3.

Fig. 2: Trivial example of equivalent GFNs whose permutations are not conju-
gates. Both figures depict three rounds of a 6-branches GFN associated to ΠA,A:
the i-th left-branch is mapped to the A(i)-th right-branch and similarly for right
branches.

perform better than WARP for differential and linear properties without any
degradation on the diffusion part. We also reduce the long list of permutations
provided by previous works on GFN to more reasonable size using the expanded
equivalence.

Organisation of the paper Section 2 is dedicated to notations, definitions, and
properties useful for the following parts. Then in Section 3, we introduce the new
definition of equivalence of GFNs, its characterisations, and equivalence testing.
Section 4 presents several results obtained from the new equivalence relation.

2 Notations, definitions and previous works

2.1 Permutations

We will denote by Sk the symmetric group acting on a set with k elements.
Any permutation will be described by its value table: for instance, writing
P = [0, 1, 3, 2] indicates that P is the permutation P (0) = 0, P (1) = 1, P (2) =
3, P (3) = 2. We denote by Id the identity permutation.

The centraliser of a permutation P 2 Sk is the set of permutations that
commute with P : Centr(P ) := {Q 2 Sk, QP = PQ}. More generally, we will use
the centraliser of a set of permutations E ⇢ Sk: Centr(E) :=

T

P2E Centr(P ).

2.2 Permutations used in Feistel networks

A 2k-branch GFN is defined by its permutation of branches P 2 S2k. We write
FP to describe the GFN whose i-th round function is P �F k

i and we will use the
shorter product notation PF for this round function (which implies that we only

3



study the formal structure of the GFN, not its instantiation with functions fi).
Branches with an even (resp. odd) index are called left (resp. right) branches.

In the introduction, we have defined the even-odd permutations as the per-
mutations of S2k which map even numbers to odd numbers and reciprocally.
Such a permutation P can be described by two smaller permutations L,R in Sk

as follows: L(i) := (P (2i) � 1)/2 and R(i) := P (2i + 1)/2. L (resp. R) is called
the left (resp. right)-branches permutation and we denote P by ΠL,R.

Let us also define the even permutations as the permutations which map even
numbers to even numbers and odd numbers to odd numbers. Similarly, any even
permutation P of S2k can be described by two smaller permutations L,R 2 Sk:
L(i) := P (2i)/2 and R(i) := (P (2i+ 1)� 1)/2 and we denote P by ΦL,R.

Finally, we consider the group of permutations of pairs: Sp
k = {ΦA,A, A 2 Sk}

Any permutation of pairs commutes with the Feistel step F , a property which
will be very useful for the GFN isomorphism.

The diffusion round of a GFN is the minimal number of rounds needed for
all output branches to depend on all the input branches (and conversely for
the decryption). There exists a lower bound of the diffusion round for even-odd
GFNs based on the Fibonacci sequence (φi): if φi � k > φi�1, then the diffusion
round of any even-odd GFN with 2k branches is at least i+ 1.

2.3 A first approach to GFN equivalence

Let us begin with a natural definition of equivalence of generalised Feistel net-
works: two GFNs are equivalent if, for any number of rounds, one is equal to the
other up to a re-labelling of the inputs and outputs. More formally, this can be
defined as follows:

Definition 1. Let P and Q be two 2k-permutations associated with two gen-
eralised Feistel networks FP and FQ. FP and FQ are equivalent if and only
if for all positive integer i, there exist two permutations Ai and Bi such that
(QF )i = Bi(PF )iA�1

i .

This definition is interesting for cryptographers because it implies that both
Feistel networks share some cryptographic properties: not only linear and differ-
ential characteristics but also diffusion, impossible differentials, etc. However, it
is more convenient to have a property that directly links the underlying permu-
tations. Hence [CGT19] suggested the following natural equivalence relations:

Definition 2. Two 2k-permutations P and Q are pair-equivalent if and only if
there exists A 2 Sp

k such that Q = APA�1. P and Q are extended pair-equivalent
if and only if P and Q are pair-equivalent or P and Q�1 are pair-equivalent.

Indeed, in the first case, A commutes with F thus (QF )i = A(PF )iA�1 for
all i, and FP and FQ are equivalent. The second equivalence comes from the fact
that FP−1 corresponds to the decryption of FP and thus both permutations are
typically evaluated together. In the following, we will denote these equivalences
as the (extended-)conjugacy-based equivalence.
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3 Expanded Feistel Equivalence

In this section, we present the core of our work: a larger equivalence relation be-
tween the permutations used in GFNs. We also highlight some useful properties
regarding this equivalence.

3.1 New definition

We propose the following widened equivalence relation of permutations which
also implies the equivalence of associated GFNs.

Definition 3. Two 2k-permutations P and Q are called expanded-equivalent if
and only if there exists A 2 Sp

k such that for all i, Ai := QiAP�i 2 Sp
k .

Since F commutes with permutations of pairs, we can show that for any
positive i, (QF )i = Ai(PF )iA�1 and as a consequence, both FP and FQ are
equivalent. Contrary to the previous equivalence notion, the output relabelling
is now authorised to depend on the number of rounds. Note that P and Q
are expanded-equivalent if and only if P�1 and Q�1 are expanded-equivalent.
Furthermore, as for conjugacy-based equivalence, expanded equivalence can be
extended to deal with the inverse permutations.

Definition 4. Two 2k-permutations P and Q are extended-expanded-equivalent
if and only if P and Q are expanded-equivalent or P and Q�1 are expanded-
equivalent.

First example of a class Let us denote Cl(ΠL,R) the class of expanded equiv-
alence of ΠL,R. The easiest class to compute is Cl(ΠId,Id) = {ΠP,P , P 2 Sk}.
Indeed, if Q 2 Cl(ΠId,Id), then there exist A = Φa,a, B = Φb,b 2 Sp

k such that
QAΠ�1

Id,Id = B i.e. Q = Πba−1,ba−1 2 {ΠP,P , P 2 Sk}. Conversely, if Q = ΠP,P

then QiΠ�i
Id,Id = ΦP i,P i 2 Sp

k . Note that Cl((ΠId,Id)) is significantly larger than
the conjugacy-based equivalence class of ΠId,Id: the former has k! elements while
the latter is reduced to one element.

3.2 Invariant cryptographic properties

Let us clarify here which cryptographic properties of GFNs are invariant un-
der the equivalence relations. The conversion of the equivalence of permutations
to an equivalence of GFNs requires that any permutation of pairs commutes
with the function F . This implies that in each round, all the underlying Feis-
tel functions (fi at round i) are identical or can be considered as such. Indeed,
many cryptanalysis techniques (minimal number of active S-boxes in a differen-
tial/linear trail, diffusion round and word-oriented Meet-in-the-Middle (MITM)
distinguishers, etc.) do not rely on the exact specification of either the S-boxes
or the key schedule. However, if the Feistel functions are not all identical (e.g.
LBlock), instantiated differential/linear trails can no longer be transposed from
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one GFN to another equivalent one. Similarly, related-key attacks are not in-
variant as the role of the round keys changes from one branch to another. More
generally, key-recovery attacks are not invariant, as the behaviour of the key in
the key-recovery rounds changes from one GFN to another.

Let us now introduce the main difference between conjugacy-based equiva-
lence and expanded equivalence: invariant subspaces. An invariant subspace is a
set S invariant by the round operation of the cipher. This property is preserved
by conjugacy-based equivalence but not for expanded equivalence. In the latter
case, only the more generic subspace trail attack framework is invariant.

3.3 Characterisation on a finite number of rounds

In practice, the former definition seems difficult to apply, as it relies on a property
for all positive integers i. Yet, it can be reduced to a property verifiable on a
finite number of i. This comes from the following smaller equivalence relation.

Definition 5. Two permutations P and Q are r-cyclic equivalent if and only if
for all i  r, there exists a permutation of pairs Ai such that Qi = AiP

iA�1
0

and Ar = A0.

Conjugacy-based equivalence boils down to 1-cyclic equivalence. Moreover,
if Q = AP = PAα with A a permutation of pairs, then P and Q are r-cyclic
equivalent for any r such that A1+α+···+α

r−1

= Id. For instance, if α = �1,
we get that P and Q are 2-cyclic equivalent. Moreover, this definition naturally
leads to the following characterisation of expanded equivalence.

Property 1 (First characterisation). Two permutations P and Q are expanded-
equivalent if and only if there exists a positive integer r such that they are
r-cyclic equivalent.

We now suggest a procedure to test the r-cyclic equivalence between two
even-odd permutations based on graph isomorphism : Two even-odd permuta-
tions P and Q are r-cyclic-equivalent if and only if their cyclic Feistel graph of
length r (Gc

F (P, r) and Gc
F (Q, r)) are isomorphic.

Definition 6. Let P be an even-odd permutation of 2k elements. We call cyclic
Feistel graph of length r associated to P the directed graph Gc

F (P, r) such that
its set of vertices is V and edges E = EP

S

EF with V = {0, . . . , 2k � 1} ⇥

{0, . . . , r � 1},

EP = {((i, j) ! (P (i), (j + 1) mod r)) , (i, j) 2 V }

and EF = {((2i, j) ! (P (2i+ 1), (j + 1) mod r)) , (2i, j) 2 V }.

3.4 More fundamental characterisation for even-odd permutations

The previous characterisation helps to understand what it means for two per-
mutations to be equivalent. However, there can be three expanded-equivalent

6



permutations P,Q,R such that P and Q are r-cyclic-equivalent and Q and R are
r0-cyclic-equivalent with r 6= r0. Thus, we introduce a more fundamental charac-
terisation by using an alternative representation of the even-odd permutations:
any even-odd permutation ΠL,R can be uniquely defined by the two permuta-
tions R and α := R�1L. We denote this representation Ψα

R := ΠRα,R = ΠL,R.

Property 2 (Second characterisation). Two even-odd permutations P = Ψα

R and
Q are expanded-equivalent if and only there exist two permutations of pairs
A = Φa,a and B = Φb,b such that Q = ABPA�1 and b 2 Centr(

�

R�iαRi
 

i�0
).

This characterisation induces that expanded equivalence classes are the union
of several conjugacy-based equivalence classes for some multiple of P .

Let us now discuss another easy example of equivalence classes: the case
of Centr(

�

R�iαRi
 

i�0
) = {Id}. In that case, by Property 2, P := Ψα

R is only

equivalent to its conjugates via a permutation of pairs. Moreover, two conjugates
via a permutation of pairs Φa,a are equal if and only if a commutes with α and
with R. But Centr({R,α}) is a subset of Centr(

�

R�iαRi
 

i�0
) so there is no

non-trivial element in this set. Thus, all the k! conjugates of P are different and
the expanded equivalence class of P has exactly k! elements. Besides, it is true
for all the expanded equivalence classes:

Theorem 1. There exist k! classes of expanded equivalence of even-odd GFNs
with 2k branches. Each of these classes contains exactly k! GFNs.

4 Applications

4.1 Enumeration of expanded equivalence classes

Algorithm 1 Enumeration of expanded equivalence classes for 2k-branch even-
odd GFNs.

Initialise a set of representative of classes classes = {}.
for α 2 Ak do

Initialise a set S = Sk.
while S is not empty do

Pick R in S.
Add Ψ

R

α
to classes.

for B in Centr(
�

R−i
αRi

 

i≥0
) do

Remove {ABRA−1, A 2 Centr(α)} from S.
end for

end while

end for

Return classes.

We can use the characterisation from Property 2 to define an algorithm (see
Algorithm 1) giving exactly one representative per expanded equivalence class.
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We were able to run this algorithm in less than half an hour on a laptop for k
up to 9 with a Python implementation.

4.2 A new family of GFNs with good diffusion properties

On small value of k, we observed that the following family of permutations leads
to good diffusion properties.

Definition 7 (Pseudo-cyclic permutations). Let k be a positive integer and
j be a positive integer smaller than k. Let i = k/ gcd(j, k). Let α be the cyclic
permutation of order k defined as α : x 7! x + 1 mod k. We call pseudo-
cyclic permutation the permutation Ψα

Rj
with Rj the permutation of Sk such

that Rj(x) = jx+
jx

i

k

mod k.

There are k � 1 pseudo-cyclic permutations with 2k elements. Hence, it is
easy to evaluate the diffusion round of all the pseudo-cyclic permutations for
k relatively large. We reported the minimal diffusion round of pseudo-cyclic
permutations for k up to 150 in Figure 3. In this figure, we distinguished the
case where k is prime, since in this case, the diffusion round is really close to
its lower bound. For k 2 {11, 14, 29, 59, 61, 101, 145, 149}, the Fibonacci lower
bound is even reached, which is a surprising result as this lower bound is not
tight for smaller values of k: From [SM10,CGT19,DFLM19,DDGP22], we know
that this lower bound cannot be reached for k 2 {5, 6, 7, 8, 10, 12, 13}.

20 40 60 80 100 120 140
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Number k of pairs of branches in the GFN
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u
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n
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n
d

DeBruijn Graphs [SM10]

Pseudo-cyclic (non prime k)

Pseudo-cyclic (prime k)

Fibonnaci lower bound

Random permutations

Fig. 3: Diffusion round of several families of GFNs.

In the Figure 3, we compare the pseudo-cyclic permutations with permuta-
tions obtained from De Bruijn graphs. Indeed in [SM10,CGT19], the authors
showed that for k a power of 2, permutations obtained from colouring of De
Bruijn graphs are good GFN candidates regarding diffusion. Experimental re-
sults about random even-odd permutations are also given for comparison.
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4.3 Application to WARP

WARP [BBI+20] is a 128-bit block cipher based on a GFN with 32 branches
targeting a minimalist hardware footprint. Its designers explored a space of 8!⇥
16 ' 219.3 candidates which led to 152 candidates with diffusion round 10. It took
them 2 days on a computer with 44 cores to evaluate the number of differentially
active S-boxes on 18 and 19 rounds with MILP for these 152 candidates. The
goal is to find a permutation which achieves to have at least active 64 S-boxes
in a minimal number of rounds. No permutation succeeds in 18 rounds but 8
permutations stand out as they have the best number of differentially active S-
boxes on 19 rounds. However, the authors did not find any way to differentiate
them on a large number of cryptographic properties. Indeed, using the graph
isomorphism test, we can show that they are extended-expanded-equivalent.

�

P P Q Q

n r1 n r2

f

Fig. 4: Space explored
by our program.

Moreover, we can reproduce their search and re-
group the 152 candidates in 7 extended expanded
classes of equivalence. The MILP evaluation of the
minimal number of differentially active S-boxes on 19
rounds for the 7 classes takes 50 minutes on a 12-cores
laptop.

Since our search for good candidates was signifi-
cantly faster, we explored a wider space of 32-branch
permutations in the hope of finding one permutation
with minimal AS of at least 64 after only 18 rounds
and diffusion round less than or equal to 10.

We used the space described in Figure 4 ( 2 identi-
cal 8-branch permutations P followed by a rotation of
an amount r1 on the left branches, 2 identical 8-branch
on the right branches Q followed by a rotation of an
amount r2 of the right branches) with the (P ,Q) gen-
erated by Algorithm 1. Keeping only candidates with diffusion round less than
or equal to 10, we obtained 184 candidates belonging to 68 extended-expanded
classes. We found 5 classes of permutations3 which need only 18 rounds (when
WARP needs 19 rounds) to have the guarantee that at least 64 S-Boxes are active
in any differential/linear trail. They also have the same diffusion round as WARP
which enables to keep the security arguments against Impossible Differential
cryptanalysis and Meet-in-the-Middle attacks.

4.4 Application to previous results

The literature on GFNs is full of long lists of good permutation candidates. Thus,
we wanted to check whether these lists could be shortened by only considering
one element per equivalence class. Our results are summarized in Table 1.

3 For exemple, the GFN associated to [23, 28, 27, 0, 17, 4, 25, 26, 15, 2, 21, 24, 29,
30, 19, 6, 7, 12, 11, 16, 1, 20, 9, 10, 31, 18, 5, 8, 13, 14, 3, 22] has at least 66/64
differentially/linearly active S-boxes in 18 rounds.
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The size reduction obviously leads to a more compact presentation of the
results. But it also indicates that some computation could have been factorized
by equivalence classes: for instance, in the case of the enumeration of [SSD+18]
about alternative candidates of TWINE, the authors could have used the enumer-
ation of Algorithm 1. In that case, they would have had only to test 8! = 40320
candidates and the computation would have been 22 times faster, going from
two hours to a few minutes. It would have even been approximately twice faster
if the candidates were regrouped by extended expanded equivalence.

Source Topic
Size of
the list

Number of
extended
expanded

equivalence classes

[CGT19]
Best-known permutations for GFNs with
32,64 or 128 branches regarding diffusion

(regrouped by extended 1-cyclic equivalence)
32 10

[DFLM19]
Optimal permutations for even odd GFNs

with 28 to 34 branches (regrouped by 1-cyclic
equivalence)

19 9

[SSD+18]
Alternative permutations to improve the

resistance of LBlock TWINE against
Demirci-Selçuk Meet-in-the-Middle Attack.

64 2

[SSD+18]
Alternative permutations to improve the
resistance of TWINE against Demirci-Selçuk

Meet-in-the-Middle Attack.
12 1

Table 1: Reduction of the size of lists by using the expanded equivalence relation

5 Conclusion and perspectives

This paper brings new perspectives on GFNs and their permutations by consid-
ering bigger equivalence classes: many GFNs which were previously considered
as different are actually cryptographically equivalent for a set of classical attacks.
From a designer perspective, it reduces the space of GFN candidates and thus
shrinks drastically the amount of time to compare their properties.

Finally, many open questions remain: Is there another representation of the
permutations for which the expanded equivalence is an easy construction? Is
there a more efficient way to compute the conjugacy classes? Can we characterise
the classes which lead to good cryptographic properties? What is the size of the
classes if we consider also non even-odd permutations? It may also have some
implications for a cryptanalyst: for a given GFN, is there any equivalent GFN
which is vulnerable to the attacks not taken into account here?
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Galois subcovers of the Hermitian curve in characteristic p with
respect to subgroups of order dp with d 6= p prime
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Abstract. A problem of current interest, also motivated by applications to Coding theory, is to find
explicit equations for maximal curves, that are projective, geometrically irreducible, non-singular curves
defined over a finite field Fq2 whose number of Fq2 -rational points attains the Hasse-Weil upper bound
of q2+2gq+1 where g is the genus of the curve X . For curves which are Galois covered of the Hermitian
curve, this has been done so far ad hoc, in particular in the cases where the Galois group has prime
order and also when has order the square of the characteristic. In this paper we obtain explicit equations
of all Galois covers of the Hermitian curve with Galois group of order dp where p is the characteristic
of Fq2 and d is prime other than p. We also compute the generators of the Weierstrass semigroup at
a special Fq2 -rational point of some of the curves, and discuss some possible positive impacts on the
minimum distance problems of AG-codes.

Keywords: maximal curves, function fields, Galois cover, Weierstrass semigroup, AG-code

Subject classifications: 14H37, 14H05.

1 Introduction

Curves with many points over a finite field have intensively been investigated also by their connections
to Coding theory, Cryptography, Finite geometry, and shift register sequences. In this context, the most
important family consists of the maximal curves, that is, curves defined over the finite field Fq2 , where
q = ph and p is its charactreristic, which attain the famous Hasse-Weil upper bound. The Hermitian curve
is the best known maximal curve and it is also the most useful for applications, especially in the study of
algebraic geometry codes, shortly AG-codes. Actually, many other maximal curves derive from the Hermitian
curve since any Fq2 -subcover of a maximal curve is still maximal over the same field. If such a Fq2 -subcover
is a Galois subcover with Galois group G then the arising curve is named the quotient curve of the Hermitian
curve with respect to G. Up to group isomorphism, the Fq2 -automorphism group of the Hermitian curve is
the 3-dimensional projective unitary group PGU(3, q) which has plenty of subgroups; see [9]. This motivated
the systematic study of the quotients curves of the Hermitian curve which was eventually initiated in the
seminal paper of Garc̀ıa, Stichtenoth and Xing [6]. Ever since important progress has been made in the study
of the spectrum of the possible genera of the quotients of the Hermitian curve over a given finite field; see [8,
Chapter 10]. Nevertheless, the problem of determining explicit equations for such curves, which is a relevant
issue for applications, remains largely open. In fact, this problem has so far been solved by ad hoc methods,
apart form the cases where the Galois group has either prime order; see [2], or its order equals the square of



the characteristic; see [3].
In this paper we determine explicit equations for each quotient curve of the Hermitian curve whose Galois
group has order dp where p is the characteristic of Fq2 and d is prime other than p. We also compute the
Weierstrass semigroup at some Fq2 -rational point of those curves, and discuss possible positive impacts on
the minimum distance problems of AG-codes.

th1 Theorem 1. In the Fq2-automorphism group G ⇠= PGU(3, q) of the Hermitian curve Hq defined over Fq2

with q = ph and p � 5, let H be a subgroup of order dp where d � 5 is a prime number other than p. Let
H̄q = Hq/H be the quotient curve of Hq with respect to the subgroup H. Then, up to an Fq2-isomorphism,
one of the following cases occurs.

(I) If H = Cp ⇥ Cd then H̄q has genus

g =
1

2d
(q � d+ 1)

✓

q

p
� 1

◆

and equation
h�1
X

i=0

Y pi

+ !X
(q+1)/d = 0 with !q�1 = �1 and d | (q + 1). (1) eqthI

(II) If H = Cp o Cd and Cp is in the center in a Sylow p-subgroup of G, then H̄q has genus

g =
1

2

q

d

✓

q

p
� 1

◆

and equation

!X
(q−1)/d �A(X,Y ) = 0 with !q�1 = �1 and d | (p� 1). (2) eqthII

where

A(X,Y ) = Y +X
2(p−1)/dY p + · · ·+X

2(ph−1
−1)/dY

q/p.

(III) If H = Cp o Cd but Cp is not in the center in a Sylow p-subgroup of G, then H̄q has genus

g =
q

2dp
(q � 1)

and equation
✓

Y 2

Xd

◆(q−1)/d

+ 1�A(X,Y ) = 0 d | (p� 1) (3) eqthIII

where

A(X,Y ) =

h�1
X

i=0

h�1
X

j=0

✓

Y 2

Xd

◆(pi−1)/2d✓
Y 2

Xd

◆(pj−1)/2d

X
(pi+pj)/2.

Our Notation and terminology are standard; see [8,14,7]. In particular, q always stands for a power of p,
namely q = ph. We mostly use the language of function field theory rather than that of algebraic geometry.



2 Background

Let X be a projective, non-singular, geometrically irreducible, algebraic curve of genus g � 2 embedded in
an r-dimensional projective space PG(r,F`) over a finite field of order ` of characteristic p. Let F`(X ) be the
function field of X which is an algebraic function field of transcendency degree one with constant field F`.
As it is customary, X is viewed as a curve defined over the algebraic closure F of F`. Then the function field
F(X ) is the constant field extension of F`(X ) with respect to field extension F|F`. The automorphism group
Aut(X ) of X is defined to be the automorphism group of F(X ) fixing every element of F. It has a faithful
permutation representation on the set of all points X (equivalently on the set of all places of F(X )). The
automorphism group AutF`

(X ) of F`(X ) is a subgroup of Aut(X ). In particular, the action of AutF`
(X ) on

the F`-rational points of X is the same as on the set of degree 1 places of F`(X ). Let G be a finite subgroup
of AutF`

(X ). The Galois subcover of F`(X ) with respect to G is the fixed field of G, that is, the subfield
F`(X )G consisting of all elements of F`(X ) fixed by every element in G. Let Y be a non-singular model
of F`(X )G, that is, a projective, non-singular, geometrically irreducible, algebraic curve with function field
F`(X )G. Then Y is the quotient curve of X by G and is denoted by X/G. The covering X 7! Y has degree
equal to | G | and the field extension F`(X )|F`(X )G is Galois. If P is a point of X , the stabilizer GP of P in
G is the subgroup of G consisting of all elements fixing P .

Result 2. [8, Theorem 11.49(b)] All p-elements of GP together with the identity form a normal subgroupresth11.49b
SP of GP so that GP = SP o C, the semidirect product of SP with a cyclic complement C.

Result 3. [8, Theorem 11.129] If X has zero Hasse-Witt invariant then every non-trivial element of orderresth11.129
p has a unique fixed point, and hence no non-trivial element in SP fixes a point other than P .

A useful corollary of Result 3 is the following.

lem15042023 Result 4. Let X be an F`-rational curve whose number of F`-rational points is N � 2. If X has zero
Hasse-Witt invariant and S is a p-subgroup of AutF`

(X ) then S fixes a unique point and |S| divides N � 1.

The following result is due to Stichtenoth [13].

Result 5. [8, Theorem 11.78(i)] Let H be a p-subgroup of F(X ) fixing a point. If |S| is larger than the genussti1
of F(X ) then the Galois subcover of F(X ) with respect to H is rational.

From now on let ` = q2 with q = ph and assume that X is a Fq2 -maximal curve.
The following result follows from [12, Lemma1].

zeroprank Result 6. All Fq2-maximal curves have zero Hasse-Witt invariant.

The following result is commonly attributed to Serre.

Result 7. [8, Theorem 10.2] For every subgroup G of AutF
q2
(X ), the quotient curve X/G is also Fq2-resth10.2

maximal.

We also use the classification of all groups whose order is the product of two distinct primes.

res07122023 Result 8. Suppose u and v are distinct prime numbers with u < v. Then, there are two possibilities for
groups G of order uv:

(I) If u - (v � 1) then G is a cyclic group.
(II) If u | (v � 1), then either G is a cyclic group, or G is a semidirect product Cv o Cu.



2.1 The function field of the Hermitian curve

In this subsection we collect some useful results about the function field of the Hermitian curve and its Galois
subcovers. The affine equation Y q + Y = Xq+1 of an Fq2 -rational curve is the usual canonical form of the
Hermitian curve Hq with function field is Fq2(x, y) where y

q+y�xq+1 = 0. The equation Y q�Y +!Xq+1 = 0
with ! 2 Fq2 such that !q�1 = �1 is another useful equation of Hq. We exploit numerous known results on
the F-automorphism group Aut(F(Hq)) of Hq. For more details, the Reader is referred to [9,7].

Result 9. [8, Theorem 12.24(iv), Proposition 11.30] Aut(F(Hq)) = Aut(Fq2(Hq)) ⇠= PGU(3, q). Moreover,sect12.3
Aut(F(Hq)) acts on the set of all Fq2-rational points of Hq as PGU(3, q) in its natural doubly transitive
permutation representation of degree q3 + 1 on the isotropic points of the unitary polarity of the projective
plane PG(2,Fq2).

The maximal subgroups of PGU(3, q) were determined by Mitchell in 1911, see Hoffer [9]. Let Sp be a
Sylow p-subgroup of Aut(Fq2(Hq)) = PGU(3, q). From Results 9, it may be assumed up to conjugacy that
the unique fixed point of Sp is the point at infinity Y1 of Hq. The following result describes the structure of
the stabiliser of Y1 in Aut(Fq2(Hq)).

struct Result 10. Let the Hermitian function field be given by its canonical form Fq2(x, y) with yq + y�xq+1 = 0.
Then the stabiliser G of Y1 in Aut(F(Hq)) consists of all maps

 a,b,� : (x, y) 7! (�x+ a, aq�x+ �q+1y + b) (4) eq250523

where
a 2 Fq2 , � 2 F

⇤

q2 , bq + b = aq+1. (5) eqA250523

In particular, G = Sp o C where Sp = { a,b,1|b
q + b = aq+1, a, b 2 Fq2} and C = { 0,0,�|� 2 F

⇤

q2}.

A direct computation by induction on i shows that for 1  i  p

 i
a,b,1 =  ia,aq+1(i2�i)/2+ib,1. (6) eq08122023

For more about Result 10 see [6], Section 4.

rem250523 Remark 11. Changes of the generators x, y of the Hermitian function field Fq2(x, y), y
q + y � xq+1 = 0

provide another canonical form. For our purpose, a useful change is ⌧ : (x, y) ! (!x,�!y) where !q�1 = �1,
and the arising canonical form is yq � y + !xq+1 = 0. Then the elements in the stabilizer G of Y1 in
Aut(F(Hq)) are of the form:

'a,b,� : (x, y) 7! (�x+ a, aq�!x+ �q+1y + b) (7) eaQ08122023

where (5) is replaced by
a 2 Fq2 , � 2 F

⇤

q2 , bq � b = �!aq+1.

A direct computation by induction on i shows that for 1  i  p

'i
a,b,1 = 'ia,aq+1!(i2�i)/2+ib,1. (8) eq081220232

For more about Result 11 see [6], Section 4.

From Result 10, Sp is the (unique) Sylow p-subgroup of the stabiliser of Y1 in Aut(Fq2(Hq)).



conjcl Result 12. Sp has the following properties.

(I) The center Z(Sp) of Sp has order q and it consists of all maps  0,b,1 with bq+b = 0, b 2 Fq2 . Also, Z(Sp)
is an elementary abelian group of order p.

(II) The non-trivial elements of Sp form two conjugacy classes in the stabiliser of Y1 in Aut(Fq2(Hq)), one
comprises all non-trivial elements of Z(Sp), the other does the remaining q3 � q elements.

(III) The elements of G other than those in Z(Sp) have order p, or p2 = 4 according as p > 2 or p = 2.

For completeness, we provide a proof for the classification of subgroups of PGU(3, q) of order dp. We
use the canonical form yq � y + !xq+1 = 0 with !q�1 = �1. The Galois subcovers of Fq2(Hq) with respect
to a subgroup H of prime order or when its order equals the square of the characteristic were thoroughly
classified in [2] and [3] respectively. For the case |H| = dp, the classification is reported in the following
result.

dp Result 13. Let p and d two distinct prime numbers both larger than 3. Then, up to conjugacy in PGU(3, q),
there exist at most three subgroups of order dp in PGU(3, q), one is cyclic and the other two are semidirect
products of Cp o Cd with p < d. They are subgroups of the stabiliser of Y1 in Aut(Fq2(Hq)) where

(I) G = ⌃p ⇥⌃d with ⌃p = h'0,1,1i and ⌃d = h'0,0,�i with �
d = 1, d|(q + 1);

(II) G = ⌃p o⌃d with ⌃p = h'0,1,1i and ⌃d = h'0,0,�i with �
d = 1, d|(p� 1).

(III) G = ⌃p o⌃d with ⌃p = h'1,!/2,1i and ⌃d = h'0,0,�i with �
d = 1, d|(p� 1).

Proof. Let G be a subgroup of order pd in PGU(3, q). Two cases are treated separately according as p > d or
p < d. Assume first p > d. Then Result 8 shows that G has a unique Sylow p-subgroup ⌃p. Moreover, ⌃p is
a normal subgroup of G, and hence G = ⌃po⌃d where ⌃d is a Sylow d-subgroup of G. Since any non-trivial
element of PGU(3, q) of order p has exactly one fixed point on Hq(Fq2) whereas PGU(3, q) acts transitively
on Hq(Fq2), we may assume, up to conjugacy in PGU(3, q), that Y1 is the unique fixed point of Sp. As Sp

is a normal subgroup of G, the point Y1 is also fixed by ⌃d. From |Hq(Fq2)|� 1 = q3, ⌃d must have a fixed
point O 2 Hq(Fq2) other than Y1. Since PGU(3, q) is doubly transitive on Hq(Fq2) we may assume, up to
conjugacy, that O = (0 : 0 : 1). Then ⌃d is generated by t = '0,0,� with �d = 1 where d|(q2�1). Furthermore,
as ⌃p is a subgroup of the Sylow subgroup Sp of PGU(3, q) fixing Y1, two cases arise according as ⌃p is in the
center Z(Sp) of Sp or not. Let s be a generator of ⌃p. If s 2 Z(Sp) then s = '0,b,1 with bq�b = 0. Take µ 2 F

⇤

q2

such that µq+1 = b�1. Then the conjugate of s by '0,0,µ is '0,0,1 while t and '0,0,µ commute. Therefore,
up to conjugacy, G = ⌃p o ⌃d with ⌃p = hsi and s = '0,0,1 whereas ⌃d and t are as before. Since ⌃p is a
normal subgroup of G, there exists i with 1  i  p� 1 such that st = tsi. A straightforward computation
shows that this occurs if and only if i = 1/�q+1. For d|(q + 1), this implies i = 1, thus G is cyclic and Case
(I) occurs. For d|(q� 1), we have i 6= 1 and hence G is not abelian. From Result 8, d|(p� 1). Thus Case (II)
occurs. If s 62 Z(Sp) then s = 'a,b,1. For µ = a�1, the conjugate of s by '0,0,µ is '1,b/aq+1,1 while t and '0,0,µ

commute. Therefore, up to conjugacy, we may assume G = ⌃po⌃d where ⌃p = hsi and s = '1,b/aq+1,1 while
⌃d and t are not changed. Then st = �1,b/aq+1,� and, from (6), tsi = ��i,�q+1(!(i2�i)/2+ib/aq+1),�. Therefore,

st = tsi if and only if �i = 1 and �q+1( 12!(i
2 � i) + ib/aq+1) = b/aq+1. The latter condition can also be

written as 1
2!(i

2 � i) = (i2 � i)b/aq+1, that is, b = 1
2!a

q+1 as � 6= 1. Therefore, st = tsi if and only if
s = '1,!/2,1 and i� = 1. In particular, G is not abelian, and d|(p � 1). This gives Case (III). Now, assume
p < d. Then a Sylow d-subgroup ⌃d of G is a normal subgroup of G, and hence ⌃d is the unique d-subgroup
of G. As d divides the order of PGU(3, q), either d|(q � 1), or d|(q + 1), or d|(q2 � q + 1). Assume that ⌃d

fixes a point on Hq(Fq2). Then ⌃d has at least two fixed points, as |Hq(Fq2)|� 1 equals q3. Up to conjugacy,
we may assume that ⌃d fixes Y1 and O. Then ⌃d = h'0,0,�i with �d = 1. If �q+1 6= 1 then ⌃d has no



any further fixed point, and hence G preserves the pair {Y1, O}. Since p > 2 this yields that elements of G
of order p fix two points on Hq(Fq2) which is not possible. Therefore, �q+1 = 1 and d|(q + 1). This yields
that ⌃d fixes all points P = (0, ⌘) with ⌘q � ⌘ = 0, i.e. with ⌘ 2 Fq. Since ⌃d is a normal subgroup of G,
this yields that a generator s of ⌃p takes O to a point P = (0, ⌘) with ⌘ 2 Fq. But then s = '0,b,1 with
b 2 F

⇤

q . For µ = b�1, the conjugate of s by '0,0,⌫ with ⌫q+1 = µ is '0,1,1 while a generator t of ⌃d and '0,0,µ

commute. Therefore, up to conjugacy, we may assume s = '0,1,1. Also, st = ts and Case (I) occurs. We are
left with the case where ⌃d fixes no point on Hq(Fq2). Then either d|(q+1), or d|(q2� q+1). We look at the
action of PGU(3, q) as a projective group of the plane PG(2,K) where K is an algebraic closure of Fq2 . Then
the Hermitian curve Hq is left invariant by PGU(3, q). In particular, PGU(3, q) preserves both Hq(Fq2) and
its complementary set in PG(2,Fq2) whose size equals q4 + q2 + 1� (q3 + 1) = q2(q2 � q + 1). Furthermore,
Hq(Fq2) can also be viewed as the set of all isotropic points of a unitary polarity ⇡ of PG(2,Fq2). If d|(q+1)
then ⌃d fixes a point R 2 PG(2,Fq2) outside Hq(Fq2). Let r be the polar line of R w.r.t. ⇡. Then r is a
chord of Hq(Fq2). Since r has as many as q(q � 1) points other than those on Hq(Fq2), there are at least
two fixed points on r outside Hq(Fq2) under the action of ⌃d. Since ⌃d does not fix r pointwise, these two
points, say R1, R2 are the only fixed points of ⌃d on r. In particular, ⌃d fixes the vertices of the triangle
RR1R2. We show that no more point in PG(2,Fq2) is fixed by ⌃d. In fact, such a further fixed point T of
⌃d should lie on a side of the triangle, and that side would be fixed pointwise by ⌃d. But this is impossible
in our case, since the sides of RR1R2 are chords of Hq(Fq2) whereas ⌃d is supposed not to fix points on
Hq(Fq2). Since ⌃d is a normal subgroup of G, the triangle RR1R2 is left invariant by G. But then G is a
contained in a maximal subgroup of PGU(3, q) whose order equals 6(q+1)2. Since p > 3, this is impossible.
A similar geometric approach is used to rule out the other possibility, i.e. d|(q2 � q + 1). Look at the action
of PGU(3, q) on PG(2,Fq6). From |Hq(Fq6)| = q6 + 1 + q4(q � 1) and |Hq(Fq3)| = q3 + 1, the Hermitian
curve Hq has as many as q3(q + 1)2(q � 1) points in PG(2,Fq6) but not in PG(2,Fq2). From d|(q2 � q + 1)
and d > 3, ⌃d fixes a point R 2 Hq(Fq6) not lying in PG(2,Fq2). The Frobenius collineation f which sends

the point P = (a1 : a2 : a3) to the point Pq2 =
⇣

aq
2

1 : aq
2

2 : aq
2

3

⌘

leaves Hq(Fq6) invariant. Since f and ⌃d

commute, ⌃d also fixes the points Rq2 and Rq3 . Actually, ⌃d does not fix another point, otherwise one of
the sides, say `, of the triangle RRq2Rq4 would be fixed by ⌃d pointwise. Since f takes ` to another side r of
RRq2Rq4 and f and ⌃d commute, this would yield that r is also fixed pointwise by ⌃d, which is impossible.
As before, this implies that G leaves the triangle invariant RRq2Rq4 invariant. Therefore G is a contained
in a maximal subgroup of PGU(3, q) whose order equals 3(q2 � q + 1). Since p > 3, this is impossible.

Result 14. [8, Theorem 5.74] Let H be a subgroup of Aut(Fq2(Hq)) of order p. The Galois subcover Fq2(F
0))ckt

of Fq2(Hq) with respect to H is Fq2-isomorphic to the function field Fq2(⇠, ⌘) where either (I) or (II) hold:

(I)
Ph

i=1 ⌘
q/pi + !⇠q+1 = 0 with !q�1 = �1, g(Fq2(F

0)) = 1
2q
⇣

q
p � 1

⌘

, and H is in the center of a Sylow

p-subgroup of Aut(Fq2(Hq));

(II) ⌘q + ⌘ � (
Ph

i=1 ⇠
q/pi)2 = 0 for p > 2, g(Fq2(F

0)) = 1
2
q
p (q � 1), and H is not in the center of a Sylow

p-subgroup of Aut(Fq2(Hq)).

The following result is a corollary of [6, Section 4].

generi Result 15. Let g be the genus of the Galois cover of Fq2(Hq) with respect to a subgroup G of Aut(Fq2(Hq))
of order dp. Let Sp is a Sylow p-subgroup of Aut(Fq2(H)) containing a subgroup H of G of order p. Then
either

g =
1

2

q

d

✓

q

p
� 1

◆

for (d, q + 1) = 1,



or

g =
1

2d
(q � d+ 1)

✓

q

p
� 1

◆

for (d, q + 1) = d.

3 Galois subcovers of Fq2(H) of type (I) of Result (13)
typeI

As in Remark 11, take Fq2(Hq) in its canonical form Fq2(x, y) with yq � y + !xq+1 = 0 and !q�1 = �1.
The group � = h'0,1,1i has order p, and it is contained in Z(Sp). Let ⌘ = yp � y and ⇠ = x. Then
'0,1,1(⌘) = '0,1,1(y

p�y) = '0,1,1(y)
p�'0,1,1(y) = (y+1)p� (y+1) = yp�y = ⌘. Moreover, yq�y = Tr(⌘).

Since '0,1,1 fixes ⇠, this shows that the Galois subcover Fq2(F
0) of Fq2(Hq) with respect to � is as in (i) of

Result 14. That equation can also be written as

h�1
X

i=0

⌘p
i

+ !⇠q+1 = 0. (9) eqiia

Take an element r 2 Fq2 with rd = 1. Then '0,0,r commutes with '0,1,1. Therefore, if d|(q + 1) then '0,0,r

induces an automorphism ' of Fq2(F
0). More precisely, a straightforward computation shows that ' is the

map ' : (⇠, ⌘) 7! (r⇠, ⌘). Let �r be the Fq-automorphism group of Fq2(F
0) generated by '. Then the Galois

subcover of Fq2(Hq) with respect to G of Result (13) of type (I) is the same as the Galois subcover Gr of
Fq2(F

0) with respect to �r.

propiia Theorem 16. The Galois subcover Gr = Fq2(⇣, ⌧) of Fq2(F
0) with respect to �r has genus

g =
1

2d
(q � d+ 1)(

q

p
� 1)

and is given by
h�1
X

i=0

⌧p
i

+ !⇣
q+1/d = 0, d | (q + 1). (10) eq1

Proof. We show first that the fixed field F of �r is generated by ⌧ = ⌘ together with

⇣ = ⇠d. (11) eq1iia

Since '(⌧) = ⌧ and
'(⇣) = '(⇠d) = '(⇠)d = rd⇠d = ⇠d = ⇣,

we have Fq2(⇣, ⌧) ✓ F . Furthermore, [Fq2(F
0) : Fq2(⇣, ⌧)] = d. Since d is prime, this yields either Fq2(⇣, ⌧) = F

or F = Fq2(F
0). The latter case cannot actually occur, and hence F = Fq2(⇣, ⌧). Therefore F = Gr. Now,

eliminate ⇠ from Equations (9) and (11). Since d divides q + 1, replacing ⇠q+1 with (⇠q+1/d)d and ⌧ = ⌘ in
(9) gives equation in (10). The formula for the genus follows from [8, Lemma 12.1(iii)(b)].

4 Galois subcovers of Fq2(H) of type (II) of Result (13)

We keep our notation up from Section 3. Assume that d divides p � 1, and take r 2 F
⇤

p with rd = 1. Then

'�1
0,0,r � '0,1,1 � '0,0,r = '0,r2,1 2 h'0,1,1i, and hence '0,0,r induces an automorphism ' of Fq2(F

0). Here, '

is the map ' : (⇠, ⌘) 7! (r⇠, r2⌘). Let �r be the Fq-automorphism group of Fq2(F
0) generated by '. Then

the Galois subcover of Fq2(Hq) with respect to G of Result (13) of type (II) is the Galois subcover Gr of
Fq2(F

0) with respect to �r.



Theorem 17. The Galois subcover Gr = Fq2(✏, ⇢) of Fq2(F
0) with respect to �r has equation

!✏
(q−1)/d �A(✏, ⇢) = 0, d | (p� 1) (12) eq2

where
A(✏, ⇢) = ⇢+ ✏

2(p−1)/d⇢p + · · ·+ ✏
2(ph−1

−1)/d⇢
q/p.

Proof. We show first that the fixed field F of �r is generated by

✏ = ⇠d (13) inv1

together with

⇢ =
⌘

⇠2
. (14) inv2

Since
'(✏) = '(⇠d) = '(⇠)d = rd⇠d = ⇠d = ✏

and

'(⇢) =
'(⌘)

'(⇠2)
=

'(⌘)

'(⇠)2
=

r2⌘

r2⇠2
=

⌘

⇠2
= ⇢,

we have Fq2(✏, ⇢) ✓ F . Furthermore, [Fq2(F
0) : Fq2(✏, ⇢)] = d. Since d is prime, this yields either Fq2(✏, ⇢) = F

or F = Fq2(F
0). The latter case cannot actually occur, and hence F = Fq2(✏, ⇢). Therefore F = Gr. We have

to eliminate ⇠ and ⌘ from equations (9), (13) and (14). From (14) we have ⌘ = ⇢⇠2 then Tr(⌘) = Tr(⇢⇠2).
This yields that

Tr(⌘) = ⇠2⇢+ ⇠2p⇢p + · · ·+ ⇠
2q/p⇢

q/p, (15) pass1

whence
Tr(⌘) = ⇠2

�

⇢+ ⇠2(p�1)⇢p + · · ·+ ⇠2(
q/p�1)⇢

q/p
�

. (16) pass2

Since d divides p� 1, Tr(⌘) in (15) can also be written as

Tr(⌘) = ⇠2
�

⇢+ (⇠d)
2(p−1)/d⇢p + · · ·+ (⇠d)

2(ph−1
−1)/d⇢

q/p
�

. (17) pass3

Therefore
Tr(⌘) = ⇠2

�

⇢+ ✏
2(p−1)/d⇢p + · · ·+ ✏

2(ph−1
−1)/d⇢

q/p
�

= ⇠2A(✏, ⇢). (18) pass4

This, together with (9), give
!⇠q+1 = ⇠2A(✏, ⌘). (19) pass5

Since d | (p� 1) the number q�1
p�1 is an integer. Thus Equation (12) follows from (19).

5 Galois subcovers of Fq2(H) of type (III) of Result (13)

This time, take Fq2(Hq) in its canonical form Fq2(x, y) with yq + y� xq+1 = 0. The group  = h 1,1/2,1i has

order p, and it is not contained in Z(Sp). Let ⇠ = xp � x and ⌘ = y � 1
2x

2. A straightforward computation
shows that  1,1/2,1(⇠) = ⇠ and  1,1/2,1(⌘) = ⌘. Moreover,

yq + y � xq+1 = ⌘q + 1
2x

2q + ⌘ + 1
2x

2 � xq+1 = ⌘q + ⌘ + 1
2x

2q + 1
2x

2 � xq+1 = ⌘q + ⌘ + 1
2 (x

q � x)2.



Since Tr(⇠) = xq � x, this gives

⌘q + ⌘ + 1
2 (x

q � x)2 = ⌘q + ⌘ + 1
2Tr(⇠)

2.

Therefore, the Galois subcover Fq2(F
0) of Fq2(Hq) with respect to  is Fq2(⇠, ⌘) with

⌘q + ⌘ + 1
2

 

h
X

i=1

⇠p
i−1

!2

= 0. (20) eqiib

In particular, Fq2(F
0) is Fq2 -isomorphic to (II) of Result 14. Assume that d divides p � 1, and take r 2 F

⇤

p

with rd = 1. Then  �1
0,0,r �  1,1/2,1 �  0,0,r = 'r,1/2r2,1 2 h'1,1/2,1i, and hence '0,0,r induces an automorphism

' of Fq2(F
0). Moreover,  is the map  : (⇠, ⌘) 7! (r⇠, r2⌘). Let  r be the Fq-automorphism group of Fq2(F

0)
generated by  . Then the Galois subcover of Fq2(Hq) with respect to G of Result (13) of type (III) is the
Galois subcover Gr of Fq2(F

0) with respect to  r.

propiiaA Theorem 18. The Galois subcover Gr = Fq2(◆, ⌫) of Fq2(F
0) with respect to  r has genus

g =
q

2dp
(q � 1)

and is given by
✓

⌧2

◆d

◆(q−1)/d

+ 1�A(◆, ⌧) = 0 (21) eq3

where

A(◆, ⌧) =

h�1
X

i=0

h�1
X

j=0

✓

⌧2

◆d

◆(pi−1)/2d✓
⌧2

◆d

◆(pj−1)/2d

◆
(pi+pj)/2.

Proof. We show first that the fixed field F of  r is generated by

⌫ = ⌘d, (22) inv3

together with

◆ =
⇠2

⌘
, (23) inv4

and
⌧ = ⇠d. (24) inv5

Since
'(⌫) = '(⌘)d = r2d⌘d = ⌘d = ⌫, '(⌧) = '(⇠)d = rd⇠d = ⇠d = ⌧

and

'(◆) = '

✓

⇠2

⌘

◆

=
'(⇠2)

'(⌘)
=
'(⇠)2

'(⌘)
=

(r⇠)2

r2⌘
=

r2⇠2

r2⌘
=
⇠2

⌘
,

we have Fq2(◆, ⌫, ⌧) ✓ F . Furthermore, [Fq2(◆, ⌫, ⌧)(⇠) : Fq2(◆, ⌫, ⌧)] = d and ⌘ 2 Fq2(◆, ⌫, ⌧)(⇠). Therefore,
[Fq2(F

0) : Fq2(◆, ⌫, ⌧)]  d. Since d is prime, this yields either Fq2(◆, µ, ⌫) = F or F = Fq2(F
0). The latter

case cannot actually occur, and hence F = Fq2(◆, µ, ⌫). Therefore F = Gr. We go on by eliminating ⇠ and



⌘ from Equations (20), (22), (23) and (24). From the definition of the trace of ⇠, Tr(⇠)2 = (⇠ + · · ·+ ⇠
q/p)2.

By a straightforward computation,

Tr(⇠)2 =

h�1
X

i=0

h�1
X

j=0

⇠p
i+pj

.

This can also be written as

Tr(⇠)2 =

h�1
X

i=0

h�1
X

j=0

(⇠2)
(pi+pj)/2. (25) pass6

From (23), ⇠2 = ⌘◆. Therefore, in (25) the square trace of ⇠ is equal to

h�1
X

i=0

h�1
X

j=0

(⌘◆)
(pi+pj)/2. (26) pass7

Since 1
2 (p

i + pj)� 1 = 1
2 (p

i � 1) + 1
2 (p

j � 1), the sum in (26) turns out to be equal to

⌘

h�1
X

i=0

h�1
X

j=0

⌘
(pi−1)/2⌘

(pj−1)/2◆
(pi+pj)/2. (27) pass7bis

As d divides 1
2 (p

i + pj � 2) and 2 divides both pi � 1 and pj � 1, the sum in (26) equals

⌘

h�1
X

i=0

h�1
X

j=0

(⌘d)
(pi−1)/2d(⌘d)

(pj−1)/2d◆
(pi+pj)/2 (28) pass8

by replacing ⌘d with ⌫

⌘

h�1
X

i=0

h�1
X

j=0

⌫
(pi−1)/2d⌫

(pj−1)/2d◆
(pi+pj)/2 (29) pass9

Let

A(◆, ⌫) =

h�1
X

i=0

h�1
X

j=0

⌫
(pi+pj−2)/2d◆

(pi+pj)/2. (30) pass10

Therefore, ⌘q + ⌘ = ⌘A(◆, ⌫), and dividing both sides by ⌘ gives ⌘q�1 + 1 = A(◆, ⌫). Since d divides q � 1,
replacing ⌘d by ⌫ shows

⌫
(q−1)/d + 1�A(◆, ⌫) = 0. (31) nuiota

From (22), (23), and (24), ⌫ = ⌧
2

◆d
. Now the claim follows from (31).

6 Weierstrass semigroups and application to AG-codes

We compute the Weierstrass semigroup at the unique place centred at the point at infinity of some of the
maximal curves considered in the present paper.



WS Proposition 19. Let P1 be the unique point at infinity of the following two curves

h
X

i=1

Y
q/pi + !Xq+1 = 0, !q�1 = �1, h � 2;

h
X

i=1

Y
q/pi + !X

(q+1)/d = 0,!q�1 = �1, d | (q + 1). (32) INTERM1

Then the Weierstrass semigroup at P1 is generated by q
p , and q + 1, respectively by q

p , and
q+1
d .

Proof. Fore the first equation the claim follows from the remark after the proof of Lemma 12.2 in [8] applied
for n = h� 1 and m = q + 1.
For the second equation the claim follows from the remark after the proof of Lemma 12.2 in [8] applied for
n = h� 1 and m = q+1

d .

Let S be a numerical semigroup. The gaps of S are the elements in N \S. The number g(S) of gaps of S
is the genus of S. If S is the Weierstrass semigroup of a curve at a point then g(S) coincides with the genus
of the curve. Let (a1, . . . , ak) be a sequence of positive integers such that their greatest common divisor is 1.

Let d0 = 0, di = g.c.d.(a1, . . . , ai) and Ai =
n

a1

di
, . . . , ai

di

o

for i = 1, . . . , k. Let Si be the semigroup generated

by Ai. The sequence (a1, . . . , ak) is telescopic whenever ai

di
2 Si�1 for i = 2, . . . , k. A telescopic semigroup is

a numerical semigroup generated by a telescopic sequence.

resgeneresemigroup Result 20. [10, Lemma 6.5] For the semigroup generated by a telescopic sequence (a1, . . . , ak), let

lg(Sk) :=
k
X

i=1

✓

di�1

di
� 1

◆

a1, g(Sk) :=
lg(Sk) + 1

2
.

WS1 Theorem 21. Let P1 be the unique point of infinity of the curves H̄q in Theorem 1. Then the Weierstrass
semigroup H(P1) has the following properties:

(I) H(P1) = h qp , q + 1i, for the curve of Equation (I);

(II) q
p ,

q�1
d 2 H(P1), for the curve of Equation (II);

(III) 2(q�1)
d , q � 1 2 H(P1), for the curve of Equation (III).

Proof. Case (i). The pole numbers of x and y at P1 are q and 2q/p, respectively. Since the curve is Fq2 -
maximal and P1 is an Fq2 -rational point, q+1 2 H(P1); see [8, Theorem 10.6]. Let d0 = 0, d1 = 2 q

p , d2 = 2
q

and d3 = 1, and A1 = {1}, A2 = {2, p}, A3 = {2 q
p , q, q+ 1}. Then p 2 S1 and q+ 1 2 S2. Thus the sequence

{2 q
p , q, q + 1} is telescopic. Furthermore,

lg(S3) = �
2q

p
+ q + (

q

p
� 1)(q + 1) =

q2

p
�

q

p
� 1,

whence the claim follows by Result (20).
Case (ii). From Equation (II),

⇥

Fq2(H̄q) : Fq2(x)
⇤

= q
p and

⇥

Fq2(H̄q) : Fq2(y)
⇤

= q�1
d . Therefore, q

p and
q�1
d are non-gaps at P1.

Case (iii). The above argument applied to the curve H̄q of Equation (III), shows that q�1
d and q

p are
non-gaps of Gr at P1.



Let C denote any Fq2 -maximal curve equipped with an Fq2 -rational point P . Let D be a set of Fq2 -
rational points of C other than P . From previous work by Janwa [11] and Garc̀ıa-Kim-Lax [4], if the divisor
G is taken as multiple of P then knowledge of the gaps at P1 may allow one to show that the minimum
distance of the resulting evaluation code CL(G,D) or differential code C⌦(G,D) may be better than the
designed minimum distance of that code. In particular, it is shown in [5] that t consecutive gaps at P (under
some conditions on the order sequence at P ) gives a minimum distance d of the code at least t greater than
the designed minimum distance. This motivates to investigate large intervals of gaps at the point P1 of the
Fq2 -maximal curves considered in the present paper. Here we limit ourselves to show a couple of experimental
results. We use Janwa’s result as stated in [5, Theorem 2] together with [5, Theorem 3] for the zero divisor
B = 0.

Example 1. Take the curve of equation (1) for C, and let p = 7, d = 5, h = 2. Then d | (q + 1) = 72 + 1.
Form Proposition 19, the non-gaps at P1 are q/p = 7 and (q + 1)/d = 10. The gap sequence at P1 is
1, 2, 3, 4, 5, 6, 8, 9, 11, 12, 13, 15, 16, 18, 19, 22, 23, 25, 26, 29, 32, 33, 36, 39, 43, 46, 53. Each of the integers 11 =
� � 2 = � � t, 12 = � � 1 and 13 = � is a gap at P1. From [5, Theorem 3], the minimum distance of
the code CL(�P1, D) is at least d⇤ = |D| � � + t + 1 = 5037 whereas the designed minimum distance is
d0 = |D|� � = 5034.

Example 2. Take the curve of equation (1) for C, and let p = 5, d = 3, h = 3. Then d | (q + 1) = 53 + 1.
Form Proposition 19, the non-gaps at P1 are q/p = 25 and (q + 1)/d = 42. The gap sequence at P1

is 1, . . . , 24, 26, . . . , 41, 43, . . . , 66, 68, . . . . . . , 920, 922, . . . , 962, 964, . . . , 981, 983. Each of the integers 1022 =
↵, . . . , 1030 = ↵ + 8 = ↵ + t and 1072 = �, . . . , 1063 = � � t = � � (t � 1) is a gap at P1. From [5,
Theorem 4], the minimum distance of the differential code C⌦(�P1, D) with � = ↵+ � � 1 is at least d⇤ =
↵+��1�(2g�2)+(t+1) = 1120 whereas the designed minimum distance is d0 = ↵+��1�(2g�2) = 1112.

It may be noticed that the curve of equation (1) is a Cab-curve with a = q/p and b = (q+1)/d. Evaluation
codes defined over a Cab-curve have been the subject of recent papers where both encoding and decoding
problems are also treated; see [1].
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cossidente-korchmaros-torres2000 2. A. Cossidente, G. Korchmáros and F. Torres, Curves of large genus covered by the Hermitian curve, Comm.

Algebra 28 (2000), 4707–4728.
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Abstract. In the finite projective space PG(n≠1, qn), let X be a C‡

F -set
of an (n ≠ k + 1)-dimensional subspace Λ with vertices A and B and Λ

ı

be a (k ≠ 3)-dimensional subspace skew with Λ. In [�], it is shown that C
is a union of {A, B} and q ≠ 1 pairwise disjoint scattered Fq-linear sets of
rank n, say Xa for any a œ F

ú

q . Moreover, the line AB can be partitioned
in {A, B} and q ≠ 1 scattered Fq-linear sets Ja of rank n, for any a œ F

ú

q .
Denote by K(Λı, E) the cone with vertex Λ

ı and base the set

E =

A

X \
€

aœT

Xa

B

fi

€

aœT

Ja,

with 1 œ T µ F
ú

q . Then K(Λı, E) gives rise to a new family of non-linear
(n, n, q; d)-MRD codes for any n Ø 3, 2 Æ d Æ n ≠ 1 and d = n ≠ k + 1.
By choosing the parameters or by puncturing appropriately a code in this
class, the codes constructed in [�, �] and in [�] are re-obtained. Finally,
an element in this family, if not equivalent to a generalized Gabidulin,
is not equivalent to any non-linear MRD codes constructed by Otal and
Özbudak in [��].

Keywords: Rank distance code · Linearized polynomial · Linear set ·

Finite field

� Rank distance codes and σ-linearized polynomials

Let F
m◊n
q be the set of m ◊ n matrices with entries over the finite field Fq of q

elements, q a prime power. This set can be equipped with rank distance defined
as

d(A, B) = rk(A ≠ B)

with A, B œ F
m◊n
q . A subset of Fm◊n

q , including at least two elements, is called
a rank distance code. The minimum distance d(C) of a code C is defined as

d(C) = min
A,BœC

A ”=B

d(A, B).

If d := d(C), we will say that C ™ F
m◊n
q is an (m, n, q; d)-rank distance code. A

rank distance code is called additive if it is an additive subgroup of Fm◊n
q , it is
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called Fq-linear if it is a subspace of Fm◊n
q seen as a vector space over Fq. A code

that is not an Fq-subspace is called a non-linear code.

The size of an (m, n, q; d)-rank distance code C satisfies the Singleton-like
bound, precisely:

|C| Æ qmax{m,n}(min{m,n}≠d+1),

see e.g. [�, Theorem �.�]. When this bound is achieved, C is called an (m, n, q; d)-
maximum rank distance code, or shortly (m, n, q; d)-MRD code. The adjoint code
of C is defined as

Ct = {Xt : X œ C}

where the superscript t stands for the matrix transposition. Two rank distance
codes C, CÕ ™ F

m◊n
q , m, n Ø 2, are called equivalent if there exist P œ GL(m, q),

Q œ GL(n, q), R œ F
m◊n
q and a field automorphism fl œ Aut(Fq) such that

CÕ = PCflQ + R = {PXflQ + R : X œ C} .

When m = n, in addition to being equivalent, two codes are said adjointly
equivalent if CÕ and Ct are equivalent. If both C and CÕ are additive, then one
may assume that R is the zero matrix.
The code C[u] ™ F

(m≠u)◊n
q obtained from C ™ F

m◊n
q by deleting the last u rows,

1 Æ u Æ m ≠ 1, is called a punctured code of C . In [�, Corollary �.�], it is showed
that if C ™ F

m◊n
q , m Æ n, is an MRD code then C[u] is MRD as well.

Although the rank distance codes are subsets of matrices, they can be represented
in the setting of ‡-linearized polynomials.
From now on, suppose m = n and let ‡ : x œ Fqn ≠æ xqs

œ Fqn be a field auto-
morphism of Fqn with gcd(s, n) = 1. A ‡-linearized polynomial with coefficients

over Fqn is a polynomial with the shape – =
q¸

i=0 –iX
‡i

, ¸ œ N. If –¸ ”= 0, the
integer ¸ is called the ‡-degree of –. The set

L̃n,q,‡[X] =

I
n≠1ÿ

i=0

–iX
‡i

: –i œ Fqn

J

(�)

of ‡-linearized polynomials with ‡-degree at most n ≠ 1, endowed with the usual
sum, the scalar multiplication by an element of Fq and the map composition
modulo Xqsn

≠ X is an algebra. This isomorphic to E = End(Fqn ,Fq), the
algebra of the endomophisms of Fqn seen as vector space over Fq. Indeed, every

– =
qn≠1

i=0 –iX
‡i

œ L̃n,q,‡[X] corresponds naturally to the endomorphism –(x) :

x œ Fqn ≠æ
qn≠1

i=0 –ix
‡i

œ Fqn and vice versa, every endormophism can be
represented uniquely via a ‡-linearized polynomial in L̃n,q,‡[X], see [��, Chapter
�].
Therefore, for any ‡-linearized polynomial – =

qn≠1
i=0 –iX

‡i

œ L̃n,q,‡[X], the
rank of – is the integer rk– := dimFq

im –(x). Also, – has rank r if and only if
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the ‡-Dickson matrix

D‡,– =

Q

c
c
c
a

–0 –1 . . . –n≠1

–‡
n≠1 –‡

0 . . . –‡
n≠2

...
...

...
...

–‡n≠1

1 –‡n≠1

2 . . . –‡n≠1

0

R

d
d
d
b

has rank r, see for more details [��].
Then any rank distance code C, |C| Ø 2, can be seen as a suitable subset of
L̃n,q,‡[X] and the definitions of transpose matrix, adjoint code and equivalence

between codes can be reformulated in this setting. Indeed, let – =
qn≠1

i=0 –iX
‡i

œ
L̃n,q,‡[X], then the adjoint polynomial of – is defined as

–̂ =

n≠1ÿ

i=0

–‡n≠i

i X‡n≠i

and if C ™ L̃n,q,‡[X] is the rank distance code, Ct = {–̂ : – œ C}. Moreover, two
rank codes C and CÕ are equivalent or adjointly equivalent if and only if there
exist (f, fl, g, h) such that f, g, h œ L̃n,q,‡[X], with f(x) and g(x) permutation
maps, and fl œ Aut(Fq) such that

CÕ = {f ¶ –fl ¶ g + h : – œ C} or CÕ = {f ¶ – fl ¶ g + h : – œ Ct},

respectively, where the automophism fl acts only over the coefficients of a poly-
nomial – in C or Ct, respectively.
The first class of linear MRD codes has been discovered independently by Delsarte
[�] and Gabidulin [��]. These codes are known in literature as Delsarte-Gabidulin
codes. Later in [��], Gabidulin and Kshevetskiy provided a generalization of them,
called generalized Gabidulin codes. Since these codes will be used in the last
section, we recall their shape: let 1 Æ k Æ n be an integer, a generalized Gabidulin
code is equivalent to the set of ‡-linearized polynomials

Gk,‡ =

I
k≠1ÿ

i=0

–iX
‡i

: –0, . . . , –k≠1 œ Fqn

J

and it is an (n, n, q; d)-MRD code where d = n ≠ k + 1. The code Gk,‡ is a
k-dimensional Fqn -linear subspace of L̃n,q,‡[X].

In [��], Sheekey exhibited a wider class of linear MRD codes, called twisted
Gabidulin codes and later generalized in [��] by Lunardon, Trombetti and Zhou.
In [��, ��], further generalizations of generalized twisted Gabidulin codes are
obtained. Finally, a family of linear maximum rank distance codes in L̃n,q,‡[X],
n = 2t, 2 Æ d Æ n and q odd is discovered by Trombetti and Zhou in ���� and
described in [��].
Examples of maximal codes with parameters (n, n, q; n), both linear and non-
linear exist and are known as spread sets, see e.g. [�]. In [�], Cossidente et al.
exhibited a family of non-linear (3, 3, q; 2)-MRD codes and, hence, different from
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spread sets. Then, Durante and Siciliano generalized these codes to non-linear
(n, n, q; n ≠ 1)-MRD codes for any n Ø 3. Both families have been generalized by
Donati and Durante in [�] to a family of non-linear (d + 1, n, q; d)-MRD codes for
any q > 2, n Ø 3 and 2 Æ d Æ n ≠ 1. This will be described in detail in Section �.
Another family of non-additive MRD codes for all n, d has been constructed by
Otal and Özbudak in [��]: let I be a subset of Fq, 1 Æ k Æ n ≠ 1 and consider
the set of ‡-linearized polynomials

C
(1)
n,k,‡,I =

I
k≠1ÿ

i=0

–iX
‡i

: –0, . . . , –k≠1 œ Fqn , Nqn/q(–0) œ I

J

, (�)

C
(2)
n,k,‡,I =

I
kÿ

i=1

—iX
‡i

: —1, . . . , —k œ Fqn , Nqn/q(—k) ”œ (≠1)n(k+1)I

J

.

Then Cn,k,‡,I = C
(1)
n,k,‡,I fi C

(2)
n,k,‡,I µ L̃n,q,‡ is an (n, n, q; n ≠ k + 1)-MRD code. In

[��, Corollary �.�], the authors proved that

�. if q = 2 or I œ {ÿ, {0},Fú

q ,Fq} then Cn,k,‡,I is equivalent to a generalized
Gabidulin code

�. if q > 2 and I ”œ {ÿ, {0},Fú

q ,Fq}, then Cn,k,‡,I is not an affine code (i.e. not a
translated version of an additive code).

In the following sections, we provide a geometric construction of a class of
non-linear (n, n, q; d)-MRD C‡,T , 1 œ T ™ F

ú

q , 2 Æ d Æ n ≠ 1, and puncturing
properly a code in this relevant class, one gets a code described in [�, �]. We
shall show that this class is effectively new, i.e. any code, if not equivalent to a
Gabidulin code, is not equivalent to a code constructed as in [��].

� The geometric setting

Let V be a v-dimensional vector space over the field Fqn and let PG(v ≠ 1, qn) =
PG(V,Fqn). Let U µ V be an Fq-linear vector space such that dimFq

U = u. The
set

« =
)

ÈuÍFqn : u œ U \ {�}
*

is called Fq-linear set of rank u. The size of « can be at most qu
≠1

q≠1 and if it is
attained, « is said to be scattered. If u = v and È«Í = PG(v ≠ 1, qn), then «

is a (canonical) subgeometry of PG(v ≠ 1, qn). It follows that « is a canonical
subgeometry if and only if any its frame is also a frame of PG(v ≠ 1, qn).

Denote by (X0, X1, . . . , Xn≠1) the homogeneous projective coordinates of
PG(n ≠ 1, qn) and let ‡̂ be the collineation of PG(n ≠ 1, qn) defined by

(X0, X1, . . . , Xn≠1)‡̂ = (X‡
n≠1, X‡

0 , . . . , X‡
n≠2).

Then, the collineation ‡̂ fixes pointwise the canonical subgeometry

À = Àn,n = {(x, x‡, . . . , x‡n≠1

) : x œ F
ú

qn} ≥= PG(n ≠ 1, q). (�)
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Let S = PG(W, qn) be a subspace of PG(n ≠ 1, qn), the integer dimFqn W = w

will be called rank of S. Then S = S fl À is a subspace of À of rank at most
w. We will say that S is a subspace of À if S and S have the same rank. In
particular, this holds if and only if S is fixed by the collineation ‡̂ (see e.g. [��]).

Let PG(Fm◊n
q ,Fq) = PG(mn≠1, q), m Æ n, and let Sm,n be the Segre variety

of PG(Fm◊n
q ,Fq), i.e., Sm,n is the set of all points ÈMÍFq

in PG(Fm◊n
q ,Fq) such

that rkM = 1, see [��, Section �.�]. This can be seen as the Fq-field reduction of
the set of points

Àm,n = {(x, x‡, . . . , x‡m≠1

) : x œ F
ú

qn} ≥= PG(n ≠ 1, q)

of PG(m ≠ 1, qn) in PG(mn ≠ 1, q), see [��].

Let A be a subset of PG(n ≠ 1, q) and denote by œh(A) the h-secant variety
of A, i.e. the union of the ¸-dimensional projective subspaces spanned by points
of A for any 0 Æ ¸ Æ h, [��]. Note that œ0(A) = A and for any 1 Æ h Æ n ≠ 1,
œh≠1(A) ™ œh(A). Moreover, if A µ PG(n≠1, q) such that ÈAÍ = PG(t≠1, q) µ
PG(n ≠ 1, q), then œh(A) = œt≠1(A) for any t Æ h Æ n ≠ 1. A set of points
E µ PG(n≠1, q) is called an exterior set with respect to œh(A) if any line joining
two points of E is disjoint from œh(A). Applying a similar argument as in [�], we
get the following results regarding the size of an exterior set.

Theorem �. Let A µ PG(n ≠ 1, q) such that ÈAÍ = PG(n ≠ 1, q). Let E µ
PG(n ≠ 1, q) be an exterior set with respect to œh(A), then

|E| Æ
qn≠h≠1 ≠ 1

q ≠ 1

for any 0 Æ h Æ n ≠ 1.

Given M, N two sets of points of PG(n ≠ 1, q), with M fl N = ÿ, we will
denote by K(M, N) the cone with vertex M and base N , i.e. K(M, N) is the set
of all points belonging to a line joining a point of M and a point of N .

Corollary �. Let A µ PG(n ≠ 1, q) such that ÈAÍ = PG(t ≠ 1, q), 1 Æ t < n,
and let E µ PG(n ≠ 1, q) be an exterior set with respect to œh(A). Then E is
contained in a cone K = K(Sn≠t≠1, Ē), with base Ē = E fl ÈAÍ and vertex an
(n ≠ t ≠ 1)-dimensional subspace Sn≠t≠1 complementary with ÈAÍ. Moreover,

|E| Æ

I
qn≠h≠1

≠1
q≠1 if 0 Æ h Æ t ≠ 1,

qn≠t
≠1

q≠1 otherwise.
(�)

An exterior set E µ PG(n ≠ 1, q) with respect to œh(A), ÈAÍ = PG(t ≠ 1, q),

1 Æ h + 1 Æ t Æ n, is called maximum if |E| = qn≠h≠1
≠1

q≠1 . Note that the image of
œh(Àm,n) µ PG(m ≠ 1, qn) under the Fq-field reduction is the h-secant variety
œh(Sm,n) of the points whose the representative matrices in F

m◊n
q have rank at

most h + 1.
The (maximum) exterior sets with respect to œh(Àm,n) are related to (maxi-

mum) rank distance codes. More precisely,
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Theorem �. Let E be an exterior set with respect to œh(Àm,n) of PG(m≠1, qn)
and denote by E Õ the image of E under the Fq-field reduction. Then, the set

C =
)

flM : ÈMÍFq
œ E Õ, fl œ Fq

*
(�)

is an (m, n, q; h + 2)-RD code. In addition, if E is maximum then C is an MRD
code.

See [�, �, �] and the references therein for more details on exterior sets.

� Non-linear MRD codes arising from Cσ

F
-set

In this section, we recall the construction of the family of non-linear MRD codes
exhibited by Donati and Durante in [�].
Let A and B be two distinct points of a projective space PG(d, qn), d Ø 2, and
let SA and SB be the stars of lines (pencils of lines if d = 2) through A and
B, respectively. Thus, let ‡ be the Frobenius automorphism of Fqn defined by
‡ : x ‘æ xqs

with gcd(n, s) = 1 and consider Õ a ‡-collineation between SA

and SB which does not map the line AB into itself and such that the subspace
spanned by the lines Õ≠1(AB), AB, Õ(AB) has dimension min{3, d}. The set X
of points of intersection of corresponding lines under the collineation Õ is called
C‡

F -set of PG(d, qn) and the points A and B are called the vertices of X , see
[�, �]. Let Na = {y œ Fqn : Nqn/q(y) = a} for any a œ F

ú

q . In [�, �], it is proved
that every C‡

F -set X of PG(d, qn) with vertices A and B is projectively equivalent
to the set

{A, B} fi
€

aœFú
q

Xa,

where A = (0, . . . , 0, 1), B = (1, 0, . . . , 0) and

Xa =
Ó

(1, t, t‡+1, . . . , t‡d≠1+...+‡+1) : t œ Na

Ô

,

for any a œ F
ú

q . The q ≠ 1 sets Xa, called the components of X , are pairwise
disjoint and any of them is a scattered Fq-linear set of rank n, for more details
on linear sets see e.g. [��].

Since |Xa| = (qn ≠ 1)/(q ≠ 1), then |X | = qn + 1. In particular, every Xa is
isomorphic to PG(n ≠ 1, q), see [�, Remark �.�]. Moreover, for any a œ F

ú

q , the
line AB of PG(d, qn) can be partitioned into the set {A, B} and the q ≠ 1 sets

Ja =
)

(1, 0, . . . , 0, (≠1)d+1t) : t œ Na

*
,

where any Ja is an Fq-scattered linear set (of pseudoregulus type with transversal
points A and B, see [�, Remark �.�] and [��]) and note that X1 = Àd+1,n. Now,
let   be a subgeometry of Àd+1,n isomorphic to PG(d, q). In [�], the following
have been proved.
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Theorem �. [�, Theorem �.�] For any T µ F
ú

q , 1 œ T , the set

E =

A

X \
€

aœT

Xa

B

fi
€

aœT

Ja

is a maximum exterior set with respect to œd≠2( ).

Corollary �. [�, Corollary �.�] For all q > 2, n Ø 3, and 2 Æ d Æ n ≠ 1, to the
set E corresponds to a (d + 1, n, q; d)-MRD code.

� The class of non-linear MRD codes Cσ,T

Let À ≥= PG(n ≠ 1, q) be a canonical subgeometry of PG(n ≠ 1, qn) and consider
a subspace »ı of rank k disjoint from À and » a subspace of PG(n ≠ 1, qn) of
rank n ≠ k disjoint from »ı. Let ≈ be the projection of À from »ı to », i.e.,

≈ = p»ı,»(À) = {È»ı, P Í fl » : P œ À} .

By [��, Theorem �], this is an Fq-linear set of rank n. We recall the following
definition given in [��].

Definition �. Let ≈ = p»ı,»(À) be the projection of a canonical subgeometry
À ≥= PG(n ≠ 1, q) from the subspace »ı of rank k to the subspace » of rank
(n ≠ k) in PG(n ≠ 1, qn). The set ≈ is called (n ≠ k ≠ 1)-embedding of À if any
subspace of À of rank n ≠ k is disjoint from »ı.

Note that ≈ = p»ı,»(À) is an (n ≠ k ≠ 1)-embedding if and only if for any
choice of n ≠ k independent points R1, R2, . . . , Rn≠k of À,

» = ÈRÕ

1, RÕ

2, . . . , RÕ

n≠kÍ

where RÕ

i = p»ı,»(Ri), i = 1, 2, . . . , n ≠ k, also this is equivalent to say that

p»ı,» : P œ À ≠æ ÈP, »ıÍ fl » œ »

induces an injective map from the set of all subspaces of À of rank ¸ Æ n ≠ k ≠ 1
to the set of all subspaces of » of the same rank ¸ and, hence, if R œ œn≠k≠1(À)
then ÈR, »ıÍ fl » œ œn≠k≠1(≈ ).

Theorem �. Let À ≥= PG(n ≠ 1, q) be a canonical subgeometry of PG(n ≠ 1, qn)
and let »ı and » be subspaces of PG(n ≠ 1, qn) of rank k ≠ 2 and n ≠ k + 2,
respectively, such that »ı fl À = ÿ = »ı fl ». Let ≈ = p»ı,»(À) be an (n ≠ k + 1)-
embedding of À and let E be a (maximum) exterior set with respect to œn≠k≠1(≈ ).
Then, K = K(»ı, E) is a (maximum) exterior set with respect to œn≠k≠1(À).

Proof. Let P, Q be two points in K = K(»ı, E). We shall distinguish some cases:

- P, Q œ »ı. Since ≈ is an (n ≠ k + 1)-embedding the line PQ is disjoint from
the subspaces of rank (n ≠ k) of À and so from œn≠k≠1(À).
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- P, Q œ E . Suppose that the line PQ meets a subspace S of À of rank (n ≠ k)
and consider

ÿ ”= È»ı, S fl PQÍ fl » ™ È»ı, SÍ fl » fl PQ. (�)

This is a contradiction by the hypothesis done over E and since È»ı, SÍ fl »

is a subspace of rank n ≠ k.
- the line PQ ™ K \ (»ı fi E) and joins a point of »ı and a point of E . Then,

without loss of generality, we may suppose that P œ »ı and Q œ E . If the
line PQ meets a subspace S of À of rank (n ≠ k), then

Q œ È»ı, S fl PQÍ fl » ™ È»ı, SÍ fl ». (�)

Then Q belongs to a space spanned by points of ≈ with rank (n ≠ k), a
contradiction.

- the line PQ ™ K \ (»ı fi E) and does not joint a point of »ı and a point of E
or PQ ”™ K. If PQ meets a subspace S of À of rank (n ≠ k), then

ÿ ”= È»ı, S fl PQÍ fl » ™ È»ı, SÍ fl È»ı, PQÍ fl ». (�)

Since the projection from »ı to » of the line PQ is a line through two points
P Õ, QÕ of E , we get that this line meets the space È»ı, SÍ fl » spanned by
(n ≠ k) points of ≈ , a contradiction.

Then we have showed that any line through two points of K is disjoint from
œn≠k≠1(À). Now, since È≈ Í = », if E is a maximum exterior set with respect to
œn≠k≠1(≈ ), we get

|K(»ı, E)| = |»ı| + |E| + |»ı||E|(qn ≠ 1) =
qnk ≠ 1

qn ≠ 1
.

As application of Theorem �, by an appropriate choice of »ı, », an (n≠k +1)-
embedding ≈ of À = Àn,n, 2 Æ k Æ n ≠ 1, and a maximum exterior set with
respect to œn≠k≠1(≈ ) in PG(n ≠ 1, qn), one will get a class of non-linear MRD
codes in L̃n,q,‡[X]. Precisely, let

»ı : X0 = X1 = . . . = Xn≠k+1 = 0

and
» : Xn≠k+2 = Xn≠k+3 = . . . = Xn≠1 = 0

be disjoint subspaces of rank (k ≠2) and (n≠k +2) in PG(n≠1, qn), respectively.
Consider the linear set of rank n

≈ = p»ı,»(À) = {(–, –‡, . . . , –‡n≠k+1

, 0, . . . , 0) : – œ F
ú

qn}, (�)

this set is an (n ≠ k + 1)-embedding of À. Finally, let

A = (0, . . . , 0
¸ ˚˙ ˝

n≠k+1

, 1, 0, . . . , 0) and B = (1, 0, . . . , 0)
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be points in » and consider

X =
€

aœFú
q

Xa fi {A, B},

where

Xa =
Ó

(1, t, t‡+1, . . . , t‡n≠k+...+‡+1, 0, . . . , 0) : t œ Na

Ô

.

The set X is the C‡
F -set with vertices A and B generated by a ‡-collineation Õ

between the star of lines through A and B contained in ». Let T ™ F
ú

q , 1 œ T ,
then the set

E =

A

X \
€

aœT

Xa

B

fi
€

aœT

Ja (��)

with

Ja =

Y

_]

_[

(1, 0, . . . , 0
¸ ˚˙ ˝

n≠k

, (≠1)n≠kt, 0, . . . , 0) : t œ Na

Z

_̂

_\

, a œ F
ú

q .

is a maximum exterior set with respect to œn≠k≠1(≈ ) as proved in [�, Theorem
�.�] of size qn + 1. Therefore, the hypothesis of Theorem � are satisfied and the
cone K(»ı, E) is a maximum exterior set with respect to œn≠k≠1(À) and by
Theorem �, the set C‡,T µ F

n◊n
q , as in (�), is a non linear-MRD with minimum

distance d = n ≠ k + 1 which cannot be a translated version of an additive code.
Note that the punctured code C

[k≠2]
‡,T µ F

(n≠k+2)◊n
q obtained by C‡,T deleting the

last (k ≠ 2) rows is exactly the code constructed in [�, Theorem �.�] or for k = 2
the code appeared in [�] and for n = 3, k = 2 is code in [�].

By Theorem � and Theorem �, the C‡,T is a subset of n ◊ n matrices and
so, it can be seen as a subset of L̃n,q,‡[X]. Indeed, fixing T ™ F

ú

q , 1 œ T , the
homogeneous coordinates of the points belonging to E have one of the following
shape

(–, –‡›, –‡2

›‡+1, . . . , –‡n≠k+1

›‡n≠k+...+1, 0, . . . , 0)

(–, 0, . . . , 0
¸ ˚˙ ˝

n≠k

, (≠1)n≠k–‡÷, 0, . . . , 0)

A = (0, . . . , 0
¸ ˚˙ ˝

n≠k+1

, –, 0, . . . , 0) and B = (–, 0, . . . , 0)

(��)

with Nqn/q(›) œ F
ú

q \ T and Nqn/q(÷) œ T . So the non-linear (n, n, q; d), d =
n ≠ k + 1, MRD-code C‡,T is the set of ‡-linearized polynomials with ‡-degree
at most n ≠ 1 whose coefficients are the homogeneous coordinates of a point in
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K(»ı, E) with the zero map, i.e.

C‡,T =

I
dÿ

i=0

⁄–‡i

›
‡

i≠1

‡≠1 X‡i

+

n≠1ÿ

i=d+1

—iX
‡i

: ⁄, –, —i œ Fqn , Nqn/q(›) œ F
ú

q \ T

J

fi

I

⁄–X + (≠1)d+1⁄–‡÷X‡d

+

n≠1ÿ

i=d+1

—iX
‡i

: ⁄, –, —i œ Fqn , Nqn/q(÷) œ T

J

fi

I

–X‡d

+

n≠1ÿ

i=d+1

—iX
‡i

: –, —i œ Fqn

J

fi

I

–X +

n≠1ÿ

i=d+1

—iX
‡i

: –, —i œ Fqn

J

.

� The equivalence issue for Cσ,T

Let ‡ and · be generators of the group Gal(Fqn |Fq). In order to state the novelty
of the class of non-linear codes obtained, we have to compare a code of type C‡,T ,
1 œ T ™ F

ú

q , with the code of type Cn,k,·,I with I ™ Fq, cf. (�).
Let d = n ≠ k + 1, note that the sets

U =

I

–X‡d

+
n≠1ÿ

i=d+1

—iX
‡i

: –, —i œ Fqn

J

=
Ó

f ¶ X‡d

: f œ Gk≠1,‡

Ô

(��)

and

V =

I

–X +
n≠1ÿ

i=d+1

—iX
‡i

: –, —i œ Fqn

J

=
Ó

f ¶ X‡d+1

: f œ Gk≠1,‡

Ô

(��)

contained in C‡,T are equivalent to a generalized Gabidulin code Gk≠1,‡ and their
intersection

I
n≠1ÿ

i=d+1

—iX
‡i

: —i œ Fqn

J

=
Ó

f ¶ X‡d+1

: f œ Gk≠2,‡

Ô

is equivalent to a generalized Gabidulin code Gk≠2,‡.
Clearly, if q = 2 or T = F

ú

q , C‡,T is equivalent to the generalized Gabidulin code
Gk,‡. While, for the non-linear (n, n, q; d)-MRD code Cn,k,·,I , the following holds.

Lemma �. Let I ”œ {ÿ, {0},Fú

q ,Fq}, the non-linear (n, n, q; d)-MRD code Cn,k,·,I

contains a unique subspace equivalent to Gk≠1,· given by
I

k≠1ÿ

i=1

“iX
· i

: “i œ Fqn

J

.

This and [��, Theorem �.�] allow us to state the following.

Theorem �. If q = 2 or T = F
ú

q and I œ {ÿ, {0},Fú

q ,Fq}, then the codes C‡,T

and Cn,k,·,I are equivalent if and only if · œ {‡, ‡≠1}. Otherwise, they are neither
equivalent nor adjointly equivalent.
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On the non-existence of 3-dimensional MRD codes of type
hXqt

, X + �Xq2t

, G(X)i
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Abstract. In this work we present recent results on the classification of Fqn -linear MRD
codes of dimension three. In particular, we provide non-existence results for MRD codes

C = hXq
t

, F (X), G(X)i ✓ Ln,q of exceptional type, i.e. such that C is MRD over infinite
many extensions of the field Fqn . These results partially address a conjecture in [6].

Keywords: Scattered polynomials · MRD codes · algebraic curves · finite fields

1 Introduction

Let q be a prime power, n be a positive integer, and denote by Fqn the finite field with qn elements
and by P

N (K) (resp. AN (K)) the N -dimensional projective (resp. affine) space over the field K.

Let Ln,q = {
Pn�1

i=0 aiX
qi : ai 2 Fqn} denote the Fq-algebra of the Fq-linearized polynomials (or

q-polynomials) of q-degree smaller than n. For any f(X) =
Pn�1

i=0 aiX
qi , we define degq(f(X)) =

max{i : ai 6= 0} and min degq(f(X)) = min{i : ai 6= 0}. We identify a polynomial g(X) 2 Ln,q

with the Fq-linear map x 7! g(x) over Fqn ; in this way, Fq-linearized polynomials over Fqn are in
one-to-one correspondence with Fq-linear maps over Fqn .
The rank metric on the Fq-vector space F

m⇥n
q is defined by

d(A,B) := rank(A�B) for A,B 2 F
m⇥n
q .

We call a subset of Fm⇥n
q equipped with the rank metric a rank-metric code. For a rank-metric

code C containing at last two elements, its minimum distance is given by

d(C) := min
A,B2C,A 6=B

d(A,B).

When C is an Fq-subspace of Fm⇥n
q , we say that C is an Fq-linear code of dimension dimFq

(C).
Under the assumption that m  n, it is well known (and easily verified) that every rank-metric
code C in F

m⇥n
q with minimum distance d satisfies the Singleton-like bound

|C|  qn(m�d+1).

In case of equality, C is called a maximum rank-metric code, or MRD code for short. MRD codes
have been studied since the 1970s by Delsarte [13] and Gabidulin [14] and have seen much interest
in recent years due to an important application in network coding and cryptography [22].
From a different perspective, rank-metric codes can also be seen as sets of (restrictions of) Fq-
linear homomorphisms from (Fqn)

m to Fqn equipped with the rank metric; see [2, Sections 2.2 and
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2.3]. With this second point of view, it is evident that multivariate linearized polynomials can be
seen as the natural algebraic counterpart of rank-metric codes. In particular, when m = n, a rank
metric code C can be seen as set of Fq-linear endomorphisms of Fqn , i.e. C ✓ Ln,q. From now
on we will consider m = n and d < n. In the case of univariate linearized polynomials, Sheekey
pointed out in [27] the following connection between Fqn -linear MRD codes (i.e MRD codes with left
idealizer containing a subring isomorphic to Fqn , see [24]) and the so called scattered polynomials:

Cf,t = hXqt , f(X)iFqn
is an MRD code with dimFqn

(C) = 2 if and only if

dimFq
ker(f(X)�mX)  1

for every m 2 Fqn . The concept of scattered polynomial introduced in [27] has been slightly gener-
alized in [4].

Definition 1. [4] An Fq-linearized polynomial f(X) 2 Fqn [X] is called a scattered polynomial of
index t 2 {0, . . . , n� 1} if

dimFq ker(f(X)�mXqt)  1,

for every m 2 Fqn . Also, a scattered polynomial of index t is exceptional if it is scattered of index
t over infinitely many extensions Fqnm of Fqn .

While several families of scattered polynomials have been constructed in recent years [3, 9, 12,
16,17,25,27,28], only two families of exceptional ones are known:

(Ps) f(X) = Xqt of index 0, with gcd(t, n) = 1 (polynomials of so-called pseudoregulus type);

(LP) f(X) = X + �Xq2t of index t, with gcd(t, n) = 1 and Nqn/q(�) = �(q
n�1)/(q�1) 6= 1 (so called

LP polynomials).

From a coding theory point of view, if f is exceptional scattered of index t, the corresponding
rank distance code Cm

f,t = hXqt , f(X)iFqmn ✓ Lnm,q turns out to be an MRD code for infinitely
many m; codes of this kind are called exceptional Fqn -linear MRD codes (see [6]). Moreover, in [2]
the authors introduce the notions of h-scattered sequences and exceptional h-scattered sequences
which constitute the right environment for exceptional MRD codes. Only two families of exceptional
Fqn -linear MRD codes are known so far:

(G) Gr,s = hX,Xqs , . . . , Xqs(r�1)

iFqn
, with gcd(s, n) = 1, see [13, 14];

(T) Hr,s(�) = hXqs , . . . , Xqs(r�1)

, X + �Xqsr iFqn
, with gcd(s, n) = 1 and Nqn/q(�) 6= (�1)nr see

[17, 27].

The first family is known as generalized Gabidulin codes and the second one as generalized
twisted Gabidulin codes.
In [5] it has been shown that the only exceptional Fqn -linear MRD codes spanned by monomials are
the codes (G), in connection with so-called Moore exponent sets, while in [6] the authors investigated
exceptional Fqn -linear MRD codes not generated by monomials and proved that an exceptional r-
dimensional Fqn -linear MRD code contains an exceptional scattered polynomial (see Theorem 4).
Our contribution Motivated by this last necessary condition on MRD codes of exceptional type,
we considered codes of type C = hXqt , F (X), G(X)iFqn

and we proved a conjecture in [6] for r = 3
and F a LP polynomial. Our main result can be summarized as follows (see Theorem 6).

Theorem 1. If (t, q) /2 {(1, 3); (1, 4); (1, 5); (2, 3); (2, 4); (2, 5), (4, 3)}, then there are no exceptional

3-dimensional Fqn-linear MRD codes of type C = hXqt , X+�Xq2t , G(X)i ✓ Ln,q, with degq(G(X)) >
2t.
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2 Preliminaries on algebraic curves and varieties

Let F (X,Y ) 2 K[X,Y ], K a field, be a polynomial defining an affine plane curve C : F (X,Y ) = 0.
A plane curve is absolutely irreducible if there are no non-trivial factorizations of its defining
polynomial F (X,Y ) in K[X,Y ], where K is the algebraic closure of K. If F (X,Y ) =

Q

i F
(i)(X,Y ),

with F (i)(X,Y ) 2 K[X,Y ] of positive degree, then Ci : F
(i)(X,Y ) = 0 are called components of C.

A component is Fq-rational if it is fixed by the Frobenius morphism ' or equivalently �F (i)(X,Y ) 2
K[X,Y ] for some � 2 K.

Let P = (u, v) 2 A
2(K) be a point in the plane, and write

F (X + u, Y + v) = F0(X,Y ) + F1(X,Y ) + F2(X,Y ) + · · · ,

where Fi is either zero or homogeneous of degree i. The multiplicity of P 2 C, written as mP (C) or
mP (F ), is the smallest integer m such that Fm 6= 0 and Fi = 0 for i < m; Fm = 0 is the tangent
cone of C at P . A linear component of the tangent cone is called a tangent of C at P . The point P
is on the curve C if and only if mP (C) � 1. If P is on C, then P is a simple point of C if mP (C) = 1,
otherwise P is a singular point of C. It is possible to define in a similar way the multiplicity of an
ideal point of C, that is a point of the curve lying on the line at infinity. We denote by Sing(C) the
set of singular points of the curve C.

Given two plane curves A and B and a point P on the plane, the intersection number (or
intersection multiplicity) I(P,A\B) of A and B at the point P can be defined by seven axioms. We
do not include its precise and long definition here. For more details, we refer to [18] and [20] where
the intersection number is defined equivalently in terms of local rings and in terms of resultants,
respectively.

For a given plane curve C and a point P 2 C, we denote by IP,max(C) the maximum possible
intersection multiplicity of two components of C at P 2 Sing(C). We list here two useful results in
this direction.

Lemma 1. [18, Section 3.3] [26, Lemma 4.3] [4, Lemma 2.5] Let q be a prime power and
F (X,Y ) 2 Fq[X,Y ]. Let P = (↵,�) 2 F

2
q and write

F (X + ↵, Y + �) = Fm(X,Y ) + Fm+1(X,Y ) + . . . ,

where Fi 2 Fq[X,Y ] is zero or homogeneous of degree i and Fm 6= 0. The following properties hold.

(i) If Fm(X,Y ) is separable, then IP,max(C)  bm2/2c.
(ii) Suppose that Fm = Lm with L a linear form;

• if L - Fm+1 then IP,max(C) = 0,
• if L2 - Fm+1 then IP,max(C)  m.

Lemma 2. [21, Lemma 11] Let C : h(X,Y ) = 0 be a curve of degree n defined over Fq.

If
X

P2Sing(h)

IP,max(C) <
2

9
deg2(h) then C possesses at least one absolutely irreducible compo-

nent defined over Fq.

Consider the set Fq[[t]] of the formal power series on t. Let (x0, y0) 2 Fq
2
be an affine point

of C : F (X,Y ) = 0. A branch of center (x0, y0) of C is a point (x(t), y(t)) 2 (Fq[[t]])
2 such that
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F (x(t), y(t)) = 0, where

x(t) = x0 + u1t+ u2t
2 + . . . ,

y(t) = y0 + v1t+ v2t
2 + . . . .

See [20, Chapter 4] for more details on branches. There exists a unique branch centered at a simple
point of C. If there exists only a branch centered in a point P 2 C then IP,max(C) = 0.
An algebraic hypersurface is an algebraic variety that may be defined by a single polynomial equa-
tion. An algebraic hypersurface defined over a field K is absolutely irreducible if the associated
polynomial is irreducible over every algebraic extension of K. An absolutely irreducible K-rational
component of a hypersurface V, defined by the polynomial F, is simply an absolutely irreducible
hypersurface which is associated to a non-costant factor of F defined over K.

Lemma 3. [1, Lemma 2.1] Let X ✓ A
N (Fq) be an affine hypersurface and let H ✓ P

N (Fq) be
a projective hypersurface. If its projective closure X \ H has a non-repeated absolutely irreducible
component defined over Fq, then X has an absolutely irreducible component defined over Fq.

In our investigation we will need bounds on the number of Fq-rational points of algebraic varieties
and we will make use of the following result a number of times.

Theorem 2. [8, Theorem 7.1] Let W be an absolutely irreducible variety defined over Fq of di-
mension n and degree d. If q > 2(n+ 1)d2, then

#(W \ A
N (Fq)) � qn � (d� 1)(d� 2)qn�1/2 + 5d13/3qn�1.

3 Scattered sequences of order 1 and MRD codes

In this section we recall the notion of scatteredness of subspaces and sequences in F
r
qn , and how

they are related to rank-metric codes.

Definition 2. [11] Let h, r, n be positive integers, such that h < r. An Fq-subspace U ✓ F
r
qn is said

to be h-scattered if for every h-dimensional Fqn-subspace H ✓ F
r
qn , it holds dimFq (U \ H)  h.

When h = 1, a 1-scattered subspace is simply called scattered.

For what concerns h-scattered subspaces, there is a well-known bound on their Fq-dimension.
Namely, an h-scattered subspace U ✓ F

r
qn which does not define a subgeometry satisfies

dimFq
(U) 

rn

h+ 1
; (1)

see [7]. An h-scattered subspace meeting (1) with equality is called a maximum h-scattered
subspace.

Let G = {g1, . . . , gk} ✓ Ln,q[X1, . . . , Xm], where Ln,q[X1, . . . , Xm] :=

8

<

:

m
X

i=1

n�1
X

j=0

�i,jX
qj : �i,j 2 Fqn

9

=

;

.

Let us consider the Fq-space

UG := {(g1(x1, . . . , xm), . . . , gr(x1, . . . , xm)) : x1, . . . , xm 2 Fqn} ✓ F
r
qn . (2)
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Definition 3. [2] Let I := (i1, i2, . . . , im) 2 (Z/nZ)m and consider f1, . . . , fr 2 Ln,q[X1, . . . , Xm].

Let UI,F := UF 0 , where F 0 = (Xqi1

1 , . . . , Xqim
m , f1, . . . , fs) ✓ Ln,q[X1, . . . , Xm].

The s-tuple F := (f1, . . . , fs) is said to be an (I;h)qn-scattered sequence of order m if UI,F is
maximum h-scattered in F

m+s
qn .

An (I;h)qn-scattered sequence F := (f1, . . . , fs) of order m is said to be exceptional if it is h-
scattered over infinitely many extensions F

`
qn of Fqn .

As the following remark shows, (I;h)qn -scattered sequences, with |I| = 1, have been considered
also in [6], though with slightly different terminology.

Remark 1. It is not difficult to see that, for m = 1 and I = {t}, an (r� 1)-tuple (f2, . . . , fr) ✓ Ln,q

is a (I; r � 1)qn -scattered (or simply (t, r � 1)qn -scattered) sequence of order 1 if and only if, for
any ↵1, . . . ,↵r 2 Fqn ,

det

à

↵
qt

1 f2(↵1) · · · fr(↵1)

↵
qt

2 f2(↵2) · · · fr(↵2)
...

... · · ·
...

↵qt

r f2(↵r) · · · fr(↵r)

í

= 0 =) dimFq
h↵1, . . . ,↵riFq

< r,

see for istance [5, 6, 28] for an explicit link between scattered spaces and Moore matrices.

If the previous property holds, f = (Xqt , f2, . . . , fr) is said to be a Moore polynomial set for q
and n (see [6, Definition 9]).

Moore polynomial sets can be characterized in terms of MRD codes as follows.

Theorem 3. [6] Let k and n be positive integers with k  n, and let f = (Xqt , f2(X), . . . , fr(X)),

where Xqt , f2(X), . . . , fr(X) 2 Ln,q are Fqn-linearly independent. The Fqn-linear rank metric code

Cf = hXqt , f2(X), . . . , fr(X)iFqn

is an MRD code if and only if f is a Moore polynomial set for q and n.

Now we focus on the exceptionality of Fqn -linear MRD codes C ✓ Ln,q of dimension r, or
equivalently by Theorem 3 on the exceptionality of scattered sequences of order 1. We can assume
infact, without restrictions, the following properties on the polynomials generating a non-degenerate
Fqn -linear code C (for details see [6] and [2, Definition 2.8]). In particular, from [2, Proposition 2.11]
we can assume that C contains a monomial.

Remark 2. [6, Properties 13] Given a non-degenerate Fqn -linear code C of dimension r, there exist
f1(X), . . . , fr(X) 2 C such that the following properties hold:

(1) f1(X) = Xqt ;
(2) f1(X), . . . , fr(X) are Fqn -linearly independent;
(3) M1 := degq(f1(X)), . . . ,Mr := degq(fr(X)) are all distinct;
(4) m1 := min degq(f1(X)), . . . ,mr := min degq(fr(X)) are all distinct, and mi = 0 for some i;
(5) f1(X), . . . , fr(X) are monic;
(6) for any i, if fi(X) is a monomial then mi = Mi � t.

A Moore polynomial set f = (f1(X), . . . , fr(X)) ✓ Ln,q satisfying the previous six properties is
said to be a Moore polynomial set for q and n of index t.
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4 Scattered sequences and algebraic varieties

In this section, we consider varieties introduced in [6] to traslate the determination of scattered
sequences of order 1 into an algebraic geometry problem.

– U := Uf ⇢ P
r(Fqn), U : Ff (X1, . . . , Xr) := det(Mf (X1, . . . , Xr)) = 0,

where

Mf (X1, . . . , Xr) =

á

f1(X1) f2(X1) · · · fr(X1)
f1(X2) f2(X2) · · · fr(X2)

...
... · · ·

...
f1(Xr) f2(Xr) · · · fr(Xr)

ë

;

– V := U(x,xq,...,xqr�1 ) ⇢ P
r(Fqn), V : F(x,xq,...,xqr�1 )(X1, . . . , Xr) = 0

where

F(x,xq,...,xqr�1 )(X1, . . . , Xr) =
Y

(a1,...,ar)2Pr�1(Fq)

(a1X1 + · · ·+ arXr); (3)

– W ⇢ P
r(Fqn), with affine equation

W :
Ff (X1, . . . , Xr)

F(x,xq,...,xqr�1 )(X1, . . . , Xr)
= 0. (4)

The link between scattered sequence of order 1 and algebraic hypersurfaces is straightforward.

Proposition 1. [6] The (r � 1)-tuple (f2, . . . , fr) is a ({t}, r � 1)qn-scattered sequence of order 1
if and only if all the affine Fqn-rational points of W lie on V.

Theorem 4. [6, Main Theorem] Let C ✓ Ln,q be an exceptional r-dimensional Fqn-linear MRD
code containing at least a separable polynomial f(x) and a monomial. If r > 3, assume also that q >

5. Let t be the minimum integer such that Xqt 2 C. If t > 0 and C = hXqt , f(X), g3(X), . . . , gr(X)iFqn
,

with deg(gi(X)) > max{qt, deg(f(X))} for each i = 3, . . . , r, then f(X) is exceptional scattered of
index t.

As previously stated in the introduction, until today, the only known non-monomial example of
exceptional scattered polynomials, for arbitrary t, is given by the LP polynomials; therefore it is
natural to check for exceptional MRD codes where f(X) is of such type. In the following we will
focus on RD codes of dimension 3.

5 Moore polynomial sets of type f = (Xq
t

, X + �Xq
2t

, G(X))

In this section we investigate curves arising from Moore polynomial sets for q and n, of index t, of
type f = (Xqt , X + �Xq2t , G(X)). Let q be a prime power and t, n integers greater than zero.

Proposition 2. [6, Proposition 23] If (X+ �Xq2t , G(X)) ✓ Ln,q is a ({t}, 2)qn-scattered sequence
of order 1 and n > 4 degq(G) + 2, then min degq(G) = 2t or min degq(G) = t/2.
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Set m := min degq(G) = 2t, t/2, and

F := X + �Xq2t , Nqn|q(�) 6= 1, (5)

G := Xqm + · · ·+ CXqk , C 6= 0, (6)

where F,G 2 Fqn [X], and 0 < 2t < k < n.
Fix an element � 2 Fqn \ Fq such that F (�) 6= 0 6= G(�) and

L⇠(�) := (⇠ � ⇠q
t

)q
k+t

(⇠q
k�t

� ⇠)q
t

F (�)q
t+1 + �(⇠q

k

� ⇠)q
t(qt+1)�q

t(qt+1) 6= 0, (7)

for each ⇠ 2 Fqk�2t \ Fqk�t . Such an element exists in any field Fqn , with n � k + t+ 1. Indeed the
polynomial L⇠ is not zero and of degree q3t + q2t, for each ⇠ 2 Fqk�2t \ Fqk�t , so

#
Ä

[⇠2F
qk�2t

{⌘ : L⇠(⌘) = 0}
ä

 (q3t + q2t)qk�2t = qk+t + qk < qn

for n � k + t+ 1. This technical assumption on � is necessary for the proof of Lemma 5.
Consider the curves

C :

�

�

�

�

�

�

�

Xqt F (X) G(X)

Y qt F (Y ) G(Y )

�q
t

F (�) G(�)

�

�

�

�

�

�

�

= 0, (8)

A :

�

�

�

�

�

�

�

Xqt F (X) G(X)

Y qt F (Y ) G(Y )

�q
t

F (�) G(�)

�

�

�

�

�

�

�

�

�

�

�

�

�

�

X Xq Xq2

Y Y q Y q2

� �q �q
2

�

�

�

�

�

�

�

= 0. (9)

Lemma 4. [6, Lemma 18] Let V : F(x,xq,xq2 )(X,Y, Z) = 0 and W :
F(xqt ,x+�xq2t ,G(x))(X,Y, Z)

F(x,xq,xq2 )(X,Y, Z)
= 0

as in Equations 3,4. If A has a non-repeated Fqn-rational absolutely irreducible component not
contained in the curve defined by F(x,xq,xq2 )(X,Y,�) = 0, then W has a non-repeated Fqn-rational
absolutely irreducible component not contained in V.

In order to apply Lemma 2 on the curve A, we will investigate the singular points of C. In fact,
as it can be easily seen, the set of its singular points contains also the singular points of A.

5.1 Singularities of C at infinity

Consider the line at infinity `1 : Z = 0. A homogeneous equation of C is given by

�

�

�

�

�

�

�

Xqt XZq2t�1 + �Xq2t XqmZqk�qm + · · ·+ CXqk

Y qt Y Zq2t�1 + �Y q2t Y qmZqk�qm + · · ·+ CY qk

�q
t

F (�)Zq2t�qt G(�)Zqk�qt

�

�

�

�

�

�

�

= 0. (10)
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Thus the curve C \ `1 is defined by
�

�

�

�

�

�Xq2t CXqk

�Y q2t CY qk

�

�

�

�

�

= �C(Xq2tY qk �XqkY q2t) = �CXq2tY q2t
Y

⇠2F
qk�2t\{0}

(Y � ⇠X)q
2t

= 0, (11)

so points at infinity of C are of type P = (1 : ⇠ : 0), ⇠ 2 Fqk�2t , or P = (0 : 1 : 0).
Let consider the projectivity  : (x : y : z) 7! (x : y � ⇠x : z), that maps (1 : ⇠ : 0) into (1 : 0 : 0).
An affine equation of  (C) (dehomogenizing with respect to X) is given by

f(Y, Z) :=

�

�

�

�

�

�

�

1 Zq2t�1 + � Zqk�qm + · · ·+ C

(Y + ⇠)q
t

F ⇤(Y + ⇠, Z) G⇤(Y + ⇠, Z)

�q
t

F (�)Zq2t�qt G(�)Zqk�qt

�

�

�

�

�

�

�

= 0, (12)

where

F ⇤(Y + ⇠, Z) = Y Zq2t�1 + �Y q2t + ⇠Zq2t�1 + �⇠q
2t

; (13)

G⇤(Y + ⇠, Z) = Y q2tZqk�q2t + · · ·+ CY qk + ⇠q
2t

Zqk�q2t + · · ·+ C⇠q
k

. (14)

It is not hard to see that
�

�

�

�

�

�

�

1 Zq2t�1 + � Zqk�q2t + · · ·+ C

(Y + ⇠)q
t

F ⇤(Y + ⇠, Z) G⇤(Y + ⇠, Z)

�q
t

F (�)Zq2t�qt G(�)Zqk�qt

�

�

�

�

�

�

�

= Bq2t�qt +Bq2t�1 +Bq2t + L(Y, Z),

where

Bq2t�qt = �CF (�)(⇠q
k�t

� ⇠)q
t

Zq2t�qt ; (15)

Bq2t�1 = C�q
t

(⇠q
k

� ⇠)Zq2t�1; (16)

Bq2t = C[F (�)Y qtZq2t�qt � �q
t

(Y Zq2t�1 + �Y q2t)], (17)

and
L(Y, Z) =

X

i,j

↵(i,j)Y iZj , i+ j � qk � qk�1 = qk�1(q � 1) � q2t(q � 1). (18)

Proposition 3. Let P⇠ = (1 : ⇠ : 0), ⇠ 2 Fqk�2t . Then mPξ
(C) = q2t � qt or mPξ

(C) = q2t. Also
mPξ

(C) = q2t if and only if ⇠ 2 Fqgcd(k,t) .

Proposition 4. Let P = (1 : ⇠ : 0), where ⇠ 2 Fqgcd(k,t) , or P = (0 : 1 : 0). Then IP,max(C) 
q4t

4 .

Lemma 5. Let P⇠ = (1 : ⇠ : 0), with ⇠ /2 Fqgcd(k,t) . Then there is a unique branch centered at P⇠.
Thus, the multiplicity of two putative components of C (and therefore A) in P⇠ is 0.

5.2 Affine singularities of C

Case min degq(G(X)) = 2t Note that an affine point P = (x, y) 2 C is singular if and only if

�

�

�

�

�

xqt G(x)

�q
t

G(�)

�

�

�

�

�

=

�

�

�

�

�

yq
t

G(y)

�q
t

G(�)

�

�

�

�

�

= 0.
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One can see immediately that
�

�

�

�

�

�

�

(X + x)q
t

F (X + x) G(X + x)

(Y + y)q
t

F (Y + y) G(Y + y)

�q
t

F (�) G(�)

�

�

�

�

�

�

�

= Hqt +Hqt+1 + . . . ,

where

Hqt =

�

�

�

�

F (y) G(y)
F (�) G(�)

�

�

�

�

Xqt �

�

�

�

�

F (x) G(x)
F (�) G(�)

�

�

�

�

Y qt ; (19)

Hqt+1 = G(�)(XqtY �XY qt). (20)

As a direct consequence of Lemma 1 we have the following.

Proposition 5. Let C : Ff (X,Y,�) = 0 and P = (x, y) 2 C such that

�

�

�

�

�

xqt G(x)

�q
t

G(�)

�

�

�

�

�

=

�

�

�

�

�

yq
t

G(y)

�q
t

G(�)

�

�

�

�

�

= 0.

Then

– IP,max(C) 
(qt+1)2

4 if

�

�

�

�

F (y) G(y)
F (�) G(�)

�

�

�

�

=

�

�

�

�

F (x) G(x)
F (�) G(�)

�

�

�

�

= 0;

– IP,max(C)  qt otherwise.

Remark 3. Observe that
�

�

�

�

�

xqt G(x)

�q
t

G(�)

�

�

�

�

�

= [xG(�)1/q
t

� �(xqt + · · ·+ C1/qtxqk�t

)]q
t

= g(x)q
t

where g is a separable polynomial of degree qk�t. Thus the number of affine singular points of C is
at most q2(k�t). Moreover, if mP (C) = qt + 1, that is

�

�

�

�

F (y) G(y)
F (�) G(�)

�

�

�

�

=

�

�

�

�

F (x) G(x)
F (�) G(�)

�

�

�

�

= 0, (21)

then we obtain
xqt

�q
t =

G(x)

G(�)
=

F (x)

F (�)
,

i.e.
F (x)�q

t

� F (�)xqt = ��q
t

xq2t � (�+ ��q
2t

)xqt + �q
t

x = 0. (22)

By combining Equation (22) with g(x) = xG(�)1/q
t

� �(xqt + · · ·+ C1/qtxqk�t

) = 0, we get that x
(or y equivalently) must be a root of a polynomial

h(X)q
t

:= [↵0X + · · ·+ ↵k�2tX
qk�2t

+ ↵̃Xqt ]q
t

(23)

for suitable ↵0, . . . ,↵k�2t, ↵̃ 2 Fqn , where deg(h)  qmax{k�2t,t}. Thus

#{P 2 C : mP (C) = qt + 1}  qmin{max{2k�4t,2t},4t}.
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Case min degq(G(X)) = t/2 The procedure is exactly the same as for min degq(G(X)) = 2t.
A point P = (x, y) 2 C is singular if and only if

�

�

�

�

�

xqt G(x)

�q
t

G(�)

�

�

�

�

�

=

�

�

�

�

�

yq
t

G(y)

�q
t

G(�)

�

�

�

�

�

= 0.

By direct computations one can observe that

�

�

�

�

�

�

�

(X + x)q
t

F (X + x) G(X + x)

(Y + y)q
t

F (Y + y) G(Y + y)

�q
t

F (�) G(�)

�

�

�

�

�

�

�

= Hqt/2 +Hqt/2+1 + . . . ,

where

Hqt/2 =

�

�

�

�

�

yq
t

F (y)

�q
t

F (�)

�

�

�

�

�

Xqt/2 �

�

�

�

�

�

xqt F (x)

�q
t

F (�)

�

�

�

�

�

Y qt/2 ; (24)

Hqt/2+1 = �q
t

(Xqt/2Y �XY qt/2). (25)

Thus IP,max(C)  qt/2 or IP,max(C) 
(qt/2+1)2

4 by Lemma 1.

6 Main result

Thanks to the results stated in Subsections 5.1 and 5.2, we have been able to find upper bounds

on
X

P2Sing(A)

IP,max(A) and prove the existence of a suitable component of A via Lemma 2.

Theorem 5. Fix q, t, k integers, with q > 2, t > 0 and k > 2t. Let n � k + t+ 1 and F,G,�, C,A
as in Equations 5,6,7,8,9. If (t, q) /2 {(1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5), (4, 3)}, then A has an
absolutely irreducible component defined over Fqn and not contained in F(x,xq,xq2 )(X,Y,�) = 0.

Now we are in position to prove our main result.

Theorem 6. Let C = hXqt , X + �Xq2t , G(X)i ✓ Ln,q be an exceptional 3-dimensional Fqn-linear

MRD code, where t is the minimum integer such that Xqt 2 C, and suppose that

(t, q) /2 {(1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5), (4, 3)}.

Then degq(G(X)) < 2t.

Proof. By Theorem 3 and Proposition 2 it follows that min degq(G(X)) = 2t, t/2. Suppose by way of
contradiction that degq(G(X)) > 2t; then G(X) contains at least two terms (see Equations 6). Let
considerW,�,A as in Equations 4, 7, 9. Theorems 5 ensure the existence of an absolutely irreducible
component defined over Fqn of A not contained in the curve defined by F(x,xq,xq2 )(X,Y,�) = 0. By
Lemma 4, W has an absolutely irreducible Fqn -rational component not contained in V. Therefore
Theorem 2 guarantees the existence of Fqn -rational points in W \ V for n large enough, and a
contradiction arises from Theorem 3 and Proposition 1.



On the non-existence of 3-dimensional MRD codes of type hXq
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, X + �Xq
2t
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1 Introduction

Scattered sequences and exceptional scattered sequences can be seen as the geometrical counterparts
of exceptional MRD codes. Rank-distance(RD) codes were introduced already in the late 70’s by
Delsarte [11] and then rediscovered by Gabidulin a few years later [13]. Due to their applications in
network coding [24] and cryptography [14, 16], they attracted lots of attention in the last decade.
RD codes are sets of matrices over a finite field Fq endowed with the so-called rank distance:
the distance between two elements is defined as the rank of their difference. Among them, of
particular interest is the family of rank-metric codes whose parameters are optimal, i.e. they have
the maximum possible cardinality for a given minimum rank. Such codes are called maximum rank
distance (MRD) codes and constructing new families is an important and active research task.
From a different perspective, rank-metric codes can also be seen as sets of (restrictions of) Fq-linear
homomorphisms from (Fqn)

m to Fqn equipped with the rank distance; see [3, Sections 2.2 and 2.3].
In the case of univariate linearized polynomials such a connection was already exploited in [23] by
Sheekey, where the notion of scattered polynomials was introduced; see also [6]. Let Ln,q[X] be the
set of q-linearized polynomials. For a polynomial f 2 Ln,q[X] and a nonnegative integer t  n� 1
we say that f is scattered of index t if for every x, y 2 F

⇤
qn

f(x)

xqt
=

f(y)

yqt
()

y

x
2 Fq,

or equivalently

dimFq
(ker(f(x)� ↵xqt))  1, for every ↵ 2 Fqn .

In a more geometrical setting, a scattered polynomial is connected with a scattered subspace of the
projective line; see [8]. From a coding theory point of view, f is scattered of index t if and only

if Cf,t = hxqt , f(x)iFqn
is an MRD code with dimFqn

(Cf,t) = 2. The polynomial f is said to be
exceptional scattered of index t if it is scattered of index t as a polynomial in L`n,q[X], for infinitely
many `; see [6]. The classification of exceptional scattered polynomials is still not complete, although
it gained the attention of several researchers [1, 2, 4, 6, 12].

So far, many families of scattered polynomials have been constructed; see [5,8–10,17–23,25,26].
Among them, only two families are exceptional:

(Ps) f(x) = xqs of index 0, with gcd(s, n) = 1 (polynomials of so-called pseudoregulus type);

(LP) f(x) = x+ �xq2s of index s, with gcd(s, n) = 1 and Nqn/q(�) 6= 1 (so-called LP polynomials).
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The generalization of the notion of exceptional scattered polynomials – together with their
connection with Fqn -linear MRD codes of Fqn -dimension 2 – yielded the introduction of the concept
of Fqn -linear MRD codes of exceptional type; see [7]. An Fqn -linear MRD code C ✓ Ln,q[X] is an
exceptional MRD code if the rank metric code

C` = hCiF
q`n

✓ L`n,q[X]

is an MRD code for infinitely many `.
Only two families of exceptional Fqn -linear MRD codes are known:

(G) Gk,s = hx, xqs , . . . , xqs(k�1)

iFqn
, with gcd(s, n) = 1; see [11, 13,15];

(T) Hk,s(�) = hxqs , . . . , xqs(k�1)

, x+�xqskiFqn
, with gcd(s, n) = 1 and Nqn/q(�) 6= (�1)nk; see [20,23].

The first family is known as generalized Gabidulin codes and the second one as generalized twisted
Gabidulin codes, whereas in [6] it has been shown that the only exceptional Fqn -linear MRD codes
spanned by monomials are the codes (G), in connection with so-called Moore exponent sets. Non-
existence results on exceptional MRD codes were provided in [7, Main Theorem].

A generalization of MRD codes of exceptional type is connected with the notions of h-scattered
sequences and exceptional h-scattered sequences, introduced in [3] as sequences of multivariate
linearized polynomials f1, . . . , fs 2 Ln,q[X1, . . . , Xm], such that there exists I = (i1, . . . , im) 2 N

m

so that the space

{(xqi1

1 , . . . , xqim
m , f1(x1, . . . , xm), . . . , fs(x1, . . . , xm)) : x1, . . . , xm 2 Fqn}

is h-scattered.
Using this new terminology, exceptional Fqn -linear MRD codes correspond to exceptional scat-

tered sequences of order 1. In [3] exceptional scattered sequences of order 2 were investigated for the
first time. Clearly, when considering sequences of order larger than one, one must check that these
examples are really ”new”, i.e. they cannot be obtained as direct sum of two scattered sequences
of smaller order. This led to the notion of indecomposability; see [3].

The aim of this talk is to present the first infinite family of exceptional scattered and indecom-
posable sequences of any order greater than two. In the last part of the talk it’s also considered
the equivalence issue it is worth mentioning that our family is quite large since it contains many
non-equivalent sequences.

2 Definitions and Main Results

Let q = ph, where p is a prime and h > 0 an integer, and denote by Fq the finite field with q
elements.

We start with the definition of scattered sequences.

Definition 1. [3, Definition 3.1] Consider F = (f1, . . . , fs), with f1, . . . , fs 2 Ln,q[X], which is
the set of q-linearized polynomials in X1, . . . , Xm.

We define

UF := {(f1(x1, . . . , xm), . . . , fs(x1, . . . , xm)) : x1, . . . , xm 2 Fqn}.
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Let I := (i1, i2, . . . , im) 2 (Z/nZ)m, we define the I-space UI,F := UF 0 , where

F 0 = (Xqi1

1 , . . . , Xqim
m , f1, . . . , fs).

The s-tuple F := (f1, . . . , fs) is said to be an (I;h)qn-scattered sequence of order m if the I-
space UI,F is maximum h-scattered in V (m+s, qn). An (I;h)qn-scattered sequence F := (f1, . . . , fs)
of order m is said to be exceptional if it is h-scattered over infinitely many extensions Fqn` of Fqn .

The main issue, when considering scattered sequences of order larger than one is given by its
indecomposability.

Definition 2. An nm-dimensional Fq-subspace UH of V (k, qn) is said to be decomposable if it
can be written as

UH = UF � UG

for some nonempty F ,G. When this happens we say that F and G are factors of H. Furthermore,
U is then said to be indecomposable if it is not decomposable.

Let I := (i1, . . . , im), J := (j1, . . . , jm0), let F = (f1, . . . , fs) and G = (g1, . . . , gs0) be (I;h)qn
and (J ;h)qn -scattered sequences of orders m and m0, respectively. The direct sum H := F � G is
the (s+ s0)-tuple (f1, . . . , fs, g1, . . . , gs0). Since

UI�J ,H = UI,F � UJ ,G ,

H is an (I � J ;h)qn -scattered sequence of order m+m0.
To prove the indecomposability we need the concept of evasive subspace.

Definition 3. Let h, r, k, n be positive integers, such that h < k and h  r. An Fq-subspace U ✓
V (k, qn) is said to be (h, r)-evasive if for every h-dimensional Fqn-subspace H ✓ V (k, qn), it holds
dimFq

(U \H)  r. When h = r, an (h, h)-evasive subspace is called h-scattered. Furthermore, when
h = 1, a 1-scattered subspace is simply called scattered.

Definition 4. Let n,m be positive integers, with m � 3 and q a prime power. Consider the finite
field Fqn . For each choice of ↵1, . . . ,↵m 2 F

⇤
qn and I, J 2 N, I < J < n we define the set:

U I,J
A := {(x1, . . . , xm, f1(x), f2(x), . . . , fm�1(x), fm(x)) : x1, . . . , xm 2 Fqn},

where A := (↵1, . . . ,↵m), fm(x) := xm
qI + ↵1x1

qJ and fi(x) := xi
qI + ↵i+1xi+1

qJ with i =
1, . . . ,m� 1.

From now on, we will denote J � I as K and (qh` � 1)/(qh � 1) as Ch,`.

Theorem 1. Assume that gcd(I, J) = 1 and that

KI,J
A :=

↵3 · ↵
qK

4 · ↵q2K

5 . . .↵q(m�3)K

m · ↵q(m�2)K

1

↵
CK,m�1

2

is not a CK,m-power in Fqn . Then the set U I,J
A is scattered.

Lemma 1. Let n 2 N, let A 2 N such that gcd(q,A) = 1, then there exist infinitely many h 2 N

such that gcd(A,Cn,h) = 1.
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Corollary 1. Assume that gcd(I, J) = 1 and that KI,J
A is not an CK,m-power in Fqn . Then the

set U I,J
A is exceptional scattered.

Proof. From the previous lemma, there exist infinitely many h 2 N such that

gcd(CK,m, Cn,h) = 1.

Let us consider a fixed h satisfying the above property. By Bézout’s identity, there exist integers
c1 and c2 such that c1CK,m + c2Cn,h = 1. Suppose by the way of contradiction that there exists

⇠ 2 Fqhn \ Fqn such that KI,J
A

= ⇠CK,m . So ⇠CK,m 2 Fqn , and so 1 = (⇠CK,m)q
n�1 = (⇠q

n�1)CK,m .
Raising both sides to the power of c1, we obtain

1 = (⇠q
n�1)c1CK,m = (⇠q

n�1)�c2Cn,h(⇠q
n�1) = ⇠q

n�1,

a contradiction to ⇠ /2 Fqn .

Therefore, there are infinitely many extensions of Fq where KI,J
A

is not an CK,m-power, and by
Theorem 1 the claim follows.

To prove the indecomposability we used the following lemma

Lemma 2. Let F := (f1, . . . , fs) be an exceptional (I;h)qn-scattered sequence of order m. If UI,F

is (r, rn/(h+1)�1)-evasive for any r 2 [h+1, b(m+s)/2c] with (h+1) | rn then F is indecomposable.

So, to satisfy the assumptions of the lemma, we proved the following two theorems

Theorem 2. If n � 2(mJ + J + 1) then U I,J
A

is (r, rn
2 � 1)q-evasive for any odd r 2 [2, . . . ,m].

Theorem 3. If n � 2(mJ+J+1) and ⇧�+2

⇧2
is not a (qmK � 1)-power in Fqn for any � = 1, . . . ,m�

1, where ⇧i = ↵
q(m�1)K

i ↵
q(m�2)K

i�1 · · ·↵qK

i+2↵i+1, where the indices of ↵i are modulo m in the range

[1, . . . ,m], then U I,J
A

is (r, rn
2 � 1)q-evasive for any even r 2 [2, . . . ,m].

So we have

Corollary 2. If n � 2(mJ + J + 1), and ⇧�+2

⇧2
is not a (qmK � 1)-power in Fqn for any � =

1, . . . ,m� 1, then U I,J
A

is indecomposable.

Proof. It follows from [3, Lemma 3.4].

Theorem 4. Assume that gcd(I, J) = 1, KI,J
A is not a CK,m-power and ⇧�+2

⇧2
is not a (qKm � 1)-

power in Fqn for any � = 1, . . . ,m � 1. Then U I,J
A

is scattered and indecomposable in infinitely
many extensions of Fqn .

Proof. From Proposition (1) we have the existence of a sequence of positive integers (hk)k such that
gcd(qKm � 1, Cn,hk

) = 1. This implies gcd(CK.m, Cn,hk
) = 1, so from the calculations on Corollary

(1), we have that U I,J
A

is scattered in Fqnhk for every k. With similar calculations, we obtain that
⇧�+2

⇧2
is not a (qKm � 1)-power in Fqnhk

for every k and �.
Moreover, there exists an hk0 such that

nhk0 � 2(mJ + J + 1)

and, by Corollary 2, U I,J
A

is indecomposable in every extension Fqnhk with hk � hk0 .
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A necessary condition to avoid making the hypotheses of Theorem (4) empty is m|n. Given that,

we have found a lower bound on the number of m-tuples (↵1, . . . ,↵m) that make U I,J
A

scattered
and indecomposable

QI,J
n,m := (qn � 1)m�1

Ñ

(qn � 1)�
qn � 1

gcd(qn � 1, CK,m)
�

dm�1
2 eX

j=1

(qn � 1)
qgcd(mn0,j) � 1

qm gcd(n0,K) � 1

é

,

where n = mn0.

We have also studied the �Lq(2m, qn)-equivalence between sets of the type U I,J
A

, obtaining
these two results.

Theorem 5. Let I, J, I0, J0 be nonnegative integers, such that J + J0 < n, I < J, and I0 < J0.
The two sets U I,J

A
and U I0,J0

A
are not �L(2m, qn)-equivalent if (I, J) 6= (I0, J0).

Theorem 6. Let (I, J) be such that J < n/2, gcd(I, J) = 1. Two sets U I,J
A

and U I,J

A
are �L(2m, qn)-

equivalent if and only if 9 � 2 Aut(Fqn) such that one among these m elements is a qmK �1 power:

C1 :=

Å

↵2

↵�
2

ãÅ

↵3

↵�
3

ãqK

· · ·

Å

↵m

↵�
m

ãq(m�2)K
Å

↵1

↵�
1

ãq(m�1)K

C� :=

Å

↵�+1

↵�
2

ã

· · ·

Ç

↵m

↵�

m��+1

åq(m���1)K
Ç

↵1

↵�

m��+2

åq(m��)K

· · ·

Å

↵��1

↵�
m

ãq(m�2)K
Å

↵�

↵�
1

ãq(m�1)K

Cm :=

Å

↵1

↵�
2

ã

· · ·

Å

↵m�1

↵�
m

ãq(m�2)K
Å

↵m

↵�
1

ãq(m�1)K

,

with � = 2, . . . ,m� 1.

These two results allowed us to determine a lower bound on the number of �Lq(2m, qn)-
inequivalent scattered sets contained in our family. Fix (↵1, . . . ,↵m) 2 F

m
qn and consider all the

(↵1, . . . ,↵m) 2 F
m
qn such that the corresponding sets are equivalent. For given ↵2, . . . ,↵m, the

function

↵1 7�! C1 =

Å

↵2

↵�
2

ãÅ

↵3

↵�
3

ãqK

· · ·

Å

↵m

↵�
m

ãq(m�2)K
Å

↵1

↵�
1

ãq(m�1)K

is a permutation of Fqn . Since ↵2, . . . ,↵m can vary in (qn � 1)m�1 ways, C1 is a (qmk � 1)-power
for (qn � 1)m/gcd(qmK � 1, qn � 1) m-uples (↵1, . . . ,↵m).

An equivalence with � 6= id corresponds to an equivalence with (↵�
1 , . . . ,↵

�
1 ). Via the condition

on C1, there are at most nh(qn � 1)m/(gcd(qmK � 1, qn � 1)) sets U I,J
A

equivalent to U I,J

A
.

Arguing analogously for C2, . . . , Cm, we obtain that

mnh(qn � 1)m

gcd(qmK � 1, qn � 1)

is an upper bound for the number of sets U I,J
A

equivalent to a fixed U I,J

A
.
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Using the lower bound on the number of distinct instances of (↵1, . . . ,↵m) giving rise to a

scattered and indecomposable set U I,J
A

, remarking that n = mn0, we can obtain a lower bound on
the number of inequivalent scattered sequences

(qn � 1)m�1

Ñ

(qn � 1)�
qn � 1

gcd(qn � 1, CK,m)
�

dm�1
2 eX

j=1

(qn � 1)
qgcd(mn0,j) � 1

qm gcd(n0,K) � 1

é

·
qm gcd(n0,K) � 1

mnh(qn � 1)m
.
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Abstract. Scattered polynomials over finite fields attracted an increas-
ing attention in the last years. One of the reasons is their deep connection
with Maximum Rank Distance (MRD) codes. Known classification re-
sults for exceptional scattered polynomials, i.e. polynomials which are
scattered over infinite field extensions, are limited to the cases where
their index ` is small, or a prime number larger than the q-degree k of
the polynomial, or an integer smaller than the k in the case where k

is a prime. In this paper we completely classify exceptional scattered
polynomials when the maximum of ` and k is odd.

MSC: 11T06.
Keywords: linearized polynomials, scattered polynomials, MRD codes, transi-
tive finite linear groups.

1 Introduction

For q a prime power and n a positive integer, let Fqn be the finite field with qn

elements. A q-linearized polynomial f(x) =
Pn�1

i=0 aix
qi 2 Fqn [x] is said to be

scattered of index ` 2 {0, . . . , n� 1} over Fqn if, for any y, z 2 F
⇤
qn ,

f(y)

yq`
=

f(z)

zq`
=)

y

z
2 Fq; (1)

see [4, 24]. The q-degree of a linearized polynomial f(x) =
Pn�1

i=0 aix
qi is defined

as max{i : ai 6= 0}. For a scattered polynomial f(x) of index ` and q-degree k
we let d := max{k, `}.

Scattered polynomials f(x) 2 Fqn [x] are connected with scattered Fq-subspaces

with respect to a Desarguesian spread. Recall that an n-spread of the r-dimensional
vector space V over Fqn is a set of n-dimensional Fq-subspaces of V covering V
and pairwise intersecting trivially. An Fq-subspace U of V is scattered w.r.t. a
spread S if U meets every element of S in an Fq-space of dimension at most 1.
A Deasarguesian spread of V arises by applying a field reduction to the vectors
of V ; see [18]. For a scattered polynomials f(x) 2 Fqn [x] of index `, the set

Uf = {(xq` , f(x)) : x 2 Fqn}

is a scattered Fq-subspace of Fqn ⇥ Fqn w.r.t. a Desarguesian spread; see [4, 24].



Scattered Fq-subspaces have applications in different areas of mathematics,
such as translation hyperovals [10], translation caps in affine spaces [2], two-
intersection sets [6], blocking sets [1], translation spreads of the Cayley gener-
alized hexagon [21], finite semifields [17], and graph theory [7]. Of particular
interest is the connection between scattered subspaces and linear codes, namely
MRD codes [23, 26, 24]:indeed, the polynomial f(x) is scattered of index ` if and

only if the set {axq` + bf(x) : a, b 2 Fqn} ✓ EndFq (Fqn) ⇠= F
n⇥n
q is an Fq-linear

MRD code of n⇥n matrices, with Fq-dimension 2n and minimum rank distance
n � 1. The relevance of MRD codes in communication theory relies on their
applications to random linear network coding [25] and cryptography [9].

A scattered polynomial (of a certain index `) over Fqn is said to be exceptional
if it is scattered (with respect to the same index `) over infinitely many extensions
Fqnm of Fqn .

While several families of scattered polynomials have been constructed in
recent years, only two families of exceptional polynomials are known so far and
can be described as follows:

– polynomials of so-called pseudoregulus type, f(x) = xqs of index 0, with
gcd(s, n) = 1, see [19];

– polynomials of so-called LP type (named after Lunardon and Polverino who

introduced them in [20]), f(x) = x+�xq2s of index s, with gcd(s, n) = 1 and
Nqn/q(�) 6= 1, see [20].

Classification of exceptional scattered polynomials is a natural problem, and
it has been achieved only for index 0, 1, and 2 (see [3, 4]), and for prime values
of d (see [8]).

In the investigation of exceptional scattered polynomials of index `, we can
assume that a q-linearized polynomial f(x) 2 Fqn [x] is `-normalized, in the
following sense (see [5, Remark 4.1]):

(i) the q-degree k of f(x) is smaller than n;
(ii) f(x) is monic;

(iii) the coefficient of xq` in f(x) is zero;
(iv) if ` > 0, then the coefficient of x in f(x) is nonzero, i.e. f(x) is separable.

In this paper we completely classify scattered polynomials with odd d =
max{k, `}. A partial classification is also obtained when d is even. As in [8], our
standpoint will be that of the theory of Galois extensions of function fields. Our
main result is the following.

Main Theorem. Let f(x) 2 Fqn [x] be an `-normalized Fq-linearized polynomial

of q-degree k, and let d := max{k, `}. If d is odd and f(x) is exceptional scattered,
then f(x) is a monomial of pseudoregulus type.

2 A result from Hering

In this section and the following one we deal with linear groups over finite fields,
because Galois groups of linearized polynomials are linear.



In this section we recall a know result by Hering on linear groups which
will be crucial in our argument. Although the proof of such a result is basically
contained in [12, 13], we decided to sketch it to provide a precise reference.

Throughout this section, f(x) 2 Fqn [x] is an `-normalized exceptional scat-
tered polynomial of q-degree k, and d = max{k, `}. Also, �Lq(a, q

b) denotes the
subgroup of �L(a, qb) defined as �Lq(a, q

b) = GL(a, qb)oAut(Fqb : Fq).

As usual, Sp(e, q), with e even, denotes the symplectic group, i.e. the sub-
group of GL(e, q) preserving a given non-degenerate alternating bilinear form.
In terms of matrices, Sp(e, q) is made by the matrices A 2 GL(e, q) such that
AHA> = H, where H is a given invertible skew-symmetric matrix. Also, G2(q)
denotes the Chevalley group made by the automorphisms of the split octonion
algebra over Fq, and is a subgroup of Sp(6, q). For q > 2, G2(q) is simple; for
q = 2, G2(2) contains the simple group G2(2)

0 ⇠= PSU(3, 3) with index 2.

Theorem 1. Let p be a prime, q = pa, d 2 N, V = F
d
q , and G be a subgroup of

GL(d, q) acting transitively on V \ {0}. Then one of the following holds:

1. SL(e, qd/e) /G  �Lq(e, q
d/e) for some e | d;

2. Sp(e, qd/e) /G  �Lq(e, q
d/e) for some even e | d with e � 4;

3. G2(2
d/6)0 /G  �Lq(6, 2

d/6), where p = 2 and 6 | d;

4. qd 2 {52, 72, 112, 232, 292, 592, 24, 34, 36}.

Proof. The proof essentially goes back to Hering’s papers [12] and [13], which
build on his previous work [11]. Up to our knowledge, in the literature Hering’s
results have been summarized as in Theorem 1 only for q = p a prime (for
instance see [15, Theorem 69.7]), but in fact the case q a prime power can be
easily dealt with.

To see this, use the same notations of [12, Section 5]. Let L be a subset of
Hom(V, V ) maximal with respect to the following conditions: L is normalized
by G, L contains the identity, and L is a field with respect to the addition and
multiplication in Hom(V, V ). Then V is an L-vector space with scalar multipli-
cation ↵v := ↵(v) for any ↵ 2 L and v 2 V . By [12, Lemma 5.2], up to excluding
a specific case (namely n = 2, p = 3, and |L| = 9), L is uniquely defined.

Clearly, G normalizes the set Fq := {⌧� : � 2 Fq}, where ⌧� is defined by
v 7! �v for any v 2 V , and Fq is a field isomorphic to Fq, with the operations
of Hom(V, V ). Therefore L contains Fq and has size qd/e for some divisor e of d.
With the notation of [12, Section 5], we have m = a · d

e and n⇤ = e.

Then, as pointed out at the beginning of [12, Section 5], G  �Lq(e, q
d/e),

and the arguments of Hering’s papers yield the claim.

3 Main result

This section is devoted to the proof of Main Theorem. To this aim, we first need
to discuss the embeddings of ΓLq(n, q

m) in GL(nm, q).



3.1 Embedding ΓLq(n, q
m) in GL(nm, q)

For a positive integer m, consider the field extension Fqm : Fq. Let V be an
n-dimensional vector space over Fqm . Then clearly V is an nm-dimensional vec-
tor space over Fq and any Fqm -linear automorphism of V is also an Fq-linear
automorphism. This provides the so-called natural embedding of the group of
Fqm -linear automorphisms of V into the group of Fq-linear automorphisms of V .

If a basis A of V over Fqm and a basis C of V over Fq are fixed, then clearly
the natural embedding induces an embedding ⌘A,C of GL(n, qm) in GL(nm, q),
which is again callled a natural embedding. Explicitly, for T 2 GL(n, qm), the
matrix ⌘A,C(T ) acts on a vector x in F

nm
q as follows: first, consider the vector

v 2 V such that x = (v)C (i.e. the vector of coordinates of v over the basis C);
then let y = (v)A 2 F

n
qm and compute z = Ty; let w 2 V be the vector such

that z = (w)A; finally, the image of x by ⌘A,C(T ) is (w)C 2 F
nm
q , that is

⌘A,C(T ) · (v)C = (w)C . (2)

As far as the image of GL(n, qm) in GL(nm, q) by a natural embedding is
concerned, it is straightforward to check that different choices of bases produce
conjugate subgroups of GL(nm, q).

If both n and m are odd, then any embedding of GL(n, qm) in GL(nm, q) is
actually natural (or, equivalently, all subgroups of GL(nm, q) which are isomor-
phic to GL(n, qm) are conjugate). As we could not find a reference for this fact,
we deduce it from a result by Kantor.

Proposition 2. Any embedding of GL(n, qm), nm > 1, n,m odd, in GL(nm, q)
is natural.

Proof. Let ⌘0 be any embedding of GL(n, qm) in GL(nm, q). The group G =
⌘0(GL(n, qm)) contains a Singer cycle of GL(nm, q) (of order qnm � 1). By [16],
G D GL(nm/s, qs), embedded naturally for some divisor s of nm. Clearly s � m,
otherwise |G| < |GL(nm/s, qs)|.

– Suppose s = nm. Then GL(1, qnm) is a normal subgroup of G. Hence G
is contained in the normalizer (in GL(nm, q)) of GL(1, qnm), which by [14,
Sect.II.7] is equal to GL(1, qnm)o Aut(Fnm

q : Fq). But |G| > |GL(1, qnm)o
Aut(Fnm

q : Fq)|, a contradiction.
– Suppose that m < s < nm. Since, by assumption, both n and m are odd,

nm 6= 2s. Following the proof of [16, page 232], G < �L(nm/s, qs). Thus
|GL(n, qm)| = |G| < |�L(nm/s, qs)|, a contradiction.

Therefore s = m and the embedding ⌘0 is natural.

For the rest of the paper it is convenient to write explicitly a (natural) em-
bedding of GL(n, qm) into GL(nm, q).

Let � be a primitive element of Fqm , so that B = {1, �, . . . , �m�1} is an Fq-
basis of Fqm . Consider also an Fqm -basis A = {↵1, . . . ,↵n} of Fqnm . Clearly, the
set

C = {↵1,↵1� . . . ,↵1�
m�1, . . . ,↵n,↵n�, . . . ,↵n�

m�1} (3)



is an Fq-basis of Fqnm . We are going to describe ⌘A,C explicitly, as defined in (2).
Consider the map ' : Fqm ! F

m⇥m
q which maps a 2 Fqm to the matrix

whose (i + 1)-th column consists of the components of �i · a over the basis B,
for i = 0, . . . ,m � 1. In more explicit terms, if C is the m ⇥m matrix over Fq

representing the Fq-linear map of Fqm x 7! � · x with respect to B, then

'(a) =

0

@ (a)B C · (a)B · · · Cm�1 · (a)B

1

A . (4)

It is well-known that C is the companion matrix of the minimal polynomial of
� over Fq. Now, if T = (ai,j)i,j=1,...,n 2 GL(n, qm) then it is straightforward to
check that ⌘A,C(T ) = ('(ai,j))i,j=1,...,n 2 GL(nm, q).

Let nm be odd and consider an embedding ⇣ of �Lq(n, q
m) = GL(n, qm) o

Aut(Fqm : Fq) in GL(nm, q). By Proposition 2, ⇣|GL(n,qm) is a natural embedding.
Therefore, there exists an inner automorphism � of GL(nm, q) such that (� �
⇣)(T ) = ('(ai,j))i,j=1,...,n for T = (ai,j)i,j=1,...,n 2 GL(n, qm) with ' as in (4).

LetM = (Mi,j)i,j=1,...,n 2 GL(nm, q) be the image (��⇣)(�) of the Frobenius
map � : a 7! aq in Aut(Fqm : Fq); here, Mi,j is an m⇥m matrix over Fq for any
i, j = 1, . . . , n. For any a 2 Fqm we have

diag(a, 1, . . . , 1) � � = � � diag(aq
m−1

, 1, . . . , 1),

and hence

(� � ⇣)(diag(a, 1, . . . , 1) � �) = (� � ⇣)(� � diag(aq
m−1

, 1, . . . , 1)).

Therefore

diag('(a),'(1), . . . ,'(1)) ·M = M · diag('(aq
m−1

),'(1), . . . ,'(1)),

that is











'(a) · M1,1 '(a) · M1,2 · · · '(a) · M1,n

'(1) · M2,1 '(1) · M2,2 · · · '(1) · M2,n

.

.

.
.
.
.

.

.

.
'(1) · Mn,1 '(1) · Mn,2 · · · '(1) · Mn,n











=















M1,1 · '(aqm−1

) M1,2 · '(1) · · · M1,n · '(1)

M2,1 · '(aqm−1

) M2,2 · '(1) · · · M2,n · '(1)

.

.

.
.
.
.

.

.

.

Mn,1 · '(aqm−1

) Mn,2 · '(1) · · · Mn,n · '(1)















.

In particular, for each i 6= 1 and each a 2 F
⇤
qm , M1,i ·'(1) = '(a) ·M1,i. Note

that det('(a) � '(b)) 6= 0 for each a 6= b 2 F
⇤
qm . Therefore M1,i = O (the zero

matrix) for i = 2, . . . , n. The same argument applies to each Mi,j with i 6= j and
thus

M = diag(M, . . . ,M), (5)

where M is provided by the (unique) embedding of �Lq(1, q
m) into GL(m, q)

associated with the fixed Fq-basis B of Fqm ; see [14, Sect.II.7].
Observe that �Lq(n, q

m) contains a unique subgroup isomorphic to SL(n, qm);
this can be shown by noting that, for any pair (n, qm) 6= (2, 2), (2, 3), the sub-
group SL(n, qm) is the last term �Lq(n, q

m)(1) of the commutator series of
�Lq(n, q

m).



3.2 Proof of Main Theorem

Throughout this section, the notation on Galois extensions of global function
fields is as in [8, Section 2]; see also [22]. For an `-normalized Fq-linearized
polynomial f(x) 2 Fqn [x], let s be a transcendental over Fqn and S be the

splitting field of f(x)� sxq` 2 Fqn(s)[x] over Fqn(s). For any positive integer r,
denote by Sr the compositum function field S ·Fqnr , by kr the field of constants
of Sr, by Garith

r and Ggeom
r the arithmetic and the geometric Galois group of

Sr : Fqnr (s), and by 'r the isomorphism Garith
r /Ggeom

r ! Gal(kr : Fqnr ). By [8,
Lemma 2.2] there exists a constant C > 0 depending on S : Fqn(s) such that
for any r satisfying qnr > C the following property holds: every � 2 Garith

r such
that 'r(�) is the Frobenius automorphism for the extension kr : Fqnr is also a
Frobenius at a rational unramified place of Fqnr (s) different from the pole of s.
For the rest of the paper, r is assumed to satisfy qnr > C. Under this assumption,
for scattered polynomials it holds Garith

r 6= Ggeom
r ; see [8, Corollary 2.8].

Remark 1. Let ⌘ be any embedding of �Lq(e, q
d/e) = GL(e, qd/e)o Aut(Fqd/e :

Fq) = GL(e, qd/e) o h�i in GL(d, q). By Section 3.1, we can assume up to con-
jugation that ⌘|GL(e,qd/e) = ⌘A,C for some Fqm -basis A of Fqnm and C as in (3),
such that ⌘(�) = M is as in (5).

Proposition 3. Suppose that d > 2 and that there exists e | d such that e > 2
and SL(e, qd/e) / Ggeom

r / Garith
r  �Lq(e, q

d/e). Then for any � 2 Garith
r there

exists ↵ 2 Ggeom
r with rank(⌘(↵�)� Id) < d� 1.

Proof. By Remark 1, it is enough to prove the claim for the case when the
embedding ⌘ satisfies ⌘|GL(e,qd/e) = ⌘A,C and ⌘(�) = M , since the existence of
↵ 2 Ggeom

r with rank(⌘(↵�) � Id) < d � 1 is invariant under conjugation in
GL(d, q).

Write � = ��j 2 Garith
r with � 2 GL(e, qd/e) and j 2 {1, . . . , d/e}, and

write B = ⌘(�), so that ⌘(�) = B · M j 2 GL(d, q). We aim to determine
A = ⌘(↵) 2 ⌘(SL(e, qd/e)) such that rank(A · B · M j � Id) < d � 1. Since
A · B · M j = M j · A · B for some A 2 ⌘(SL(e, qd/e)), B 2 ⌘(GL(e, qd/e)), it is
enough to find A 2 ⌘(SL(e, qd/e)) such that rank(M j ·A ·B � Id) < d� 1.

Let (x
(1)
1 , . . . , x

(1)
d/e, . . . , x

(e)
1 , . . . , x

(e)
d/e) and (x

(1)
1 , . . . , x

(1)
d/e, . . . , x

(e)
1 , . . . , x

(e)
d/e)

be respectively the first and the (d/e + 1)-th column of Md/e�j = (M j)�1

and let y(i) 2 Fqd/e , i = 1, . . . , e, and y(i) 2 Fqd/e , i = 1, . . . , e, be such that

y
(i)
B = (Ci�1)�1(x

(i)
1 , . . . , x

(i)
d/e) and y

(i)
B = (Ci�1)�1(x

(i)
1 , . . . , x

(i)
d/e); here, C is

the matrix defined in the proof of Proposition 2.
Consider a matrix D 2 GL(e, qd/e) whose first two columns are

(y(1), y(2), . . . , y(e)) = (y(1), 0, . . . , 0) and (y(1), y(2), . . . , y(e)) = (0, y(2), 0, . . . , 0)

and such that det(D) = det(⌘�1(B)); such a matrix D exists, because e > 2.

Now, consider the matrix A := ⌘(D) ·B
�1

2 ⌘(SL(e, qd/e)). It is readily seen
that the first and the (d/e+ 1)-th column of M j ·A ·B are

(1, 0, . . . , 0) and (0, 0, . . . , 0, 1
|{z}

(d/e+1)

, 0, . . . , 0),



respectively. This shows that rank(M j ·A ·B� Id)  d�2 and the claim follows.

Theorem 4. Let f(x) 2 Fqn [x] be an `-normalized Fq-linearized polynomial of

q-degree k < n, and let d := max{k, `}. Then f(x) is not exceptional scattered

unless one of the following holds:

– f(x) is of pseudoregulus type; or
– Garith

r 6 ΓLq(1, q
d) and SL(e, qd/e) 6 Ggeom

r for any divisor e > 2 of d.

Proof. The case qd = 93 follows by [8]. Suppose that f(x) is exceptional scattered
and not of pseudoregulus type.

– Suppose that SL(e, qd/e)  Ggeom
r for some divisor e > 2 of d. By Theorem

1,
SL(e, qd/e) /Ggeom

r /Garith
r  �Lq(e, q

d/e).

Then by Proposition 3 there exist � 2 Garith
r and ↵ 2 Ggeom

r such that
rank(⌘(↵�) � Id) < d � 1. By [8, Theorem 2.7], f(x) is not exceptional
scattered, a contradiction.

– Suppose that
Ggeom

r /Garith
r  �Lq(1, q

d).

Now we argue as in [8, Section 4]. Since f(x)� sxq` 2 Fqn(s)[x] has exactly
qd�1 non-zero roots, the transitivity of Ggeom

r on such roots implies (qd�1) |
|Ggeom

r |. Thus, |Ggeom
r | = i(qd�1) and |Garith

r | = j(qd�1) with 1  i | j  d.
As in [8, Proof of Theorem 1.4], one gets that |q` � qk| divides i(qd � 1).
Suppose ` < k = d. Then

qk � q`

qgcd(k,`) � 1

�
�
� i < r. (6)

By considering separately ` | k or ` - k, one gets k > qk/2 � 1, and hence, by
direct computations, a contradiction to (6).
Then k < ` = d and

q` � qk

qgcd(k,`) � 1

�
�
� i < `.

If k > 0, then ` > q`/2 � 1 with ` > 1, whence a contradiction as above.

Then k = 0, (xq` , f(x)) = (xq` , x), and thus f(x) is of pseudoregulus type,
a contradiction.

It is readily seen that Main Theorem follows from Theorems 1 and 4, which
provide a partial classification also for the d even case.

Theorem 5. Let f(x) 2 Fqn [x] be an `-normalized Fq-linearized polynomial of

q-degree k < n, and let d := max{k, `}. Then f(x) is not exceptional scattered

unless one of the following holds:

1. SL(2, qd/2) /Ggeom
r /Garith

r  �Lq(2, q
d/2);

2. Sp(e, qd/e) /Ggeom
r /Garith

r  �Lq(e, q
d/e), for some even e | d with e � 4;

3. G2(2
d/6)0 /Ggeom

r /Garith
r  �Lq(6, 2

d/6), where p = 2 and 6 | d;
4. qd 2 {52, 72, 112, 232, 292, 592, 24, 34, 36}.
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Abstract. Distinguishing Goppa codes or alternant codes from generic
linear codes [FGO`11] has been shown to be a first step before being able
to attack the McEliece type cryptosystem based on those codes [BMT23].
Whereas the distinguisher of [FGO`11] is only able to distinguish Goppa
codes or alternant codes of rate very close to 1, in [CMT23a] a much
more powerful (and more general) distinguisher is proposed. It is based
on computing the Hilbert series tHFpdq, d P Nu of a Pfaffian modeling.
The distinguisher of [FGO`11] can be interpreted as computing HFp1q.
Computing HFp2q still gives a polynomial time distinguisher for alternant
or Goppa codes and is apparently able to distinguish Goppa or alternant
codes in a much broader regime of rates as the one of [FGO`11]. However,
the scope of this distinguisher was unclear. We give here a formula for
HFp2q corresponding to generic alternant codes when the field size q

satisfies q • r where r is the degree of the alternant code. We also show
that this expression for HFp2q is a lower bound in general on it. The
HFp2q corresponding to random linear codes is known and this yields a
precise description of the new regime of rates that can be distinguished
by this new method which shows that the new distinguisher improves
significantly upon the one given in [FGO`11].

1 Introduction

The McEliece cryptosystem [McE78] is the oldest code-based scheme and it is
based on binary Goppa codes, a subfamily of alternant codes. It is believed to be
quantum-resistant and its IND-CCA secure variation [ABC`22] is currently a
fourth round finalist of the NIST post-quantum competition. For a long time, it
was believed that structural attacks aiming at recovering the underlying Goppa
structure from an arbitrary generator matrix of the code were much more expen-
sive than message recovery attacks. The latter ignore completely the algebraic
structure and aim just at decoding a generic linear code.

In [FGO`11] another approach was tried. Instead of trying to recover directly
the algebraic structure from a generator matrix of a Goppa code, a potentially
easier problem is solved first, namely that of distinguishing a Goppa code from a
generic linear code just by the knowledge of a generator matrix of the code. This



is a promise problem where either we are given a generator matrix of a Goppa
code or one of a random linear code and one must decide in which case we are. It
turned out that there is a way to solve this problem in polynomial time for Goppa
codes and more generally for the slightly more general family of alternant codes,
at least for very high rate codes [FGO`11]. It took a while to transform this
distinguisher into an algorithm recovering the algebraic structure of the Goppa
or the alternant code, but this has recently been achieved in [BMT23, CMT23b]
(but binary Goppa codes could not be handled by these papers).

Interestingly enough, [CMT23b] also puts forward a new algebraic object,
namely the matrix code of quadratic relations. The point is that this matrix
code can be associated to any linear code. However, the matrix code associated
to Goppa or alternant codes contains matrices of unusually low rank, namely
rank 3 in characteristic ‰ 2 and rank 2 in characteristic 2, which are conse-
quences of structured quadratic relations. Finding such low rank matrices can in
principle be achieved by solving the corresponding MinRank problem. Moreover,
in characteristic 2, the matrix code is a subspace of skew-symmetric matrices
and the MinRank problem can be modeled with a system where the Pfaffians of
principal submatrices of order 4 are equated to 0. The polynomials correspond-
ing to these equations define what we call the Pfaffian ideal. The existence of
low-rank matrices has been exploited to mount a distinguisher attack and its
complexity has been partially analyzed [CMT23b] as we recall below.

This work focuses on characteristic 2 and aims to advance the knowledge of a
fundamental object associated with the above-mentioned Pfaffian ideal (and with
polynomial ideals in general): its Hilbert function (or series). This Hilbert series
tHFpdq, d P Nu turns out to be a very good way to distinguish alternant or Goppa
codes from generic linear codes. Whereas HFpdq never vanishes in the first case, it
turns out to be equal to 0 for a large enough degree in the second case. This gives
a new distinguisher for Goppa or alternant codes. The Hilbert function associated
to a generic linear code can be easily derived by making some assumptions
that have been verified experimentally [CMT23b, Conjecture 1] and the smallest
degree for which the Hilbert series vanishes can be computed. Interestingly, when
the co-dimension n´k of the code is of the form n´k “ O pnαq when α † 1 and
n is the codelength, the degree d at which this happens is low enough so that the
actual computation of the Hilbert series can be done with a complexity which is
smaller than the aforementioned message recovery attacks. Potentially, this also
paves the way to key attacks on the McEliece cryptosystem based on such codes
of very large rate which are less complex than message recovery attacks.

Unfortunately, whereas the Hilbert series tHFRpdq, d P Nu of a generic linear
code is well understood in [CMT23b], the Hilbert series tHFApdq, d P Nu that
corresponds to an alternant code is much less understood. This is a pity, since
this would allow to understand precisely the scope of the distinguisher based on
the computation of the Hilbert series. The only case, which was understood right
now is the Hilbert series at degree 1, HFp1q. It turns out that knowing HFp1q
is equivalent to knowing the dimension of the square of the dual code and the



distinguisher of alternant or Goppa codes based on the fact that their HFp1q
differs is actually equivalent to the distinguisher of [FGO`11].

The aim of this work is to understand the value of HFAp2q. We will provide
here a formula for it together with a proof using a natural conjecture that has
been verified experimentally. We also prove that this formula is actually a rigor-
ous lower bound on HFAp2q in general. It turns out that the distinguisher based
on HFAp2q ‰ HFRp2q works for a much broader set of of parameters than the
distinguisher HFAp1q ‰ HFRp1q (which is equivalent to the one of [FGO`11]).
This could open the way to key attacks in the regime of parameters for which
HFAp2q ‰ HFRp2q, much in the same way that [FGO`11, MT23] were a first step
before the attacks of [BMT23, CMT23b]. On top of that, knowing the Hilbert
series precisely is crucial when it comes to solve the Pfaffian system and our
work can be viewed as a significant step in this direction.
Note: The proofs of all results announced in this extended abstract can be found
in the full version of this paper which can be found on eprint.

2 Preliminaries

2.1 Reed-Solomon and alternant codes

We work in characteristic 2 throughout the paper. We denote by Fq the finite
field of size q which is therefore assumed here to be a power of 2.

Definition 1 (Generalized Reed-Solomon code). Let n § q be an integer,
x “ px1, . . . , xnq be a vector of pairwise-distinct elements of Fq, and y P pFˆ

q qn.
The generalized Reed-Solomon code of dimension r, support x and multiplier y

is
GRSrpx,yq

def
“ tpy1fpx1q, . . . , ynfpxnq | f P FqrXs†rqu .

A (generalized) Reed-Solomon code of degree r is an MDS code of dimension r.
It is well-known that the dual of a GRS code is also a GRS code [MS77].

Definition 2 (Alternant code). Let r,m be two integers, x P F
n
qm be a sup-

port, and y P pFˆ
qmqn be a multiplier. The alternant code of support x and mul-

tiplier y is

Arpx,yq
def
“ pGRSrpx,yqKq|Fq

.

We know that [MS77] dimFq
Arpx,yq • n´rm and this bound is generally tight.

2.2 Quadratic relations over a basis of a code

We first recall the concept of code of quadratic relations with respect to a basis
of a linear code.

Definition 3. Let C be an rn, ks-linear code over Fq, and let V
def
“ pv1, . . . , vkq

be a basis of C . The code of quadratic relations of C with respect to V is defined
as

CrelpVq
def
“

#

c “ pci,jq1§i§j§n P F
pk`1

2 q
q

ˇ

ˇ

ˇ

ÿ

i§j

ci,jvi ‹ vj “ 0

+

,



where a ‹ b
def
“ pa1b1, . . . , anbnq for a, b P F

n
q .

As usual, a codeword c P CrelpVq may be seen as a quadratic form whose matrix
Mc “ pmi,jq1§i,j§k is defined by mi,j “ ci,j if i † j, mi,j “ cj,i if i ° j and
mi,i “ 2ci,i. In characteristic 2, the diagonal of these matrices is thus always
zero. We define the code of matrices

CmatpVq
def
“ tMc | c P CrelpVqu.

We recall that a lot of interesting features of the code of relations remain invari-
ant under a change of basis.

Lemma 1 ([CMT23b], Proposition 4).

dimCmatpVq “ dimCrelpVq.

dimCrelpVq and the rank distribution of CmatpVq is invariant under a change of
basis.

As a consequence, we sometimes write Crel or Cmat without specifying the basis
when we refer to invariants.

3 Codes of relations of a generalized Reed-Solomon code

The key for understanding HFAp2q will be to treat the case m “ 1 first, i.e.
when the alternant code is actually a generalized Reed-Solomon code.

3.1 Fundamental relations in the canonical basis

Definition 4 (Canonical basis). A
def
“ pa0, . . . ,ar´1q, where ai “ xi‹y forms

a basis of GRSrpx,yq, which we call a canonical basis3.

Definition 5 (Fundamental relations). Quadratic relations of the form

ai ‹ aj “ ak ‹ al

when i ` j “ k ` l will be called fundamental relations.

It is well known that there are
`

r´1

2

˘

linearly independent fundamental relations
in CrelpAq, and in some cases these relations generate the code of relations.

Proposition 1. If 2r ´ 1 § n, then the fundamental relations form a basis of
CrelpAq.

3 Since different vectors x and y may generate the same GRS code, we talk about a

canonical basis rather than the canonical basis.



When the above proposition holds, not only CmatpAq does not depend on
the choice of x and y, but every GRS code of dimension r has the same code
of relations with respect to any canonical basis. We can even describe a simple
algorithm that builds a basis of CmatpAq. The idea is to list the relations in the
following order :

a0 ‹ a2 “ a1 ‹ a1,a0 ‹ a3 “ a1 ‹ a2,a0 ‹ a4 “ a2 ‹ a2, a1 ‹ a3 “ a2 ‹ a2, . . .

Before describing the algorithm, let us introduce a few notations.

Definition 6 (Sparse notation). Let I “ tpi1, j1q, . . . , pit, jtqu Ñ J1, rK2 be a
list of distinct tuples such that is † js for all s. We define rpi1, j1q, . . . , pit, jtqs
as the matrix pmk,lq1§k,l§r such that mk,l “ 1 if pk, lq P I or pl, kq P I and 0

otherwise.

Finally, if M P F
rˆr
q , M̌ denotes the transpose of M with respect to the anti-

diagonal (i`j “ r`1), i.e m̌i,j “ mr´j`1,r´i`1. Using this notation, Algorithm
1 returns a basis of CmatpAq. One can check that the algorithm produces exactly

Algorithm 1 Generation of a basis B “ pM1, . . . ,MN q of CmatpAq

B – ∅

s – 4

while s § r ` 1 do

pi, jq – p1, s ´ 1q ô pi, jq will run along the sub-anti-diagonal i ` j “ s.
if s is even then

while i † j do

M – rpi, jqs
B – B Y tM, M̌u
pi, jq – pi ` 1, j ´ 1q

else

k –
s´1

2

while i ` 1 † j ´ 1 do

M – rpi, jq, pk ´ 1, kqs
B – B Y tM, M̌u
pi, jq – pi ` 1, j ´ 1q

s – s ` 1

return B

N “
`

r´1

2

˘

matrices (note that when s “ r ` 1, the set tM, M̌u contains only
one matrix). Furthermore, for each matrix M P B returned by the algorithm, its
nonzero coefficients that are not right above/under the diagonal do not appear
in any other matrix in B, which clearly implies that the elements of B are linearly
independent over Fq. Applying Proposition 1, we get

Corollary 1. When 2r ´ 1 § n, Algorithm 1 returns a basis of CmatpAq. This
basis is referred to as the canonical basis4 of Cmat.
4 This basis does not depend on the choice x and y, but depends on r.



3.2 Rank 2 matrices in Cmat

Among the fundamental relations, the ones of the form

ai ‹ aj “ a‹2
k

(when i ` j “ 2k) give a matrix of rank 2 when F is of characteristic 2. This
suggests that there are many matrices of rank 2 in Cmat.

Implicit modeling of [CMT23b]. To find rank 2 matrices in Cmat, we may
adopt the inverse point of view, i.e finding matrices belonging to Cmat inside
the variety of skew-symmetric matrices of rank § 2. Writing the generic skew-
symmetric matrix

M “

¨

˚

˚

˚

˝

0 X1,2 . . . X1,r

X1,2 0 . . . X2,r

...
...

. . .
...

X1,r X2,r . . . 0

˛

‹

‹

‹

‚

,

we know that the variety of rank § 2 skew-symmetric matricies in characteristic
2 may be described by the following equations [Wim12]:

Xi,jXk,l ` Xi,kXj,l ` Xi,lXj,k “ 0, 1 § i † j † k † l § r (1)

We call the left-hand side of (1) a Pfaffian of M , as it is the Pfaffian of some
4 ˆ 4 principal submatrix of M . More generally, if N is any skew-symmetric
matrix whose coefficients lie in some polynomial ring, we denote by PfpN , 2q
the set of all Pfaffians of size 4 of N . Adding linear equations expressing the
fact that M belongs to Cmat, we obtain the first algebraic modeling of rank §

2 matrices in Cmat :

Modeling 1 (Implicit modeling) The implicit modeling of rank § 2 matrices
in Cmat consists of the ideal I generated by the

`

r

4

˘

Pfaffians of the generic skew-
symmetric r ˆ r matrix M and parity-check equations expressing the fact that
M belongs to Cmat.

Explicit modeling. Another strategy is to compute a basis pM1, . . . ,MN q of
Cmat and solve the MinRank problem with matrix

M
def
“

N
ÿ

i“1

XiM i (2)

M looks like this in the canonical basis when r “ 5 or r “ 6

M
pr“5q

“

¨

˚

˚

˚

˚

˝

0 0 X1 X2 X4

0 0 X2 X3 X5

X1 X2 0 X5 X6

X2 X3 X5 0 0

X4 X5 X6 0 0

˛

‹

‹

‹

‹

‚

, M
pr“6q

“

¨

˚

˚

˚

˚

˚

˚

˝

0 0 X1 X2 X4 X6

0 0 X2 X3 X5 X8

X1 X2 0 X5 ` X6 X7 X9

X2 X3 X5 ` X6 0 X9 X10

X4 X5 X7 X9 0 0

X6 X8 X9 X10 0 0

˛

‹

‹

‹

‹

‹

‹

‚



The matrix M is the generic matrix in Cmat. Since it is skew-symmetric, one
may consider its Pfaffians of degree 2, i.e the Pfaffians of all 4 ˆ 4 submatrices
of M , which leads to the following algebraic modeling.

Modeling 2 (Explicit Pfaffian modeling) The explicit modeling consists of
`

r

4

˘

equations f “ 0 for f P PfpM , 2q. More explicitely, writing M “ pmi,jq1§i,j§r,
the equations are

mi,jmk,l ` mi,kmj,l ` mi,lmj,k “ 0.

where each coefficient mi,j is a polynomial of degree 1.

We are interested in computing the Hilbert function at degree 2 of the ideal
generated by PfpM , 2q. We recall the concept of Hilbert function.

Definition 7 (Hilbert function). Let I be a homogeneous ideal of a polyno-
mial ring FrXs. Writing FrXsd the (finite dimensional) F-vector space spanned
by monomials of degree d and Id “ IXFrXsd, the Hilbert function of I is defined
as

HFFrXs{Ipdq
def
“ dimF FrXsd{Id, d P N.

Experimentally, we always find that the elements of PfpM , 2q are linearly inde-
pendent, which leads us to state the following as a conjecture.

Conjecture 1. HFp2q “
`pr´1

2 q`1

2

˘

´
`

r

4

˘

“
1

12
pr ´ 1qpr ´ 2qpr2 ´ 3r ` 6q.

Note that it might be useful to consider the implicit Pfaffian modeling. However,
since the Hilbert function strongly depends on how the equations are written,
one must be careful when changing the modeling. In our case, we can safely do
so thanks to the following theorem.

Theorem 1. Let I (resp. J) be the ideal of the polynomial ring A (resp. B)
produced by the implicit (resp. explicit) modeling. A{I and B{J both have a
structure of graded F-algebra. There exists a map

Φ : A{I ›Ñ B{J

that defines an isomorphism of graded F-algebras.

In the following, we sometimes talk about the Pfaffian modeling associated to a
code without specifying whether it is implicit or explicit, since we only deal with
Hibert functions.

4 Hilbert function of a Pfaffian ideal associated with a

generic alternant code

4.1 The block-diagonal code of relations

In the case of alternant codes, the crux for having rank 2 matrices in Cmat is to
consider [CMT23b] the extension to Fqm of the dual code. Let us then recall the
following fact.



Proposition 2 ([BMT23], Proposition 14). For any code C Ñ F
n
q Ñ F

n
qm ,

we denote by CFqm
the Fqm-vector space spanned by C . Let C “ Arpx,yq be an

alternant code of extension degree m. Then

pArpx,yqKqFqm
“

m´1
ÿ

j“0

GRSrpxqj ,yqj q

With the usual assumption that dimFq
Arpx,yq “ n´rm, the above sum becomes

a direct sum and the sequence A “ pa0, . . . ,ar´1,a
q
0
, . . . ,a

q
r´1

, . . . ,a
qm´1

r´1
q is a

basis of pArpx,yqKqFqm
, called the canonical basis.

When r † q`1, it follows from the analysis of [FGO`11] that CrelpAq is spanned
by relations like

aql

a ‹ a
ql

b “ aql

c ‹ a
ql

d

for 0 § l † m and 0 § a, b, c, d † r such that a ` b “ c ` d. This implies that
any matrix A P CmatpAq has a block-diagonal structure, i.e.

A “

¨

˚

˝

A0 . . . 0r

...
. . .

...
0r . . . Am´1

˛

‹

‚

where Aj P Cmatpa
qi

0
, . . . , a

qj

r´1
q is the matrix associated with some element of

the code of quadratic relations of GRSrpx,yqq
j

“ GRSrpxqj ,yqj q with respect
to its canonical basis.

4.2 The Hilbert function at degree 2

The authors of [CMT23b] noticed that the Hilbert function of the Pfaffian model-
ing at degree 1 can be used as a distinguisher that boils down to the one presented
in [FGO`11]. We recall that a generic alternant code is square-distinguishable if
it is 1-distinguishable in the sense of [CMT23b]. The Hilbert function at degree
2 can also be used as a distinguisher which seems to work on a larger range
of parameters. Our goal here is to find a formula for HFp2q when the code is
2-distinguishable, assuming r † q ` 1.

Let pB1, . . . , BN q be the matrices returned by Algorithm 1. As a reminder,
N “

`

r´1

2

˘

. One can find rank § 2 matrices in CmatpAq by solving the linear
MinRank problem associated with the matrix

M “

¨

˚

˝

M0 . . . 0r

...
. . .

...
0r . . . Mm´1

˛

‹

‚
P FqmrXi | 1 § i § mN srmˆrm (3)

where M j “
N
ÿ

i“1

XNj`iBi P FqmrXi | Nj ` 1 § i § pN ` 1qjsrˆr is essentially

the matrix associated with a generalized Reed-Solomon code as described in the
previous section. The main result of this work is the following theorem.



Theorem 2. Assume Conjecture 1 is true. Let Arpx,yq be a generic square-
distinguishable alternant code with r † q ` 1. Then the Hilbert function HFA at
degree 2 of the Pfaffian modeling associated with Arpx,yq is given by

HFAp2q “
m

12
pr ´ 1qpr ´ 2qpr2 ´ 3r ` 6q.

Theorem 2 requires Conjecture 1 to hold, and is also limited to the case
r † q ` 1. Indeed, equality cannot be claimed in general, because there might
exist alternant codes for which additional relations occur. Analogously to pre-
vious results on the Hilbert function at degree 1 [MT23], the value provided by
Theorem 2 for degree 2 still represents a lower bound.

Corollary 2. The Hilbert function of the Pfaffian modeling associated with an
alternant code of order r and extension degree m satisfies

HFAp2q •
m

12
pr ´ 1qpr ´ 2qpr2 ´ 3r ` 6q.

Corollary 2 allows us to state when a generic alternant code is 2-distinguishable.
We use here the following definition of d-distinguishability

Definition 8. An alternant code is d-distinguishable if the associated Hilbert
function HFA satisfies

HFApdq ° HFRpdq

where HFR is the Hilbert series of a random linear code of the same length and
dimension as the alternant code.

Corollary 3. If HFRp2q †
m

12
pr´1qpr´2qpr2 ´3r`6q, then an alternant code

Ar is 2-distinguishable.

In the case r † q`1, we experimentally found that the Hilbert function at degree

2 for a generic 2-distinguishable alternant code was always equal to
m

12
pr´1qpr´

2qpr2 ´ 3r ` 6q.

5 The new distinguisher regime

From [CMT23a], it can be readily deduced that HFRp2q corresponding to a
random linear code of the same dimension k “ n ´ rm as a generic alternant
code of length n, degree r and extension degree m is given by

HFRp2q “ max

"

0,
1

2

ˆ

k2 ´ kps2 ´ s ` 1q `
s4 ´ s2

6

˙*

, (4)

where s
def
“ rm. Combined with Corollary 3, this implies



Proposition 3. For a given degree r and extension degree m and assuming that
the field size q satisfies q • r, a generic alternant code whose dimension satisfies
k ° k0 where

k0
def
“

s2 ´ s ` 1 ´
b

s4

3
` 2H

3
´ 2s3 ` 11

3
s2 ´ 2s ` 1

2

with s
def
“ rm, H

def
“ mpr ´ 1qpr ´ 2qpr2 ´ 3r ` 6q is 2-distinguishable.

A natural asymptotic choice of parameters is to let r go to infinity and assume
that m “ O plog rq. This is in general the range which is chosen for m, since in
order to maximize the decoding capacity one chooses the smallest possible m

such that qm • n. In such a case, it is straightforward to check that

k0 „
rÑ8

1 ´

b

1` 2

m3

3

2
m2r2.

When m also goes to infinity with r, we have

k0 „
1 ´

b

1

3

2
m2r2 « 0.21m2r2.

This is much better than the distinguisher of [FGO`11]. In the regime where
q • r, it is able to distinguish a generic alternant code from a generic linear code

when n °
`

mr`1

2

˘

´mpr´1qpr´2q
2

, that is when k °
`

mr`1

2

˘

´rm´mpr´1qpr´2q
2

. This

corresponds to k ° k1
def
“

`

mr

2

˘

´ mpr´1qpr´2q
2

with k1 “
1´ 1

m

2
m2r2 ` o

`

m2r2q
˘

as r Ñ 8 and if m goes to infinity as well, k1 „ m2r2

2
.
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Abstract. We compute the weight distribution of the R(4, 9) by combining the

approach described in D. V. Sarwate’s Ph.D. thesis from 1973 with knowledge on

the affine equivalence classification of Boolean functions. To solve this problem

posed, e.g., in the book of MacWilliams and Sloane, we apply a refined approach

based on the classification of Boolean quartic forms in eight variables due to

Ph. Langevin and G. Leander, and recent results on the classification of the

quotient space R(4, 7)/R(2, 7) due to V. Gillot and Ph. Langevin.

Keywords: binary Reed-Muller code, weight distribution, affine equivalence

1 Introduction

For basic coding theoretical notions, we refer to [13]. All considered codes in this paper

are binary, i.e., over the alphabet F2 = {0, 1}.

The binary Reed-Muller codes form one of the oldest studied families of codes

invented in 1950s and have an easy-to-implement decoding algorithm based on majority-

logic circuits. However, there are few general results about their weight structure, i.e.,

the weight distributions are known only for:

– the 1st and 2nd order codes of that kind [17] (1970);

– arbitrary order when the weight < 2d [8] (1970), and later on (in 1976) had been

extended for weights < 2.5d where d is the minimum weight [9];

Results on the weight spectra of some third order codes are presented in an earlier

work [20], and on the spectra of whole families of binary Reed-Muller codes in the

very recent work [2]. Some partial results concerning the weight distribution of the third

and fourth order Reed-Muller codes are obtained in [15], [9], [18] and [19]. For more

information about the weight distributions of binary Reed-Muller codes of particular

lengths and orders, the reader is referred to [16].

The weight spectrum of the fourth order Reed-Muller code R(4, 9) of length 512,

has been found in [2] and presented as a numerical example which demonstrates the

technique developed there. To our knowledge, there have been very few attempts to

determine the (exact) weight distribution of this code, which was listed among the

smallest Reed-Muller codes whose weight distributions were unknown (in 1977) (see,

[13, p. 447]). Specifically, in the concluding remarks of his Ph.D. thesis [15],



D. V. Sarwate has discussed the applicability of the methods described by him to

Reed-Muller codes of lengths larger than 256. He has estimated that there are too many

equivalence classes of cosets from the desired type and has come into conclusion that

enumerating the R(4, 9) seems out of reach through them. Another promising way to

attack the considered problem consists in using the fact that we are dealing with a

double-even binary self-dual code and a general form of the weight enumerators of such

codes is known from the work of A. M. Gleason (see, e.g., [13, Ch.19]). But, although

this second approach has proven itself in the case of shorter codes of that kind and

requires modest computational efforts, for its successful application one needs more

intrinsic knowledge about the R(4, 9) than those presented in [8] (see, [3, Ch. 11] for

details).

This paper is organized as follows. In the next section we give the necessary

preliminaries. In Section 3 a refined approach to the problem under consideration

enabling one to save computational efforts is exposed. Some conclusions are drawn in

the last section.

2 Preliminaries

For basic knowledge on Boolean functions and their applications in Coding Theory and

Cryptography, we direct the reader to [1] and [4]. Herein, for the sake of completeness,

we recall the classical definition of the binary Reed-Muller code.

Definition 1. The rth order binary Reed-Muller (or RM) code R(r,m) of length

n = 2m, for 0  r  m, is the set of all binary vectors f of length n which are truth

tables of Boolean functions f(x),x = (x1, . . . , xm), having algebraic normal forms of

degree at most r.

Henceforth the binary vector f of length 2m will be identified with corresponding

Boolean function f in m variables.

In order to present our results we need to recall the definition of the weight

distribution of a code, i.e., an arbitrary set C of vectors with fixed length n (this

definition holds in particular for cosets of binary linear codes).

Definition 2. The weight distribution of a code C of length n is the vector W (C) =
(W0, . . . ,Wn), where Wi denotes the number of codewords with Hamming weight i.

Accordingly, we recall the definition of the simplest weight enumerator of a code.

Definition 3. Weight enumerator of a code C possessing weight distribution W (C) =
(W0, . . . ,Wn) is defined as the following polynomial in the indeterminate z:

W[z;C] =
n
X

i=0

Wiz
i.

In this paper, we make use of two facts for the first time exposed in [15] and stated in

the next two theorems. (For 0  r  m, the set of all homogeneous polynomials on m
binary variables of algebraic degree r adjoined with the 0 is denoted by H(r)(m).)

2



Theorem 1. ([15, 5.12]) For 0  r  m, the following holds:

W[z;R(r + 2,m+ 2)] =
X

p2H(r+2)(m+1)

W2[z; p+R(r + 1,m+ 1)].

Theorem 2. ([15, 5.13]) Let p = e + fxm+1, with given e 2 H(r+2)(m) and

f 2 H(r+1)(m). Then the weight enumerator of the coset C(p) = p+R(r + 1,m+ 1)
equals to:

(⇤)
X

g2H(r+1)(m)

W[z; e+ g +R(r,m)] · W [z; e+ g + f +R(r,m)].

For definition of the general affine group GA(m) and its subgroup the general linear

group GL(m, 2), we refer to [13, Ch.13.9]. The action of A 2 GA(m) on a Boolean

function f(x) will be denoted by f � A, i.e., f � A = f(A(x)). Another necessary

definition is that of affine equivalence of two cosets of Reed-Muller code:

Definition 4. The cosets C1 and C2 of R(r,m) with representatives f1 2 C1, f2 2 C2,

respectively, are called affine equivalent if there exist a transformation A 2 GA(m)
such that f1 �A = f2.

In this article, we extensively use the following well-known property (see, e.g., [7]):

Property P. The weight enumerators of two affine equivalent cosets of a Reed-Muller

code are identical.

Affine equivalence classification of the cosets of RM codes is useful in studying

important coding theoretical and cryptographic properties of Boolean functions

comprising them. A strategy how to compute the complete classification of Boolean

quartic forms in eight variables, i.e., the classification of the quotient space

R(4, 8)/R(3, 8) under the action of GL(8, 2), is presented in [12]. Here, just as an

extract of this result, we point out that the Boolean quartic forms of eight variables can

be classified in 999 (see, as well [7]) linear equivalence classes listed in [10]. Recently,

the interest in that topic has been renewed by [5] which (among other things) provides

affine equivalence classification of the quotient space R(4, 7)/R(2, 7). The authors of

[5] and [12] have also outlined applications of their results concerning the covering radii

of some RM codes, and Boolean functions in the family of bent ones. In Section 3, we

point out yet another application, namely, computing the weight distribution of R(4, 9).

3 The refined approach

3.1 Rationale

Now, we describe a strategy following which makes feasible the computation of interest.

For 1  r  m, let n(r,m) be the number of GL(m, 2)�orbits in the quotient

space R⇤(r,m) = R(r,m)/R(r � 1,m). Also assume that an arbitrary numbering of

these orbits (linear equivalence classes) has been fixed.

3



Corollary 1. Let pi 2 H(r+2)(m+ 1) be a representative of the ith linear equivalence

class in R⇤(r + 2,m+ 1) with size Li. Then the following holds:

W[z;R(r + 2,m+ 2)] =

n(r+2,m+1)
X

i=1

LiW
2[z; pi +R(r + 1,m+ 1)]. (1)

Proof. The assertion is an immediate consequence of Theorem 1 and Property P . ut

The above corollary reduces the number of needed weight enumerator computations

to the number n(r + 2,m+ 1) which is significantly smaller than the straightforward

|H(r+2)(m+1)| = 2(
m+1
r+2 ) in Theorem 1. For instance, as it has been already mentioned,

n(4, 8) = 999 which should be compared with 270.

Remark 1. Corollary 1 is implicitly used in [15] for shorter RM codes.

Next, we can state another claim that allows further reduction of the cost.

Corollary 2. For given e 2 H(r+2)(m), let H(r+1)(m) be partitioned into blocks

(subsets) Gi, 1  i  s with the property that whenever g 2 Gi the enumerator

W[z; e + g + R(r,m)] is a (distinct) constant polynomial wi(z). Then the following

holds:

(a) the weight enumerator of the coset C(p) = p+R(r+1,m+1), p = e+ fxm+1

for fixed f 2 H(r+1)(m), can be expressed by

s
X

i=1

wi(z)

0

@

X

g2Gi

W[z; e+ g + f +R(r,m)]

1

A .

(b) the number of polynomial multiplications for computing the aforesaid weight

enumerator equals to s, i.e. the number of distinct weight enumerators W[z; e + g +

R(r,m)], g 2 H(r+1)(m), while that of polynomial additions is 2(
m

r+1) � s.

Proof. Rearranging the summands in (*) from Theorem 2 and putting outside of brackets

the common multipliers wi(z) proves (a). The claim (b) is an immediate consequence

of (a). ut

The affine equivalence classification of R(r + 2,m)/R(r,m) enables to substantiate

the usage of Corollary 2. To see this, let us recall the following definition:

Definition 5. The subgroup St(e) of GA(m) that fixes e 2 H(r+2)(m), i.e., for each

A 2 St(e) it holds: e �A 2 e+R(r + 1,m), is called stabilizer of e in GA(m).

For given e 2 H(r+2)(m), the stabilizer St(e) partitions the cosets of the form

e+ g +R(r,m) where g 2 H(r+1)(m) into disjoint orbits. Denote this partition by

∆(e). Furthermore, Property P implies that the enumerator W[z; e+ g +R(r,m)] is

preserved when g runs over an orbit of ∆(e). The latter permits to constitute efficiently

the coarse partition ∆
0(e) = {Gi, 1  i  s} of H(r+1)(m) (see, Corollary 2) by

merging those orbits possessing identical weight enumerators (the latter ones being

computed in advance on chosen orbit representatives).
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3.2 Computing W[z;R(4, 9)]

Our computational work is divided into two main phases: a pre-computing and actual

computing.

The aim of pre-computing is to provide tools for efficient computation of the

expression (*) in Theorem 2 given a specific e and f , and is carried out following

Corollary 2 and the subsequent considerations from the previous subsection.

Let E(4, 7) be the set of representatives of the twelve linear equivalence classes of

R⇤(4, 7) given in [11]. For fixed e 2 E(4, 7), the pre-computing involves the following

three tasks:

– T 1: Constitute and store the orbits of the partition ∆(e);
– T 2: Compute the weight enumerators of the cosets e+ g +R(2, 7) when g varies

over a set of representatives of ∆(e)’s orbits;

– T 3: Merge the orbits with identical weight enumerators to obtain the coarse partition

∆
0(e), and make data arrangement permitting for given f 2 H(3)(7) to look up the

identifier of a block in ∆
0(e) containing f (respectively, to have direct access to the

common weight enumerator).

For all e 2 E(4, 7), we present in Table 1 of the Appendix the sizes of partitions ∆(e)
and ∆

0(e), respectively.

Remark 2. It is worth pointing out that:

– the task T 1 is efficiently performed based on the so-called "orbit algorithm" [6]

using the set of generators of the stabilizer St(e) provided by [11];

– the task T 2 can be carried out simultaneously for all representatives by exhaustive

generation of the codewords of R(2, 7) based on some Gray code.

Now, following the strategy described in Section 3.1, we present an algorithm for

computing the weight enumerator W[z;C(p)] of the coset C(p) = p+R(3, 8) where

p = e + fx8 for fixed e 2 E(4, 7) and a given input f 2 H(3)(7). Note that it can be

implemented as a subroutine. Recall also that the common weight enumerator wi(z)
corresponding to the block Gi in ∆

0(e) has been already computed in the pre-computing

task T 2 where 1  i  |∆0(e)| = s(e).

Algorithm 1: Returning the weight enumerator W[z;C(p)] where p = e+ fx8 for

fixed e and a given f 2 H(3)(7)

1 U[z] := 0;

2 for i in [1,s(e)] do

3 UU(z) := 0;

4 for g in G[i] do

5 j := FindBlock(g+f);

6 UU(z) := UU(z) + w[j](z);

7 U(z) := U(z) + w[i](z) * UU(z);

8 W[z; C(p)] := U(z);

In the actual computing, we apply formula (1) supposing that a set S of pairs:

(representative pi, orbit size Li) for the i�th class Oi, 1  i  999, of the classification

5



of R⇤(4, 8) is available. W.l.o.g., we may assume each pi is of the form e+fix8 for some

e 2 E(4, 7) and fi 2 H(3)(7), so the set of classes is naturally partitioned into subsets

O(e) of cardinalities n(e), e 2 E(4, 7). (The values n(e) are given in the first column of

Table 2 of the Appendix.) Bellow, we present an algorithm for computing the sum in

formula (1) and thus W[z;R(4, 9)]. (Note that we call the subroutine W[z;C(p)].)

Algorithm 2: Computing W[z;R(4, 9)]

1 V(z) := 0;

2 for e 2 E(4, 7) do

3 for j in [1,n(e)] do

4 p := Representative(O(e)[j]);
5 L := Size(O(e)[j]);
6 V(z) := V(z) + L * W2[z;C(p)];

7 W[z;R(4, 9)] = V (z);

The data present in [10] contains information to form a set S 0 of kind similar to S.

However, the representatives p0i there are of the form e0 + f 0

ix8 where e0s constitute

different set of representatives of the twelve classes of R⇤(4, 7), say E 0(4, 7). For some

elements of E(4, 7) and E 0(4, 7), their linear equivalence is evident by eye inspection.

For the remaining, we determined those which are linearly equivalent by computing the

vectors of invariants of their duals (see, for details [7, pp. 115-117]). The matching found

is represented in the rows of Table 2 where E(4, 7) and E
0

(4, 7) are the sets consisting

of dual forms of those in E(4, 7) and E 0(4, 7), respectively. To find out a nonsingular

(7 ⇥ 7) matrix A with property that e0 � A 2 e + R(3, 7) for thus determined pairs

(e0, e), we wrote a simple program in C which generates at random such a nonsingular

square matrix and then checks the imposed condition. This technique is sufficiently

efficient (due to relatively large stabilizers sizes, see, [12, Table 2]) and the program

finished successfully its work in reasonable time. For similar technique to exploring affine

equivalence of Boolean functions, we refer the reader to [14]. The obtained results are

presented in the last column of Table 2 of the Appendix. Finally, acting on corresponding

f 0

i , 1  i  999 by the resulting linear transformations (of course, ignoring the terms of

degree less than 3), we obtain a type of set required by the Algorithm 2. The weight

distribution got is presented in Table 3 of the Appendix.

Remark 3. The functions FindBlock(·), Representative(·) and Size(·) have names that

are self-explanatory when it comes to their intended purpose.

3.3 Evaluating the computational costs

Following [6] and [11], we estimate that the computational cost of task T 1 is |H(3)(7)|⇥
P

e2E(4,7) |Sg(e)| = 235 ⇥ 26 ⇡ 239.7 affine transformations where Sg(e) denotes the

set of generators of the stabilizer St(e). The computational complexity of task T 2 is

in total proportional to the product 68443⇥ 229 ⇡ 245.06 with the first factor being the

number of classes of R(4, 7)/R(2, 7) and the second being the size of R(2, 7). Task T 3
can be carried out by applying some sorting technique. In summary, the pre-computing in
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case r = 2 and m = 7 is efficiently performed. In addition, we note that the compressed

storing of orbit and data arrangement into RAM needs at most 124 GB of memory.

In the actual computing, for every e 2 E(4, 7), Algorithm 1 requires |∆0(e)|
multiplications and about 235 additions of degree 128 polynomials with nonnegative

integer coefficients. Therefore, Algorithm 2 requires
P

e2E(4,7) n(e)⇥ |∆0(e)|

= 1827252 ⇡ 220.8 multiplications and about 999 ⇥ 235 ⇡ 245 additions of

polynomials of that kind; and 999 squarings of degree 256 polynomials and some

additional operations with negligible cost, of course.

Remark 4. The straightforward application of Theorem 2 (based on the original partition

∆(e)) will require about 6 times more multiplications of degree 128 polynomials than

the actually executed.

Remark 5. Finally, we have two remarks concerning the implementation:

– To meet the memory limitations, we use the appropriate for that aim Delta

compression and VByte encoding of the data. These techniques are important to our

computer-aided solution, but the details are omitted because of their merely

auxiliary role;

– We use the 256-bit CPU registers which ensures that arithmetic operations are

performed efficiently and eliminates the need to further estimate the number of

processor operations.

4 Conclusion

In this article, thanks to recent advances in the classification of Boolean functions [5],[12]

and the utilization of modern high-performance computers, a solution to the problem at

hand is obtained. However, we should admit that it may not be doable to push this line

of research much further due to the way in which the computational burden increases

with code length.
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Appendix

Table 1. Sizes of partitions ∆(e) and ∆
0(e)

e 2 E(4, 7): ANF’s according to ([11]) |∆(e)| |∆0(e)|

0 12 12

4567 63 52

1235+1345+1356+1456+2346+2356+2456 130 112

2367+4567 289 182

1237+4567 480 306

1257+1367+4567 730 395

1237+1247+1357+2367+4567 204 157

1236+1257+1345+1467+2347+2456+3567 1098 675

1236+1356+1567+2357+2467+2567+3456 1340 811

1367+2345+2356+3456+4567 6449 2170

1234+1237+1267+1567+2345+3456+4567 23988 3377

1236+1367+1567+2345+3456+3457+3467 33660 4636
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Table 2. The matching between E 0(4, 7) and E(4, 7)

Distribution of n(e) E
0

(4, 7) E(4, 7) Linear transition transformation

3 0 0 [1000000 0100000 0010000 0001000 0000100 0000010 0000001]

2 123 123 [1000000 0100000 0010000 0001000 0000100 0000010 0000001]

21 127+136+145 137+147+157+237+247+267+467 [0011001 0011110 0100110 1011000 1111010 1001100 0001100]

15 125+134 123+145 [1000000 0100000 0001000 0000100 0010000 0000010 0000001]

89 126+345 123+456 [1000000 0100000 0001000 0000100 0000010 0010000 0000001]

56 126+135+234 123+245+346 [0100000 0010000 0001000 0000010 0000100 1000000 0000001]

10 135+146+235+236+245 123+145+246+356+456 [1000000 0000010 0001000 0010000 0000100 0100000 0000001]

7 127+136+145+234 124+137+156+235+267+346+457 [0110001 1011001 0110011 0111010 1100101 0010111 1001011]

502 125+134+135+167+247+357 127+134+135+146+234+247+457 [0001000 0010000 0000001 0000100 0100000 0000010 1100110]

1 123+247+356 123+127+147+167+245 [0010000 0110011 1010000 0001110 0000001 0010011 0000100]

1 147+156+237+246+345 123+127+167+234+345+456+567 [0101010 1001010 1001001 1111111 0011000 0100010 1001011]

292 127+146+236+345 125+126+127+167+234+245+457 [0100111 0001110 0110110 1011000 0000010 0000100 0010110]
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Table 3. Weight Distribution of the [512,256,32] Reed-Muller code

Weight Number of codewords

0 512 1

32 480 52955952

48 464 919315326720

56 456 271767121346560

60 452 860689275027456

64 448 89163020044002040

68 444 1777323352931696640

72 440 64959328938397057024

76 436 2094952122987829002240

80 432 86129855718211879936768

84 428 3718387228743293604986880

88 424 216407674400647746861465600

92 420 15958945395035022932054114304

96 416 1570964763114053055495174389136

100 412 207755244457303752035637154283520

104 408 34164336816436357675455725024378880

108 404 5992987676360073735151889707696128000

112 400 983217921810034263357552475089021004288

116 396 140881159168600922710983130625456163782656

120 392 17178463264607761296016540993629780705771520

124 388 1770270551281316280504947079180771901717872640

128 384 154198773988541804525321284585063483246993999900

132 380 11380437366712812474455950864177326068447989202944

136 376 713793445298874211607839796879716106185715280216064

140 372 38161660034401312989486264769054124765959796671119360

144 368 1744077996406613042017016863461234839306732612077058560

148 364 68320936493023612641136928149296775084064365913214812160

152 360 2299744204800465802453316637595783829108912802028206751744

156 356 66674424868716978552789375387240003239187186349775851094016

160 352 1668559700964160587350805664583122924498928358151715733007408

164 348 36117082274027891545154187373048131661136552390031364702863360

168 344 677483598989547107793615101247739514269621184741356041461104640

172 340 11032441933713096201663286389373184730113421621201515757397082112

176 336 156225095497619813307679231937780861426835567156776476525084177664

180 332 1926667532217097161576702991776654344250440175688196887457279508480

184 328 20723534026876536792281002394151796205045793736436788802938336133120

188 324 194671442741837852939975553363771856234841259238404365556287065292800

192 320 1599044990181340998819270766161596605692512085057170791477694075282632

196 316 11498415685246302189888474222781442491860129957714864173250891967627264

200 312 72459467570743603819378812718772497540870770484626494838959726267809792

204 308 400549932263936554220342987258224499780564121712827465674395223861493760

208 304 1944071611978423909059426198144849863064608675044397429548995177751732480

212 300 8291211853278378544436157221213736835450108801042695204524353086973542400

216 296 31095502600701130763682713427899390240950550846409105550583369693522427904

220 292 102622652435510219354959437959897900434480615845926142166854426192158654464

224 288 298206281302110726623000750445450132512881810629607123478473554095237810960

228 284 763396919631666688676755106996803883003881847438728311891109384630797598720

232 280 1722452776176219896357452486934573175804665343735169479919087899582551687168

236 276 3426750460257305904470547641506642175867699465315478403354123631366508642304

240 272 6013163599489683999312799935491777179772724247998877953378442920501417933824

244 268 9309551320248854051332692772889245412495562988894547412532818045057116405760

248 264 12718986044129514620716674156341900030463015021774940408815989741288144568320

252 260 15336997499945305387056357527918950456934399969250231086077675815418680311808

256 16324199909251682000435577287934368523097397692548071777837483832108326674502
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1 Introduction

Skew cyclic codes are a subclass of linear codes containing the cyclic codes.
These codes and their decoding algorithms have been the subject of several
works [4,8,10]. Recently, M. Bossert proposed an iterative decoding algorithm
for binary cyclic codes [2] using the minimum weight codewords of ”dual” codes.
Later, M. Bossert et al. extended that work to non-binary cyclic codes [3]. The
aim of this note is to adapt these algorithms to skew constacyclic codes using
Euclidean duals.

The text is organized as follows. In Section 2, we recall the definition of skew
constacyclic codes and a characterization of their Euclidean duals. In Section
3, we give our decoding strategy and show the link with the strategy applied
in [3]. In Section 4, we initialize an analysis of the resulting iterative decoding
algorithm and provide a condition under which the algorithm always fails.

2 Some generalities on skew constacyclic codes

Recall that a linear code C over a finite field IFq of length n and dimension k
is a k-dimensional subspace of IFn

q . The Euclidean dual C? of C is defined as

C? = {v 2 IFn
q | hv, ci = 0 for all c 2 C},

where hx, yi =
n�1
X

i=0

xiyi is the Euclidean scalar product of x = (x0, . . . , xn�1) 2

IFn
q and y = (y0, . . . , yn�1) 2 IFn

q . The minimum distance d of C is the smallest



of the (Hamming) weights of the non-zero codewords. Furthermore, a linear code
C is called cyclic if for all c = (c0, . . . , cn�1) in C the vector (cn�1, c0, . . . , cn�2)
also belongs to C.

Let ✓ be an automorphism of IFq, and let " be a non-zero element of IFq.
Consider the map

�" :

⇢

F
n
q �! F

n
q ,

(a0, ..., an�1) 7�! ("✓(an�1), ✓(a0), . . . , ✓(an�2)).

Skew constacyclic codes are defined as follows.

Definition 1 ( Definition 1 of [6] ). A (✓, ")-constacyclic code C is a linear
code over IFq such that for any c = (c0, . . . , cn�1) 2 IFn

q ,

c 2 C ) �"(c) 2 C.

If " = 1, then C is called ✓-cyclic. If " = �1, then C is called ✓-negacyclic.

Note that if ✓ is the identity, then a ✓-cyclic code (resp. ✓-negacyclic) is a
cyclic (resp. negacyclic) code.

The skew polynomial ring (R,+, ·), or Ore ring [11], is the set of polynomials
IFq[x; ✓] over IFq equipped with the usual component-wise addition ‘+’ and where
the multiplication ‘·’ is defined by the rule

x · a = ✓(a)x for all a 2 IFq.

Clearly, the ring R is non-commutative if ✓ is different from the identity. It is
well known that R is a left and right Euclidean ring. Moreover, the center of R
is the commutative polynomial ring IF✓

q [x
|✓|], where IF✓

q stands for the subfield
of IFq fixed by ✓, and |✓| is the order of ✓.

In this text we use the conventional representation of the elements c =
(c0, . . . , cn�1) of IF

n
q as skew polynomials c(x) = c0+ c1x+ . . .+ cn�1x

n�1 of de-
gree less than n. Under this correspondence, a (✓, ")-constacyclic code C can be
viewed as a left R-submodule Rg(x)/R(xn � ") of R/R(xn � ") [6], where g(x)
is a monic skew right divisor of xn � " called skew generator polynomial of
the code C. The dimension of C is k = n� deg(g(x)). One has

C = {m(x)g(x) | m(x) 2 R, deg(m(x)) < k}.

We write C = (g)
"
n,✓. To characterize the Euclidean dual of C we recall below the

definition of the skew reciprocal polynomial of a skew polynomial in R.

Definition 2 ( Definition 3 of [6] ). Let h =

k
X

i=0

hix
i 2 R be a skew polyno-

mial of degree k. The skew reciprocal polynomial h⇤(x) of h(x) is the skew
polynomial

h⇤(x) =

k
X

i=0

xk�i · hi =

k
X

i=0

✓i(hk�i)x
i.



The left monic skew reciprocal polynomial h\(x) of h(x) is

h\(x) =
1

✓k�m(hm)
h⇤(x),

where m = min{i | hi 6= 0}.

The following proposition gives the Euclidean dual of a (✓, ")-constacyclic
code. Notice that we extend the automorphism ✓ of IFq to the automorphism

✓ : R ! R of R by linearity, i.e. by the rule
k

X

i=0

aix
i 7!

k
X

i=0

✓(ai)x
i.

Proposition 1 (Theorem 1 of [6] ). Let C = (g)"n,✓ be a (✓, ")-constacyclic

code over IFq. The Euclidean dual C? of C is a (✓, 1/")-constacyclic code over

IFq defined as C? = (h\)
1/"
n,✓ , where h is the monic skew polynomial such that

xn � " = ✓n(h(x))g(x).

The skew polynomial h(x) is called skew check polynomial of the code C.

Example 1 Let IF4 = IF2(a) with a2 + a + 1 = 0, ✓ : u 7! u2 2 Aut(IF4), and
R = IF4[x; ✓]. Let n = 12. Consider g(x) = x8+a2x6+x5+x4+x3+x+a 2 R.
One has x12�1 = h(x)g(x), where h(x) = x4+a2x2+x+a2. The skew polynomial
g(x) generates a ✓-cyclic code C of length 12, dimension 4 and minimum distance
7 over IF4.

We have h⇤(x) = a2x4 + x3 + a2x2 + 1 and h\(x) = x4 + ax3 + x2 + a.
Therefore, the dual C? of C is the ✓-cyclic code over IF4 with skew generator
polynomial h\(x) having length 12, dimension 8, and minimum distance 4.

The following technical lemma finds its use in next section.

Lemma 1 (Lemma 1 of [6] and Lemma 7 of [5]). Let f(x) and g(x) be
skew polynomials in R, and let k = deg(f). One has

1. (f(x)g(x))⇤ = ✓k(g(x)⇤)f(x)⇤.
2. If the constant coefficient of f is nonzero, then (f(x)⇤)⇤ = ✓k(f(x)).
3. If f(x)g(x) is central, then f(x)g(x) = g(x)f(x).

3 Decoding strategy

Let C be a (✓, ")-constacyclic code over IFq of length n with skew generator
polynomial g(x) and skew check polynomial h(x). In this section, we assume
that " belongs to the field IF✓

q fixed by ✓ and that the order |✓| of ✓ divides the
length n of the code C. Therefore, xn � " is a central polynomial, R/(xn � ")
is a left principal ideal ring and C is a left ideal (g(x))/(xn � "). Furthermore,
according to Point 3 of Lemma 1, we have

xn � " = h(x)g(x) = g(x)h(x). (1)



Lemma 2. Given u 2 C? and c 2 C, the following holds :

c(x)✓�`(u(x)⇤) ⌘ 0 (mod xn � "),

where ` = deg(u(x)).

Proof. Let c 2 C = (g)"n,✓ and u 2 C?. Consider m(x) and v(x) in R such
that c(x) = m(x)g(x) and u(x) = v(x)h(x)⇤. According to Lemma 1, we have

u(x)⇤ = ✓deg(v(x))((h(x)⇤)⇤)v(x)⇤ (Point 1. of Lemma 1)

= ✓deg(v(x))+deg(h(x)) (h(x)) v(x)⇤ (Point 2. of Lemma 1)

= ✓` (h(x)) v(x)⇤ (because deg(h⇤(x)) = deg(h(x))).

Therefore, we have ✓�` (u(x)⇤) = h(x)✓�` (v(x)⇤) and

c(x)✓�`(u(x)⇤) = m(x)g(x)h(x)✓�`(v(x)⇤)

= m(x)(xn � ")✓�`(v(x)⇤) (according to (1))

= m(x)✓�`(v(x)⇤)(xn � ") (because xn � " is central)

⌘ 0 (mod xn � ").

Remark 1. The polynomials u(x) and ✓�`(u(x)⇤) have the same Hamming weight.

Definition 3. Two non-zero words c1 and c2 2 IFn
q are called (✓, ")-cyclically

equivalent if there exist b in IFq and i in IN such that c2 = b�i
"(c1) which means

that c2(x) = bxic1(x) mod (xn � "). In this case we write c1 ⇠✓," c2.

One can show that ⇠✓," is an equivalence relation. Each class of (✓, ")-
cyclically equivalent words in IFn

q contains a monic representative (considered
as a polynomial).

Now we pick the following two sets of words playing an important role in the
decoding strategy. Let w be a positive integer. We define

– Bw = {all monic representatives in C?/ ⇠✓, 1
"
of Hamming weight w},

– Bw = {✓�`(u(x)⇤) | u 2 Bw and ` = deg(u(x))}.

Remark 2. Clearly, the set Bw is not unique. But, however, one can show that the
choice of one or the other has no influence on the construction of the frequency
matrix that we detail in what follow.

The elements of Bw are monic skew polynomials. Therefore, the skew recip-
rocal polynomial of each element of Bw has constant coefficient one. According
to Remark 1, each element of Bw has Hamming weight w. Thus, the elements of
Bw are of the form

1 + ��1
x�1 + · · ·+ ��w−1

x�w−1 2 IFq[x; ✓],



where �1, . . .�w are distinct elements of {1, . . . , n � 1}, and ��1
, . . . ,��w−1

are
non-zero elements of IFq.

Unless otherwise stated, in the following we denote by y = c + e a received
word, where c 2 C is a codeword, e 2 IFn

q is an error of Hamming weight ⌧ at
most the half distance bound.

Remark 3. If u 2 C?, i.e. u(x) = v(x)h(x)⇤ with deg(v(x)) < n�deg(h(x)), then
according to Lemma 1(see also proof of Lemma 2) ✓�` (u(x)⇤) = h(x)✓�` (v(x)⇤).
If ✓ is the identity and " = 1, then, for u in C?, ✓�`(u⇤) is in fact a codeword of
the cyclic code of length n and of generator polynomial h(x). This code is called
”dual” code in [2,3], and we would like to emphasis that this ”dual” code is not
the Euclidean dual C?, unless h(x) is self-reciprocal.

Proposition 2. Consider f(x) 2 Bw, we have

y(x)f(x) ⌘ e(x)f(x) (mod xn � ").

Proof. Lemma 2 implies c(x)f(x) ⌘ 0 (mod xn � "). Therefore, as y(x) =
c(x) + e(x), we have y(x)f(x) = c(x)f(x) + e(x)f(x) ⌘ e(x)f(x) (mod xn � ").

Let d? be the minimum distance of C?. We want to concentrate our attention
on the sets Bd⊥ and Bd⊥ .

Example 2 (Example 1, continued) We have d? = 4. Using Magma [1],
one finds: Bd⊥ = {1+ x3 + x6 + x9, 1+ a2x+ x2 + ax4, 1+ a2x2 + a2x4 + x9, 1+
x+a2x3+ax8, 1+x4+x6+x10, 1+a2x3+ax4+x5, 1+x+x6+x7, 1+ax+x4+ax9}.

Let f(x) = 1 + ��1
x�1 + · · ·+ ��

d⊥−1
x�

d⊥−1 be an element of Bd⊥ . Consider
the following skew polynomial in R :

!0
f (x) = y(x)f(x) mod (xn � ")

= e(x)f(x) mod (xn � ")

= e(x) + e(x)��1
x�1 + · · ·+ e(x)��

d⊥−1
x�

d⊥−1 mod (xn � ").

Note that !0
f (x) is the sum of the error e(x) and its shifts by the skew

monomials ��i
x��i , i 2 {1, . . . , d? � 1}. Therefore, the degree of each monomial

in !0
f (x) is an error position or the sum of an error position and a non-zero �i.

Given i 2 {1, . . . , d? � 1}, we define !i
f (x) as follows:

!i
f (x) = !0

f (x)"
�1✓��i

⇣

��1
�i

⌘

xn��i mod (xn � "), (2)

where "�1✓��i

⇣

��1
�i

⌘

xn��i is the inverse of the skew monomial ��i
x�i modulo

xn � ". Notice that !i
f (x) is the sum of the error e(x) and its shifts.

We need the following list of vectors :

L =
⇥

!i
f | f(x) 2 Bd⊥ , i 2 {0, . . . , d? � 1}

⇤

. (3)



Remark that there are exactly |B|⇥ d? elements in L.
Now, we order the elements of the ground finite field Fq as {�0, . . . ,�q�1},

where �0 = 0. Let us build a q ⇥ n frequency matrix as follows:

T =

2

6

6

6

4

T�0,0 T�0,1 . . . T�0,n�1

T�1,0 T�1,1 . . . T�1,n�1

...
...

. . .
...

T�q−1,0 T�q−1,1 . . . T�q−1,n�1

3

7

7

7

5

,

where
T�µ,j =

�

�{!i
f 2 L | (!i

f )j = �µ}
�

� . (4)

Note that the rows of T are enumerated by the elements of IFq. Given µ 2
{0, . . . , q � 1} and j 2 {0, . . . , n � 1}, the entry T�µ,j is the number of skew
polynomials !i

f (x) in L having coefficient �µ 2 IFq at the position j. Withing our
approach, we use T to take a decision on the error position and the occurrence
at this position in the error vector.

The idea of the decoding strategy is based on the fact that the number of !i
f

in L having a coefficient equal to �0 = 0 at the error positions is expected to be
low (see Section 4 for more analysis). We define:

⌫ = min{T�0,j | j 2 {0, . . . , n�1}}, P⌫ = {j 2 {0, . . . , n�1} | T�0,j = ⌫}. (5)

The elements of P⌫ are taken as the possible error positions. The sum of the

elements of each column of T is the same, i.e.

q�1
X

µ=0

T�µ,j = |L| = |B|⇥ d?. Given

a position j 2 P⌫ , we determine the largest element

Mj = max{T�µ,j | µ 2 {1, . . . , q � 1}} (6)

of the column j. Therefore, we can delete from y(x) the error magnitudes at the
identified erroneous positions by replacing y(x) with y(x)�

P

j2P⌫
�µj

xj , where
µj 2 {1, . . . , q�1} are such that T�µj

,j = Mj . One checks if y(x) is a code-word.

Otherwise, one starts again by the calculation of another T with the new y(x).
The decoding algorithm is summarized in Algorithm 1.
Let us finish this section by demonstrating the work of Algorithm 1 on a

concrete example.

Example 3 (Example 1, continued) Suppose that

y(x) = x11 + x10 + ax9 + ax8 + a2x7 + a2x5 + a2x3 + ax2 + 1.

One can verify that y(x) is not a codeword of the code C by dividing y(x) on
the right by g(x). Therefore, we are going to apply the decoding strategy to y(x)
hopping to recover a corrupted codeword.

Consider the following order in the base finite field F4 :

�0 = 0,�1 = 1,�2 = a,�3 = a2.



Algorithm 1 Decoding algorithm for C = (g)
"
n,✓

Require: Bd⊥ , y(x) = c(x) + e(x), where c 2 C; imax

Ensure: c(x) or Failure
1: i = 0;
2: while y(x) /2 C and i  imax do

3: Construct L defined by (3)
4: Construct T defined by (4)
5: Determine ν and Pν as in (5)
6: Refine y(x) = y(x)�

P
j2P⌫

σµjx
j

7: i i+ 1;
8: end while

9: if y(x) 2 C then

10: return y(x)
11: else

12: return Failure
13: end if

We put y0(x) = y(x). At the i-th iteration the decoding algorithm constructs a
matrix T =

�

T�µ,j

�

µ,j
from the polynomial yi�1(x) and the list Bd⊥ .

Iteration 1. One finds

T =

2

6

6

4

11 11 3 13 11 8 14 2 10 14 12 3
7 5 17 9 9 6 6 4 8 6 6 5

7 11 7 5 7 8 6 18 6 6 8 7
7 5 5 5 5 10 6 8 8 6 6 17

3

7

7

5

,

⌫ = 2, P⌫ = 7, M7 = 18, �µ7
= a.

The algorithm takes the following desicion : most probably there is an error
in y0(x) at position 7 and most probably the corresponding entry in the error
vector at position 7 is �2 = a. Therefore, we put

y1(x) = y0(x)� ax7 = x11 + x10 + ax9 + ax8 + x7 + a2x5 + a2x3 + ax2 + 1.

One can verify that y1(x) does not belong to C, and therefore we proceed with the
algorithm.

Iteration 2. One computes

T =

2

6

6

4

16 19 2 18 16 14 19 18 14 19 19 2

6 5 22 8 6 2 5 8 10 5 5 2
4 3 6 2 4 6 3 2 6 3 3 6

6 5 2 4 6 10 5 4 2 5 5 22

3

7

7

5

,

⌫ = 2, P⌫ = {2, 11}, M2 = M11 = 22, �µ2
= 1 and �µ11

= a2.



Note that the minimum value of the first row of T occurs several times in the
row. Therefore, the algorithm decides that most probably there are errors in y1(x)
at positions 2 and 11, and most probably the corresponding entries in the error
vector are �1 = 1 and �3 = a2. Hence we put

y2(x) = y1(x)�(a2x11+x2) = ax11+x10+ax9+ax8+x7+a2x5+a2x3+a2x2+1.

One verifies that y2(x) is an element of the code C. Thus, the decoding is
successfully done and we have just managed to find out that y(x) = c(x) + e(x),
where

c(x) = ax11 + x10 + ax9 + ax8 + x7 + a2x5 + a2x3 + a2x2 + 1 2 C,
e(x) = a2x11 + ax7 + x2.

Let us also notice that there were only three errors, which coincides with the
error capacity of the code C, and the recovered message c(x) is unique.

4 Plausibility analysis of Algorithm 1

A plausibility analysis of an iterative decoding algorithm for binary cyclic codes
was given in [2]. It was improved and completed for non-binary cyclic codes in
[9]. This analysis (left column of Page 655) can be adapted to our situation.

In what follows we present a conjecture (Conjecture 1) on the failure of the
algorithm. This conjecture is motivated by Example 4 and proved when the error
weight is one (Lemma 3).

Let us first introduce a new set. Given f(x) = 1+��1
x�1+. . .+��

d⊥−1
x�

d⊥−1

in R, the support S0
f of f(x) is

S0
f := {0,�1, . . . ,�d⊥�1},

and for 0 < i < d? we denote by Si
f the support of f(x)"�1✓��i

⇣

��1
�i

⌘

xn��i mod

(xn � ") :
Si
f := {(v � �i) mod n, v 2 S0

f}.

Consider the intersection I of the supports Si
f :

I =
d⊥

�1
\

i=0,f2B
d⊥

Si
f .

We have the following conjecture.

Conjecture 1. If I 6= {0}, then the set P⌫ constructed at the first stage of the
iterative decoding Algorithm 1 contains non-erroneous positions, and, therefore,
the algorithm returns Failure.

This means that the decoding can not be done with the dual codewords of weight
d?. The following lemma gives a proof of Conjecture 1 when the error weight is
equal to 1.



Lemma 3. Conjecture 1 is true if the error weight is equal to 1.

Proof. Assume that e(x) = e�1
x�1 . Each !i

f 2 L is of the form

!i
f (x) = e�1

x�1 +e�1
✓�1(��1

)x�1+�1 + · · ·+e�1
✓�1(��

d⊥−1
)x�1+�

d⊥−1 mod xn � "

for all f(x) 2 Bd⊥ and i 2 {0, . . . , d? � 1}. Therefore, at the position �1 of the
vector !i

f , we have the error magnitude e�1
. According to (5), ⌫ = T�0,�1

is zero.
Algorithm 1 succeeds in this case if and only if P⌫ = {�1}. This is equivalent to
I = {0}. Namely, one has the following equivalences :

P⌫ 6= {�1} , 9� 2 {1, . . . , n� 1}, (� + �1) mod n 2 P⌫

, 9� 2 {1, . . . , n� 1}, 8i, f, (� + �1) mod n 2 Supp(!i
f (x))

, 9� 2 {1, . . . , n� 1}, 8i, f, � 2 Si
f

, {1, . . . , n� 1} \ I 6= ;
, I 6= {0}.

The following example illustrates Conjecture 1 in the case when Algorithm
1 fails for sample of errors of weight bigger than 1.

Example 4 Consider the [54, 19, 21]9 ✓-cyclic code C = (g)54,✓ defined over
IF9 = IF3(a), where a2 = a+1, and g(x) = a2x35+a7x34+x33+a7x32+a3x31+
2x30+a2x28+a7x27+a7x26+a2x24+ax23+a5x22+a3x21+x20+a2x19+a2x18+
ax17+a5x15+ax12+a3x11+x10+a7x9+a3x7+x6+a2x5+a6x4+a2x2+ax+1.

The skew check polynomial of C is h(x) = a2x19 + ax18 + a5x17 + a5x15 +
a3x14 + a7x13 + ax12 + a7x11 + 2x10 + a3x9 + x8 + ax7 + ax6 + a2x5 + a2x4 +
a5x3 + a7x2 + ax+ 2.

The dual code of C is a [54, 35, 6]9 ✓-cyclic code with skew generator polyno-
mial h⇤(x). We have x54 � 1 = (x2 � 1)27 = g(x)h(x) = h(x)g(x) and one can
check that h⇤(x) divides (x2 � 1)18(x+ 1) = (x36 + x18 + 1)(x+ 1).

The set B6 is obtained by considering all the multiples of (x36+x18+1)(x+1)
of weight 6:

B6 = {(x36 + x18 + 1)u | u 2 {x+ 1, 2x2 + 1, x3 + 1, 2x4 + 1,

2x6 + 1, x7 + 1, 2x8 + 1, x9 + 1}}.

The set I is therefore equal to {0, 18, 36}. We considered a few of hundreds of
thousands of samples, and we found no error vectors of weights up to 14, which
Algorithm 1 can correct.

For this reason, we opted to work with B13 (cf. the table below).

In order to overcome the fact that I may be distinct from {0}, one chooses to
replace Bd⊥ with Bw, w � d?, in the entry of Algorithm 1. We have implemented
the algorithm in C and present some preliminary computational results in the
table bellow.



Table 1. Results of computer simulations of Algorithm 1.

Codes [54, 27, 18]9 [54, 19, 21]9 [62, 26, 19]4
Duals [54, 27, 18]9 [54, 35, 6]9 [62, 36, 13]4
d?, w 18, 18 6, 13 13, 13

τ  7 1 τ  12 1 τ  7 1
Success rate τ = 8 0, 9923 τ = 13 0, 9999 τ = 8 0, 9878

τ = 9 0, 7532 τ = 14 0, 9918 τ = 9 0, 8346

5 Conclusion

In this text we provide a generalization of the iterative decoding of [2] to the class
of skew constacyclic codes that are ideal codes. We have initiated a preliminary
analysis of our algorithm, and we aim at providing a more accurate analysis of its
success rate. We implemented an improved version of Algorithm 1 both inMagma
and in C, and conducted multiple experiments on several skew constacyclic codes
over small finite fields. In the sequel, we would like also to compare our algorithm
to other decoding algorithms (designed for skew BCH codes, for example).
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Abstract. In 1999, Xing, Niederreiter and Lam introduced a gener-
alization of AG codes using the evaluation at non-rational places of a
function field. In this paper, we show that one can obtain a locality pa-
rameter r in such codes by using only non-rational places of degree at
most r. This is, up to the author’s knowledge, a new way to construct
locally recoverable codes (LRCs). We give an example of such a code
reaching the Singleton-like bound for LRCs. We then investigate simi-
larities with certain concatenated codes. Contrary to previous methods,
our construction allows one to obtain directly codes whose dimension is
not a multiple of the locality. Finally, we give an asymptotic study using
the Garcia–Stichtenoth tower of function fields, for both our construc-
tion and a construction of concatenated codes. We give explicit infinite
families of LRCs with locality 2 over any finite field of cardinality greater
than 3 following our new approach.

1 Introduction

Locally Recoverable Codes (LRCs) are a popular topic lately, in particular for
their potential applications in distributed storage [12]. The locality consists in
the possibility of recovering one corrupted symbol using a small amount of other
symbols. More precisely, a code is said to have locality r if any symbol of a
codeword can be obtained using at most r other symbols [15, 12]. It was proven
in [12] that an [n, k, d] linear code with locality r verifies

d  n� k �

⇠

k

r

⇡

+ 2. (1)

A LRC is said to be optimal when the equality is reached in this bound. There
exist several constructions of optimal LRCs. The first ones were given in [15, 19,
22], but they required to use an alphabet of exponential size compared to the
code length. The construction of Tamo and Barg [5] provides optimal codes of
length upper bounded by the size of the alphabet and moreover with constraints
on the locality due to the existence of good polynomials. There also exist codes
that reach the bound (1) and have length greater than the size of the alphabet.
Such constructions can be obtained using for instance algebraic surfaces [4, 18]. In
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fact, it has been proven in [14] that, for minimum distance d � 5, the length of an
optimal LRC is at most O(dq3), where q is the size of the alphabet. On the other
side, a classical problem in coding theory is to study what can be obtained for a
fixed alphabet size. Fundamental works on this topic were done in [7, 21]. They
gave tight bounds and achievability results, such as a Gilbert–Varshamov bound
for LRCs. Several constructions of families of codes were then given, for instance
using concatenated codes [7], or in [6, 17, 16, 23, 9]. Other considerations on the
topic are the correction of multiple erasures and the correction from multiple
recovery sets. Details can be found for instance in [5, 6].

In this paper, we consider the generalized AG-codes (GAG-codes) introduced
in [24] by Xing, Niederreiter and Lam. The well known AG-codes defined by
Goppa in [13] are given by the evaluation at rational places (i.e. places of degree
1) of functions of an algebraic function field defined over Fq. The generalization
of Xing et al. consists in using not only the evaluation at rational places, but
at places of higher degrees. In fact, the evaluation at a place of degree d is an
element in the residue class field, that is isomorphic to Fqd . It follows that a
codeword composed by some evaluations at places of different degrees would
be polyalphabetic. To address this difficulty, the solution proposed in [24] is to
encode the evaluation at non rational places with a Fq-linear code.

The key observation behind this document is as follows: if we apply the con-
struction of [24] using non-rational places of degree at most r > 1, we can obtain
linear codes with locality r. It turns out that some of these codes have good
or optimal parameters with respect to the Singleton bound for LRCs (1). There
are similarities between our codes and some concatenated codes, especially those
introduced by Cadambe and Mazumbar in [7, Section VI. A.]. In order to make
a comparison and investigate their differences, we give a construction of LRCs
obtained by concatenation using an AG-code as outer code. More precisely, a
construction from [7] uses a RS code as the outer code. We consider a similar con-
struction by using an AG outer code and show its parameters are similar to those
of our new construction using GAG-codes. Using the recursively defined tower
of function fields of Garcia and Stichtenoth [11], we give an asymptotic study
of both our new construction using generalized AG-codes and the construction
of concatenated codes. An important difference is that our new approach from
generalized AG-codes allows to construct directly codes whose dimension is not
a multiple of the locality, contrary to the one using concatenated codes or the
best-known constructions (e.g. [6]).

The paper is organized as follows. In Section 2, we recall the basics of LRCs
and concatenated codes. In Section 3, we give the definitions and results of
function field theory that we shall use, and present the generalization of AG-
codes of [24]. In Section 4, we explain how one can obtain locality in these codes,
and give an optimal example. In Section 4, we give two explicit families of LRCs,
one using concatenated codes and the second with our new approach using GAG-
codes. We give an asymptotic study. In particular, we show the existence of an
infinite family of LRCs with locality 2 over finite fields of cardinality greater
than 3 and give their parameters.
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2 Locally Recoverable Codes (LRCs)

2.1 Generalities

In what follows, we denote by [n, k, d] a linear code over Fq with length n,
dimension k and minimum distance d. Throughout this paper, we focus on the
notion of locally recoverable codes (LRCs).

Definition 2.1. Let C ⇢ F
n
q be a Fq-linear code. The code C is locally recoverable

with locality r if every symbol of a codeword can be recovered using a subset of
at most r other symbols. The smallest such r is called the locality of the code.

There exists a Singleton-like bound for LRCs [12] and an upper bound for
the rate of codes with locality r, given in [5, Theorem 2.1], that we recall here.

Theorem 2.1. Let C be a q-ary linear code with parameters [n, k, d] and locality
r. The rate of C verifies

k

n


r

r + 1
.

The minimum distance d of C verifies

d  n� k �

⇠

k

r

⇡

+ 2.

However, these results do not take into account the size of the alphabet,
i.e. the cardinality of the base field. There are several bounds considering this
constraint. In [7] and [21, Theorem 5.1], the authors gave a Gilbert–Varshamov-
type bound for LRCs, see (2), where Rq(r, �) denotes the asymptotic bound on
the rate of q-ary locally recoverable codes with locality r and relative minimum
distance �.

Rq(r, �) �1� min
0s1

h 1

r + 1
logq

�

(1 + (q � 1)s)r+1

+(q � 1)(1� s)r+1
�

� � logq s
i

.

(2)

The construction of Tamo-Barg-Vladuts [6] is known to improve upon this
bound. This result is also obtained by [17, 9]. Some achievability results consid-
ering a fixed alphabet size have been obtained via concatenated codes [7, 9].

2.2 Concatenated codes

Concatenated codes were introduced by Forney [10] in 1965. This name comes
from the idea of successively applying two encoders. It consists in first using
an outer code over a large alphabet, then using an inner code to encode the
codeword symbols of the outer code. In our framework, a concatenated code can
be defined as follows.
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Definition 2.2. Let Cout be a qk
0

� ary linear code of parameters [n, k, d] and
Cin be a q � ary linear code of parameters [n0, k0, d0] such that

Cout(m) = (c1, , . . . , cn),

where m 2 F
k
qk

0 and c1, . . . , cn 2 Fqk
0 . Then the concatenated code Cconc of Cout

and Cin is defined by

Cconc(m) = (Cin(c1) | · · · | Cin(cn)) .

Note that the locality of a concatenated code is given by the one of the
inner code [9, Theorem 4.1]. Recall also that such a code verifies the following
properties.

Proposition 2.1. The code Cconc is an [nn0, kk0,� dd0] linear code over Fq.

In [7, Theorem 2], the authors used concatenated codes to obtain asymptotic
achievability results on binary LRCs. More precisely, they used an outer random
qr � ary linear code and the q � ary single parity check code of length r + 1 as
the inner code, and proved the existence of an infinite family of [n, k, d]q linear
codes with locality r. In [9], the authors used concatenated codes to obtain
some dimension-optimal locally repairable codes. Moreover, they also used some
shortening techniques to obtain dimension-optimal LRCs whose dimension is not
a multiple of the locality.

3 Generalized AG-Codes

3.1 Algebraic function fields

Let Fq be the field with q elements, and let F/Fq be an algebraic function field
over Fq of genus g = g(F ). For O a valuation ring, a place P is defined to be
OrO⇥. The evaluation of a function at P is an element of the residue class field
FP , that is isomorphic to Fqd , where d is the degree of the place. A rational place
is a place of degree 1. A divisor D is defined as a formal sum of places, and we
denote by Supp(D) the support of D and L(D) the corresponding Riemann-Roch
space. Details about algebraic function fields can be found in [20].

In the following, obtaining infinite families of codes with our construction
relies on the existence of families of function fields with a large number of places
of a given degree. In this context, let us introduce the Drinfeld–Vladut Bound
at order r, such as stated in [2, Definition 1.3].

Definition 3.1 (Drinfeld–Vladut Bound of order r). Let F/Fq be a func-
tion field over Fq and let Br(F/Fq) denote its number of places of degree r.
Let

Br(q, g) = max{Br(F/Fq) | F/Fq is a function field over Fq of genus g}.

Then,

lim sup
g�!+1

Br(q, g)

g


1

r
(q

r

2 � 1).
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For r = 1, this gives the usual Drinfeld–Vladut Bound on the number of
rational places. There exist several families of function fields reaching this bound,
such as the Garcia–Stichtenoth tower of function fields [11]. Such towers are
recalled and used in Section 5.

3.2 Generalized AG-codes (GAG-codes)

Let F/Fq be an algebraic function field defined over Fq of genus g. In [24], the
authors introduced a generalization of AG-codes by using non-rational places.
Following their work, we use the notations:

– P1, . . . , Ps are s distinct places of F ,
– G is a divisor of F such that Supp(G)

T

{P1, . . . , Ps} = ;,

and for 1  i  s :

– ki = deg(Pi) is the degree of Pi,
– Ci is an [ni, ki, di]q linear code,
– ⇡i is a fixed Fq-linear isomorphism mapping Fqki to Ci.

Consider the application

↵ :
L(G) �! F

n
q

f 7�! (⇡1(f(P1)), . . . ,⇡s(f(Ps))) ,
.

where n =
Ps

i=1 ni.

Definition 3.2. The image of ↵ is called a Generalized Algebraic-Geometric
code (GAG-code), denoted by C(P1, . . . , Ps : G : C1, . . . , Cs).

Such a code is well-defined if the application ↵ is injective, that is the case if
deg(G) <

Ps

i=1 ki [24, Lemma 3.1]. Furthermore, the authors give a lower bound
on the minimum distance and the dimension of these codes in the following
theorem [24, Theorem 3.2].

Theorem 3.1. Under the same notations, if deg(G) <
Ps

i=1 ki, then the di-
mension k and the minimum distance d of the code defined by ↵ verify

– k � deg(G)� g + 1, with equality if deg(G) � 2g � 1,
– d �

Ps

i=1 di � deg(G)�maxR
�
P

i2R(di � ki)
 

,

where the maximum is extended over all subsets R of 1, . . . , s and an empty sum
is defined to be 0.

Remark 3.1. In [24], the authors wrote that this construction is inspired by
concatenated codes, with the difference that several distinct ”inner” codes can
be used. There is another fundamental difference : the dimension of a GAG-code
is given by the one of the ”outer” code only. On the other hand, the dimension
of a concatenated code is given by the product of the dimensions of the inner
code and the outer code.
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4 Locality in Generalized AG-codes

The main observation behind this paper is the following: if k1 = · · · = ks = r,
the code defined has locality r. More formally,

Proposition 4.1. Let F be an algebraic function field defined over Fq of genus
g. Let P1, . . . , Ps be places of F of degree ki = deg(Pi) respectively, and let G
be a divisor such that deg(G) <

Ps

i=1 ki. For 1  i  s, let Ci be an [ni, ki, di]
Fq-linear code with locality at most ki. Let C = C(P1, . . . , Ps : G : C1, . . . , Cs) be
a generalized AG-code as in Definition 3.2. If there exists r 2 N such that for
all 1  i  s, we have 1 < ki  r and ni > deg(Pi), then C has locality r.

In order to obtain codes with a given locality r, it makes sense to use places
P1, . . . , Ps of degree r, and encode the evaluations at each Pi using the same
code C0. We obtain the following.

Proposition 4.2. Let C = C(P1, . . . , Ps : G : C1, . . . , Cs) be a generalized AG-
code as defined above. Suppose that degP1 = · · · = degPs = r and C0 = C1 =
· · · = Cs is an [n0, r, d0] linear code with locality r. If 2g� 1  deg(G) < rs, then

C is an [sn0, deg(G)� g+1,� d0
⇣

s�
j

degG
r

k⌘

] linear code over Fq with locality
r.

A specific family of such codes is introduced in Section 5 and its asymptotic
properties are studied. For now, let us give an example reaching the Singleton
bound for LRCs.

Example 4.1. Let F = F3(x) be the rational function field over F3. It contains 4
rational places : P0, P1, P2 and P1, where Pi can be defined by the polynomial
x� i for 0  i  2 and P1 is the place at infinity. It also contains three places
of degree 2 : P 2

1 , P
2
2 and P 2

3 , that can be defined by the irreducible polynomials
P 2
1 (x) = x2 + 2x + 2, P 2

2 (x) = x2 + 1, and P 2
3 (x) = x2 + x + 2 respectively.

Let C1 = C2 = C3 = RS(3, 2) = {(f(0), f(1), f(2)) | f 2 F3[x]<2}. The code
C = C(P 2

1 , P
2
2 , P

2
3 : 4P1 : RS(3, 2),RS(3, 2),RS(3, 2)) is a (9, 5) code over F3

with locality 2. According to Proposition 4.2, the minimum distance of this code
is at least 2. Using Magma, we computed that the minimum distance of this
code is 3. Consequently, this code is a [9, 5, 3] linear code over F3 with locality
2, reaching the Singleton-like bound (1).

This example generalizes to any prime power q � 3. We have the following.

Proposition 4.3. Let q � 3 be a prime power. One can similarly define a
[ 3
2
(q2�q), q2�q�1, 3]q linear code with locality 2, reaching the Singleton bound.

In the longer version of the paper, we present the results of our experiments
over F3 using an elliptic curve and the Klein quartic.

5 Some families of LRCs and asymptotic study

Our construction is very close to what can be obtained with concatenated codes.
In order to compare both constructions, we introduce a family of concatenated
codes and another obtained with our approach.
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5.1 Concatenated Construction.

This construction is a generalization to an outer AG-code of the construction of
[7, Section VI. A.] that uses an outer extended Reed-Solomon code.

Proposition 5.1 (Concatenated Construction). Let F/Fqr be a function
field of genus g containing s rational places, denoted by P1, . . . , Ps. Let Cpar the
q-ary single parity check code of length r+1 and dimension r, that has minimum
distance 2. For g�1 < k0 < s�g+1, let G be a divisor of F of degree k0+g�1
and D = P1 + · · · + Ps. Then, the concatenated code Cconc defined by the outer
code C(D, G) and the inner code Cpar is a [n, k,� d] linear code over Fq with
locality r, such that

n = (r + 1)s,

k = rk0

d � 2

✓

s�
k

r
� g + 1

◆

.

It follows that the rate of this code verifies

k

n
�

r

r + 1
�

r

2
� �

r(g � 1)

n
,

where � = d
n
.

Note that in this construction, as well as in the known constructions of [5–
7], the dimension is a multiple of the locality. The existence of infinite family
of codes defined by this construction is ensured by sequences of function fields
reaching the Drinfeld–Vladut bound, such as the recursive tower of function
fields defined by Garcia and Stichtenoth [11].

Proposition 5.2. Let q be a prime power and r an even integer, except q =
r = 2. Then, the Concatenated Construction provides an infinite family of linear
code with locality r verifying

k

n
�

r

r + 1

✓

1�
r + 1

2
� �

1

q
r

2 � 1

◆

.

Example 5.1. For q = 4 and r = 2, we obtain k
n
� 1

3
� �.

Note that for r = 2, this gives the same bound as in [9, Theorem 3.7].

5.2 New construction

Let us introduce a specific family of codes obtained with our new strategy, using
Proposition 4.2.
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Proposition 5.3 (GAG Construction). Let F/Fq be a function field of genus
g containing s places of degree r > 1, denoted by P1, . . . , Ps. Let Cpar the q-ary
single parity check code of length r + 1 and dimension r, that has minimum
distance 2. For g�1 < k < rs�g+1, let G be a divisor of F of degree k+g�1.
Then, the code C(P1, . . . , Ps : G : Cpar, . . . , Cpar) is an [n, k,� d] linear code over
Fq with locality r, such that

n = (r + 1)s,

d � 2

✓

s�

�

k + g � 1

r

⌫◆

.

It follows that the rate of this code verifies

k

n
�

r

r + 1
�

r

2
� �

g � 1

n
,

where � = d
n
.

In [2], Ballet and Rolland studied the descent of the tower T /Fq2 to the field
of constant Fq. The authors also proved that these towers reach the Drinfeld–
Vladut bound at order 2 [2, Proposition 3.3]. This allows us to prove the existence
of infinite families of linear code with locality 2.

Proposition 5.4. Let q > 3 be a prime power. Then, the GAG Construction
provides an infinite family of linear code with locality 2 verifying

k

n
�

2

3

✓

1�
q

q2 � q � 2

◆

� �.

Remark 5.1. While ` is increasing, the rate of the codes defined by the GAG
Construction tends to verify k

n
� 2

3
(1 � 3

2
� � 1

q�1
). This is exactly the bound

obtained for the Concatenated Construction in Proposition 5.2, specialized to
locality 2. More generally, according to the Drinfeld–Vladut Bound, the best
rate that can be obtained is

n

k
�

r

r + 1

✓

1�
r + 1

2
� �

1

q
r

2 � 1

◆

.

Remark 5.2. The GAG Construction requires asymptotically a large number
of places of degree r. Such objects can be obtained by the descent to Fq of
function fields defined of Fqr reaching the Drinfeld–Vladut bound ([8], see [3]).
The sequences studied in [2] for r = 2 or q = 2 and r = 4 are convenient for our
study.

Remark 5.3. One can construct directly codes where the dimension is not a
multiple of the locality with the new GAG Construction, while it is not possible
with the Concatenated Construction. In the literature, it is classical to obtain
LRCs whose dimension is a multiple of the locality, then some techniques can
be used to obtain different dimensions, as in [9].
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Remark 5.4. A reasonable question is whether one can build codes with locality
2 of any dimension k 2 N using the GAG Construction. It is not possible with
the tower used previously, but it might be possible using the densified version of
the tower introduced in [2].

Remark 5.5. Although it was quite natural to consider only places of a fixed de-
gree r, one can extend our new construction to places of smaller degree, provided
that we combine them to obtain spaces of dimension r. Moreover, one can also
consider generalized evaluation maps, and for instance use the local expansion
at order r at rational places.

Remark 5.6. The construction introduced in this document might be generalized
in order to obtain codes with hierarchical locality [1].
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Abstract. Rotation-symmetric bent functions, being invariant under
the action of the cyclic group, attracted a lot of attention in the last three
decades due to their applications in cryptography. Finding new construc-
tions of such functions is a well-known difficult problem [4, Open Problem
17]. Most of the known constructions of rotation-symmetric bent func-
tions are based on applying equivalence mappings to special Maiorana-
McFarland bent functions in such a way, that a resulting function is
invariant under the action of cyclic group. Finding rotation-symmetric
bent functions not of this type (thus, those which do not belong to the
completed Maiorana-McFarland class M#) is a very challenging prob-
lem [24, p. 27], to which no solutions are currently known. In this paper,
we provide for the first time a solution to this problem, by showing that
an infinite family of rotation-symmetric bent functions [21] does not be-
long to M#, for all n � 8.

Keywords: Bent function, Rotation-Symmetry, Maiorana-McFarland
class, EA-equivalence, Classification.

1 Introduction

Let Fn
2 be the vector space of dimension n over F2 = {0, 1}. A mapping f : Fn

2 !
F2 is called a Boolean function in n variables, and the set of all Boolean functions
in n variables is denoted by Bn. The Walsh transform Wf : F

n
2 ! Z of f 2 Bn

is defined by Wf (a) =
P

x2F
n
2

(�1)f(x)+x·a for a 2 F
n
2 , where x · a = x1a1 +

x2a2 + · · · + xnan. A Boolean function f 2 Bn with n = 2m is called bent if
|Wf (a)| = 2n/2 for all a 2 F

n
2 . For a Boolean bent function f 2 Bn, the Boolean

function f̃ 2 Bn defined for any a 2 F
n
2 by Wf (a) = 2

n
2 (�1)f̃(a), is also bent and

is called the dual of f . A Boolean function on F
n
2 can be uniquely expressed as a

polynomial in F2[x1, . . . , xn]/(x1+x2
1, . . . , xn+x2

n). This representation is called
the algebraic normal form (ANF, for short), that is, f(x) =

P
v2F

n
2

cv (
Qn

i=i x
vi
i ) ,

where x = (x1, . . . , xn) 2 F
n
2 , cv 2 F2 and v = (v1, . . . , vn) 2 F

n
2 . The algebraic

degree of a Boolean function f , denoted by deg(f), is the algebraic degree of
its ANF. On the set of all Boolean functions one can introduce an equivalence
relation in the following way: two functions f, f 0 2 Bn are called extended-affine



equivalent (EA-equivalent), if there exist a non-degenerate affine transformation
A 2 AGL(n, 2) and an affine function l(x) = a · x+ b on F

n
2 , where a 2 F

n
2 and

b 2 F2, such that f 0(x) = f(xA) + l(x) holds for all x 2 F
n
2 .

The Maiorana-McFarland class M is the set of n-variable (n = 2m) Boolean
bent functions of the form

f(x, y) = x · ⇡(y) + h(y), for all x, y 2 F
m
2 ,

where ⇡ is a permutation on F
m
2 , and h 2 Bm is an arbitrary Boolean function.

The set of bent functions f 2 Bn which are equivalent to at least one function
in M is called the completed Maiorana-McFarland class and is denoted by M#.
Note that for n = 2, 4, 6, all bent functions in Bn are members of M#, see [9, p.
214].

With the following criterion of Dillon, one can show that a given Boolean
bent function f 2 Bn is (not) a member of the completed Maiorana-McFarland
class.

Lemma 1. [10, p. 102] Let n = 2m. A Boolean bent function f 2 Bn belongs to
M# if and only if there exists an m-dimensional linear subspace V of Fn

2 such
that, for any a, b 2 V ,

DaDbf(x) = f(x) + f(x+ a) + f(x+ b) + f(x+ a+ b) = 0, for all x 2 F
n
2 .

Following [19], we call a subspace U of Fn
2 an M-subspace of f 2 Bn, if for all

a, b 2 U we have that Da,bf = 0.

In order to introduce rotation-symmetric Boolean bent functions, which are
the main subject of this paper, we give the following notation. Let (x1, x2, . . . , xn) 2
F
n
2 . For 1  k  n, we define the cyclic shift to the right by k positions

⇢kn (xi) =

⇢
xi+k if i+ k  n
xi+k�n if i+ k > n

. (1)

We extend the definition of ⇢ to tuples by ⇢kn (x1, . . . , xn) =
�
⇢kn (x1) , . . . , ⇢

k
n (xn)

�

and to monomials by ⇢k (xi1 · · ·xi`) = ⇢k (xi1) · · · ⇢
k (xi`).

Definition 1. A Boolean function f 2 Bn is rotation-symmetric (RotS) if for
any vector (x1, . . . , xn) 2 F

n
2 , the equality f(⇢kn (x1, . . . , xn)) = f (x1, . . . , xn)

holds for any 1  k  n.

A Boolean function f 2 Bn is called rotation-symmetric bent, if it is bent and
rotation-symmetric. Sometimes, it is more convenient to represent such functions
with the help of short algebraic normal form (SANF), which is defined as follows.

Definition 2. Let f 2 Bn be a rotation-symmetric function. We define

Gn (x1, . . . , xn) =
�
⇢kn (x1, . . . , xn) , for 1  k  n

 
,

2



that is, the orbit of (x1, . . . , xn) under the action of ⇢kn, 1  k  n. The function
f can be written as

a0 + a1x1 +

nX

j=1

a1jx1xj + · · ·+ a12...nx1x2 · · ·xn,

where the coefficients a0, a1, a1j , . . . , a12...n 2 F2, and the existence of a represen-
tative term x1xi2 . . . xi` implies the existence of all terms from Gn (x1xi2 . . . xil)
in the ANF. This representation of f is called the short algebraic normal form
(SANF) of f .

In the following example, we illustrate the connection between SANF and ANF
of a RotS function.

Example 1. Let f be a cubic RotS function in n = 4 variables, whose SANF is
given by x1x2+x1x2x3. Then, its ANF is given by x1x2+x2x3+x3x4+x4x1+
x1x2x3 + x2x3x4 + x3x4x1 + x4x1x2.

One of the central problems in the theory of rotation-symmetric bent func-
tions is the construction of new infinite families [4, Open Problem 17]. The first
examples of RotS bent functions were obtained with a computer in [20], where the
question about theoretical constructions of RotS bent functions was raised. First
theoretical constructions of RotS bent functions of degree 2 and 3 (in the M#

class) were obtained in [13]. A problem of finding RotS bent functions of higher
degrees was solved later in [22], where the first general construction of rotation
symmetric bent functions in B2m for any m with an arbitrary degree in the range
from 2 to m was proposed using the M# class. Later, several other construc-
tions of bent functions of higher degrees were proposed, see, e.g., [7,21,24,25].
Due to the importance of the M# class in the construction methods of RotS
bent functions, the following open problem was suggested by Zhao, Zheng and
Zhang in [24, p. 27]:

Open Problem 1 How to construct RotS bent functions which do not belong
to the Maiorana-McFarland class?

The main aim of this paper is to provide the first solution to this open
problem by analyzing an infinite family of RotS bent functions of the maximum
algebraic degree constructed by Su [21].

The rest of the article is organized in the following way. In Section 2, we ex-
tend the computational investigation of RotS bent functions, originally initiated
in [20]. Particularly, we enumerate and classify all rotation-symmetric cubic bent
functions in ten variables, and indicate that some of them do not belong, up to
equivalence, to the completed Maiorana-McFarland class M#. In Section 3, we
show that an infinite family of RotS bent functions of Su [21], does not belong to
M#, for all even n � 8. In this way, we provide a solution to Open Problem 1.
The paper is concluded in Section 4.
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2 Classification and enumeration of cubic RotS bent

functions in 10 variables

In this section, we classify and enumerate rotation-symmetric cubic bent func-
tions in 10 variables, thus extending the computational results in [20]. The orig-
inal motivation of restricting ourselves to the functions of degree 3 was to find
more examples of cubic bent functions outside M#, of which only a few ex-
amples and constructions are known [19]. Since our classification approach is
based on the use of combinatorial designs obtained from linear codes, we give
the following definition first.

Definition 3. Let n be even and let f 2 Bn be a Boolean bent function. Let the
linear code Cf over F2 be defined as the row space of the (n+2)⇥2n-matrix over
F2 with columns (1, x, f(x))Tx2F

n
2

. The incidence structure D(f) supported by the

codewords of the minimum weight w = 2n�1 � 2n/2�1 in Cf is a 2-(2n, 2n�1 �
2n/2�1, 2n�2 � 2n/2�1) design, which is called an addition design of f .

It is well-known, that Boolean bent functions f, f 0 2 Bn are EA-equivalent
if and only if their linear codes Cf and Cf 0 are permutation equivalent [12, The-
orem 9]. In turn, permutation equivalence of codes Cf and Cf 0 can be reduced
to isomorphism of addition designs D(f) and D(f 0), since an incidence matrix
of D(f) is a generator matrix of Cf , for details we refer to [11,18]. Using this
approach (reducing equivalence of Boolean and vectorial functions to isomor-
phism of well-defined incidence structures), several important classes of certain
well-defined mappings F : Fn

2 ! F
m
2 were recently classified [1,16,17].

Now, we describe the main idea behind the used methodology and give the
main steps of the used approach. For all the following steps we assume that
n = 10.

1. Construct all cubic RotS cubic functions on F
n
2 using the modular invariant

theory approach [6,8,20].
1.1 Construct the ring of polynomials K[x1, . . . , xn]

Cn of degree 2 and 3,
containing the polynomials that are invariant under the action of the
cyclic group Cn. As explained in [8, p. 129], for n = 10, we have that

dim(K) = gn,2 + gn,3 = n
2 + (n�1)·(n�2)

6 = 17, where gn,w is the number
of distinct cycles of weight w. The terms of degree 1 are not included in
the definition of K, since for an affine function l 2 B, Boolean functions
f and f + l on F

n
2 are EA-equivalent.

1.2 The ring K[x1, . . . , xn]
Cn can be constructed with, e.g., Magma [2], and

SANFs of generators of K are given in the following list:

I = {x1x2, x1x3, x1x4, x1x5, x1x6, x1x2x3, x1x2x4, x1x2x5, x1x2x6

x1x2x7, x1x2x8, x1x2x9, x1x3x5, x1x3x6, x1x3x7, x1x3x8, x1x4x7} .

2. Determine all cubic bent functions K per definition. In total, we got 1572
cubic bent functions.
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3. Split the collection to the “preclasses” using invariants (a preclass is under-
stood as a subset of functions with the same value of some invariant). Here
we use the “distribution of the first-order derivatives”, which is a multiset,
that counts how many first-order derivatives Daf(x) = f(x+ a) + f(x) are
affine (0), . . ., semi-bent (8). Here, the value in brackets is simply the rank
over F2 of the matrix A+AT , where A is an upper triangular matrix defined
by the quadratic form x 7! Daf(x) = xAxT + l(x), where l is an affine func-
tion. We do not give a proof that “distribution of the first-order derivatives”
is an invariant, however it is clear that two EA-equivalent functions f and
f 0 have the same collections of derivatives up to EA-equivalence.
Using this invariant, we got 6 preclasses of RotS cubic bent functions. The
corresponding values can be found in Table 2.

4. Classify the functions using designs from linear codes (see Definition 3).
In total, we got 8 EA-equivalence classes. The representatives given by SANF
are given in Table 1.

5. Check, which EA-equivalence classes (do not) belong to the M# class us-
ing [19, Algorithm 1].
Note that if f 2 M#, then for any f 0 EA-equivalent to f it holds that
f 0 2 M#. In this way, it is enough to check membership of an arbitrary
representative of a given equivalence class w.r.t. to inclusion in M#. As one
can see from Table 2, there is only one EA-equivalence class C8 of RotS cubic
bent functions outside M#. This is the first example of a rotation-symmetric
bent function outside M# in the literature (to the best of our knowledge).
The SANF of its representative f8 2 C8 is given in Table 1.

We summarize all these observations in the following proposition.

Proposition 1. On F
10
2 , there exist 1572 rotation-symmetric cubic bent func-

tions, which are divided into 8 EA-equivalence classes. Among them, there is one
class outside M#.

We give representatives of the obtained equivalence classes in Table 1 and
summarize their inclusion in M# together with the distribution of derivatives
in Table 2.

Table 1. RotS cubic bent functions in 10 variables: representatives fi of extended-
affine equivalence classes Ci together with their cardinalities

fi 2 Ci SANF of a representative fi 2 Ci |Ci|

f1 x1x6 + x1x2x5 + x1x2x7 + x1x2x8 384

f2 x1x6 + x1x2x4 + x1x2x5 + x1x2x6 + x1x2x7 + x1x2x8 + x1x2x9 24

f3 x1x6 + x1x2x3 + x1x2x4 + x1x2x6 + x1x2x7 + x1x2x9 + x1x3x7 72

f4 x1x2 + x1x6 + x1x2x4 + x1x2x7 + x1x2x9 384

f5 x1x2 + x1x6 + x1x2x4 + x1x2x6 + x1x2x7 + x1x2x9 + x1x3x8 384

f6 x1x6 + x1x2x3 + x1x2x5 + x1x2x7 + x1x2x9 + x1x3x5 192

f7 x1x6 + x1x2x3 + x1x2x5 + x1x2x8 + x1x3x7 36

f8 x1x6 + x1x2x5 + x1x2x9 + x1x3x5 + x1x3x8 96

Total — 1572
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Table 2. Equivalence classes of RotS cubic bent functions in 10 variables

Ci Ci in M#? Distr. of der. of Ci

C1

X

{⇤ 210, 4101, 6560, 8352 ⇤}
C2 {⇤ 01, 2510, 8512 ⇤}
C3

C4
{⇤ 431, 8992 ⇤}

C5

C6 {⇤ 215, 4256, 6240, 8512 ⇤}
C7 {⇤ 031, 2480, 4512 ⇤}

C8 ⇥ {⇤230, 4257, 6480, 8256 ⇤}

Remark 1. If a multiset in Table 2 does not contain 0, it means that all elements
of the corresponding equivalence class do not contain affine derivatives. We notice
that in general only a few infinite families of such functions are known, see [3,14].

Since even rotation-symmetric bent functions of low algebraic degree can be
outside the M# class (as the findings of this section indicate), it is reasonable
to focus on the analysis of infinite families of rotation-symmetric bent of the
maximum algebraic degree w.r.t. to their inclusion in M#. This problem will be
considered in detail in the following section.

3 A family of rotation-symmetric bent functions outside

the M# class

As indicated in Introduction, most of the known infinite families of rotation-
symmetric bent functions belong to M#. In this section, we show that two
families of bent functions constructed by Su in [21] do not belong to the M#

class. For convenience, we enumerate in this section coordinates of a vector
x 2 F

n
2 starting from 0, that is x = (x0, . . . , xn�1).

The Construction. The following two families of bent functions were constructed
in [21]. For any even integer n = 2m � 4, a construction of n-variable rotation-
symmetric bent function with maximal algebraic degree m is given as

f (x0, x1 · · · , xn�1) =

m�1X

i=0

(xixm+i) +

n�1X

i=0

(xixi+1 · · ·xi+m�2xi+m) , (2)

whose dual function is

ef (x0, x1 · · · , xn�1) =

m�1X

i=0

(xixm+i) +

n�1X

i=0

(xixi+1 · · ·xi+m�2xi+n�2) , (3)

where xi = xi + 1 and the subscript of x is modulo n.
To prove that bent functions defined by (2) and (3) are outside M#, it

is enough to show that only f /2 M#, as [15, Remark 3.1] indicates. For the
completeness, we add its proof since we are not aware of any explicitly stated in
the literature.
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Lemma 2. Let f 2 Bn be bent. Then, f 2 M# if and only if f̃ 2 M#.

Proof. W.l.o.g, we assume that f is given in bivariate form f : F
n/2
2 ⇥F

n/2
2 ! F2.

Suppose that f 2 M. That is, there exists a permutation ⇡ of F
n/2
2 and a Boolean

function h in n/2 variables such that f(x, y) = x·⇡(y)+h(y) for x, y 2 F
n/2
2 . The

dual f̃ of f (see e.g. [5]) is then defined by f̃(x, y) = y · ⇡�1(x)� h(⇡�1(x)) for

x, y 2 F
n/2
2 , where ⇡�1 is the inverse permutation of ⇡. It is clear that f̃ 2 M.

Now suppose that f 2 M# is EA-equivalent to some function f 0 2 M.

That is, for some affine permutation  of F
n/2
2 ⇥ F

n/2
2 and some elements �, µ 2

F
n/2
2 , " 2 F2, we have that f(x, y) = f 0( (x, y)) + (�, µ) · (x, y) + ". The dual f̃

of f is defined by

(�1)f̃(x,y) = 2�n/2Wf (x, y)

= 2�n/2
X

a,b2F
n/2
2

(�1)f
0( (a,b))+(a,b)·(�,µ)+(a,b)·(x,y)+"

= 2�n/2(�1)"
X

a,b2F
n/2
2

(�1)f
0( (a,b))+(a,b)·(x+�,y+µ)

= 2�n/2(�1)"Wf 0� (x+ �, y + �)

= 2�n/2(�1)" · 2n/2(�1)(̂f
0� )(x+�,y+µ)

= (�1)(̂f
0� )(x+�,y+µ)+".

Thus, f̃(x, y) = ^(f 0 �  )(x + �, y + µ) + ". Since  is an affine permutation

of F
n/2
2 ⇥ F

n/2
2 , we know that (f 0 �  )(a, b) = f 0( (a, b)) = f 0(a0, b0) for some

a0, b0 2 F
n/2
2 . Because f 0 2 M, it follows that f 0 � 2 M. Consequently, we then

have that ^(f 0 �  ) 2 M#. In other words, f̃ 2 M#. Thus, we conclude that if
f 2 M# then also f̃ 2 M#. Furthermore, as f̃ is also a bent function, we have

that if f̃ 2 M# then
˜̃
f = f 2 M#. This concludes the proof. ut

We will also need the following technical result about derivatives of the in-
dicator of a flat.

Lemma 3. Let E be a subspace of Fn
2 , and let a 2 F

n
2 and a+E : Fn

2 ! F2 be
the indicator of a+ E. Let v1, . . . , vk be a set of vectors in F2. If v1, . . . , vk are
linearly independent in the quotient space F

n
2/E then

Dv1 . . . Dvk a+E = a+E0 ,

where E0 is the subspace E0 = hE, v1, . . . , vki. Otherwise, if v1, . . . , vk are linearly
dependent in F

n
2/E, then Dv1

. . . Dvk a+E = 0.

Proof. The proof is by induction on k. Assume k = 1. Then, the statement v1
is linearly independent in the quotient space F

n
2/E simply means that v1 /2 E.
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Hence, if B is a basis for E, then B [ {v1} is a basis for E0 = hE, v1, i. We
compute

Dv1 a+E(x) = a+E(x) + a+E(x+ v1) = a+E(x) + a+v1+E(x),

for all x 2 F
n
2 . If x 2 a + E0, then x = a + e + cv1, for some unique e 2 E

and c 2 F2. If c = 0, then a+E(x) = 1 and a+v1+E(x) = 0, and if c = 1,
then a+E(x) = 0 and a+v1+E(x) = 1. Hence, in any case, Dv1 a+E(x) = 1.
If x 2 F

n
2 \ a + E0, then a+E(x) = a+v1+E(x) = 0, hence Dv1 a+E(x) = 0.

We conclude that Dv1 a+E(x) = a+E0(x), for all x 2 F
n
2 . Otherwise, if v1 is

linearly dependent in the quotient space F
n
2/E, then v1 2 E, hence v1 +E = E,

so Dv1 a+E(x) = 0.
Assume now that the statement is true for k � 1, and that v1, . . . , vk are

linearly independent in F
n
2/E. Then, v2, . . . , vk are linearly independent in F

n
2/E,

and since the result is true for k � 1, we have that

Dv2
. . . Dvk a+E = a+E00 ,

where E00 is the subspace E00 = hE, v2, . . . , vki. Consequently, from the already
proved k = 1 case, we compute

Dv1 . . . Dvk a+E = Dv1 a+E00 = a+E0 ,

where E0 is the subspace E0 = hE, v1, . . . , vki. Otherwise, assume that v1, . . . , vk
are linearly dependent in F

n
2/E. If v2, . . . , vk are linearly dependent in F

n
2/E,

then since the statement is true for k � 1, we have Dv2
. . . Dvk a+E = 0. If

v2, . . . , vk are linearly independent in F
n
2/E, then again,

Dv2
. . . Dvk a+E = a+E00 ,

where E00 is the subspace E00 = hE, v2, . . . , vki. Since v1, . . . , vk are linearly
dependent in F

n
2/E, we deduce that v1 2 E00, and from the k = 1 case, we have

Dv1Dv2
. . . Dvk a+E = Dv1 a+E00 = 0.

Hence, the statement is also true for k, and this concludes the proof. ut

For the indicator of {0n}, i.e. �0 : F
n
2 ! F2, whose ANF is given by �0(x1, . . . , xn) =Qn

i=1(xi + 1), we get the following corollary.

Corollary 1. For any two distinct nonzero vectors a, b 2 F
n
2 , the algebraic de-

gree of DaDb�0 is n� 2.

Definition 4. For a Boolean function f 2 Bn, we define its 2-rank as follows

2-rank(f) := rankF2
(f(x+ y))x,y2F

n
2

. (4)

In [23], it was shown that for a Boolean function f on F
n
2 with deg(f) � 2, the

2-rank is an invariant under EA-equivalence. Remarkably, using the notion of
2-rank, the authors also showed that any bent function f 2 B2m from the M#

must satisfy the following necessary condition.
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Theorem 2 (The M#-Bound). [23] Let f 2 B2m be bent such that f 2 M#.
Then, 2-rank(f)  2m+1 � 2.

With the notion of 2-rank, Corollary 1 and Theorem 2, we are ready to prove
the main result of this section.

Theorem 3. For m � 4, the rotation-symmetric bent function f 2 B2m defined
by (2) and its dual f̃ 2 B2m defined by (3) are outside the M# class.

Proof. By Lemma 2, is enough to show that only f /2 M#, since f̃ /2 M# if and
only if f /2 M#.

For m = 2, 3, the function f belongs to M# since all bent functions in 4 and 6
variables are members of the M# class, as already mentioned in the introduction.
For m = 4, 5, 6, we compute the value of the 2-rank of f in Table 3, and compare
it with the upper bound of the 2-rank of bent function in 2m variables in M#,
which is equal to 2m+1�2 according to Theorem 2. As one can see from Table 3,
we have that 2-rank(f) > 2m+1�2, from what follows that for these dimensions
the function f is outside M#.

Table 3. The value of 2-rank(f) for the bent function f 2 B2m defined by (2)

m 4 5 6

2-rank(f) 42 112 286

M#-Bound 30 62 126

Now we proceed with the general case m � 7. Set n = 2m and let E be an
arbitrary m-dimensional subspace of F

n
2 . We will show that we can find two

vectors a, b 2 E such that the algebraic degree of DaDbf is m� 2.
We can find an (at least) (m � 4)-dimensional subspace W of E such that

for all w = (w0, . . . , wn�1) 2 W we have w0 = wm�1 = wm = wn�1 = 0. To
see this, take a basis B for E. If there are no elements w in the basis such that
w0 = 0, set B1 = B. If w0 = 1, for some elements of the basis, take one such
element w, and add it to the other elements of the basis with the first coordinate
equal to 1, and call the new basis B0. Set B1 = B0 \w. In any case, the subspace
generated by B1 will have dimension at least m � 1, and all vectors in it will
have the first coordinate equal to 0. Continue this process for the rest of the
considered coordinates.

Define the mapping L : W ! F
m�2
2 by L(w0, . . . , wn�1) = (w1, . . . , wm�2),

for all (w0, . . . , wn�1) 2 W . Since L is linear, by the rank-nullity theorem, we
have:

dim(W ) = dim(Ker(L)) + dim(Im(L)). (5)

If dim(Im(L)) � 2, there are two vectors in a, b 2 W such that (a1, . . . , am�2)
and (b1, . . . , bm�2) are two linearly independent vectors in F

m�2
2 . Consequently,

from Corollary 1, we get that the algebraic degree of

DaDb(x0x1 · · ·xm�2xm)

is m�2. Since a, b are in W , we have a0 = am = b0 = bm = 0, hence every term of
degree m� 2 of DaDb(x0x1 · · ·xm�2xm) contains x0xm. From the definition (2)
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of f , we deduce that the only other term of f whose ANF has terms containing
x0xm is xmxm+1 · · ·x2m�2x0. Hence, the only part of DaDbf that can cancel the
m � 2 degree terms of DaDb(x0x1 · · ·xm�2xm) is DaDb(xmxm+1 · · ·x2m�2x0).
But every m� 2 degree term of

DaDb(xmxm+1 · · ·x2m�2x0)

contains m�4 variables from xm+1, . . . , x2m�2, and since x0x1 · · ·xm�2xm does
not contain those variables, the m�2 degree terms of DaDb(xmxm+1 · · ·x2m�2x0)
cannot cancel the m� 2 degree terms of DaDb(x0x1 · · ·xm�2xm). We conclude
that, if dim(Im(L)) � 2, there are two vectors a, b in W such that the algebraic
degree of DaDbf is m� 2.

If dim(Im(L))  1, then from the equation (5) we get dim(Ker(L)) � m �
4�1 = m�5 � 2, since m � 7. Let a, b 2 W , be two linearly independent vectors
in Ker(L). From the definitions of W and L, we deduce that (am+1, . . . , a2m�2)
and (bm+1, . . . , b2m�2) are two linearly independent vectors in F

m�2
2 , and that

the rest of the coordinates of a and b are equal to 0. From Corollary 1 we get
that the algebraic degree of

DaDb(xmxm+1 · · ·x2m�2x0)

is m � 2. Similarly to the case dim(Im(L)) � 2, the only part of DaDbf that
can cancel the m� 2 degree terms of DaDb(xmxm+1 · · ·x2m�2x0) is

DaDb(x0x1 · · ·xm�2xm).

Since the corresponding coordinates of the vectors a and b are equal to 0, we
have that DaDb(x0x1 · · ·xm�2xm) = 0. Consequently, the m � 2 degree terms
of DaDb(xmxm+1 · · ·x2m�2x0) in DaDbf are not canceled, hence the algebraic
degree of DaDbf is m� 2.

We conclude that we can always find a, b 2 W ✓ E, such that the algebraic
degree of DaDbf is m � 2. Since E was an arbitrary m-dimensional subspace
of F2m

2 , f is outside M# by Lemma 1. ut

4 Conclusion

In this paper, we showed the existence of rotation-symmetric bent functions
outside the M# class. This result indicates that just pursuing construction of
bent functions with nice symmetries, it is possible to construct functions, not
stemming from the well-known Maiorana-McFarland construction, opposite to
many previously known results. Therefore, we think that in general it is an
interesting research problem to construct bent functions in n variables symmetric
w.r.t. the action of a certain given group G < Sn, since such functions can indeed
induce functions that do not belong to the well-known powerful constructions.
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Abstract. Let C ⊆ F
n

qm be a linear rank-metric code. In this paper, we
investigate the problem of determining the number M(C) of codewords
in C with maximum weight, that is min{m,n}, and to characterize codes
attaining the maximum value for M(C).
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1 Introduction

Rank-metric codes have attracted a lot of attention recently since their nu-
merous applications and interesting mathematical connections. The origin of
rank-metric codes dates back to Delsarte [8] in 1978, some years later they were
rediscovered by Gabidulin in [9] and Roth in [18]. In the next, we mainly focus
on linear codes. The rank (weight) w(v) of a vector v = (v1, . . . , vn) 2 F

n
qm is

the dimension of the vector space generated over Fq by its entries, i.e, w(v) =
dimFq

(hv1, . . . , vniFq
).

A (linear vector) rank metric code C is an Fqm -subspace of Fn
qm endowed

with the rank distance defined as

d(x, y) = w(x� y),

for any x, y 2 F
n
qm .

If C ✓ F
n
qm is a rank-metric code, we write that C is an [n, k, d]qm/q code (or

[n, k]qm/q code) if k is the Fqm -dimension of C and d is its minimum distance,
that is

d = min{d(x, y) : x, y 2 C, x 6= y}.

The parameters of a rank-metric code are related by a Singleton-like bound.

Theorem 1. [8] Let C be an [n, k, d]qm/q code. Then

mk  max{m,n}(min{n,m}� d+ 1). (1)

An [n, k, d]qm/q code is called Maximum Rank Distance code (or shortly
MRD code) if its parameters attains the bound (1). We say that two [n, k]qm/q
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codes C and C0 are equivalent if C0 = C A = {vA : v 2 C}, for some ele-
ment A 2 GL(n, q). In the next, without losing of generality, we only consider
non-degenerate codes, i.e. codes that cannot be isometrically embedded in a
smaller space. More precisely, an [n, k]qm/q rank-metric code C is said to be
non-degenerate if the columns of any generator matrix of C are Fq-linearly
independent.

Our goal is to provide information on the number of codewords of maximum
weight of a code. For some classes of rank metric codes, the weight distribution
is known, such as for MRD codes or classes of few weight codes, but in general
very few is known and giving information on the weight distribution is hard.
For non-degenerate rank-metric codes, in [2, Proposition 3.11] it is established
the existence of at least one codeword of maximum weight. Maximum weight
codewords are also intriguing in connection with the rank-metric version of the
Critical problem by Crapo and Rota (cf. [3], and also [11]). This interest is fur-
ther heightened due to the connection with q-polymatroids, as explored in [10].
For an [n, k]qm/q code C, we define M(C) as the number of its codewords with
weight min{m,n}. In this next, we investigate the following two problems:

Problem 1. To determine upper and lower bounds on M(C).

Problem 2. To characterize the extremal cases in the obtained bounds on
M(C).

To address such problems, we mainly employ tools from combinatorics: we
use the projective version of systems, namely linear sets, which are point sets in
projective spaces.

The paper is structured as follows. In Section 2, we describe the geometric
correspondence between rank-metric codes and systems/linear sets. Then we
deal with upper and lower bounds on M(C) using geometric arguments. Section
3 is devoted to the case of equality in the upper bounds: the geometry in this
case is either related to canonical subgeometries or to linear sets with minimum
size.
Part of the results are taken from [16], whereas the last part is original and it
has been developed by the second author.

2 Geometric interpretation of the number of maximum

weight codewords

2.1 Geometric description of rank-metric codes

The geometric counterpart of rank-metric codes are the systems, see [2, 17].

Definition 1. An [n, k, d]qm/q system U is an Fq-subspace of F
k
qm of dimension

n, such that hUiFqm
= F

k
qm and

d = n�max
�

dimFq
(U \H) | H is an Fqm -hyperplane of Fk

qm
 

.
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Moreover, two [n, k, d]qm/q systems U and U 0 are equivalent if there exists
an invertible matrix A 2 GL(k,Fqm) such that

UA = U 0.

Rank-metric codes and systems are related in the following way. Let C be
an [n, k]qm/q code and G be an its generator matrix. Then the Fq-subspace U

obtained as the Fq-span of the columns of G is called a system associated
with C. Viceversa, let U be an [n, k]qm/q system. Define G as the matrix whose
columns are an Fq-basis of U and let C be the code generated by G. C is called
a code associated with U .

It is possible to prove that two codes C and C0 are equivalent if and only if
their associated systems are equivalent.

Moreover, we recall how the support of a codeword is related to the intersec-
tions with a system associated with the code.

Let G 2 F
k⇥n
qm such that its columns are Fq-linearly independent and let U

be the Fq-span of the columns of G. Define the map

 G : Fn
q �! U

� 7�! �G>,

which turns out to be an Fq-linear isomorphism.
Let c = (c1, . . . , cn) 2 F

n
qm and � = (�1, . . . , �m) be an ordered Fq-basis of

Fqm . The (rank) support of c is defined as the column span of � (c), where
� (c) 2 F

n⇥m
q , is the matrix defined by

ci =

m
X

j=1

� (c)ij�j , for all i 2 {1, . . . , n}.

As proved in [2, Proposition 2.1], the support does not depend on the choice
of � and we can talk about the support of a vector without mentioning � .

Theorem 2. ( [17] and [14, Theorem 3.1]) Let C be a non-degenerate [n, k, d]qm/q

code and let G be a generator matrix. Let U ✓ F
k
qm be the Fq-span of the columns

of G. Then, for every x 2 F
k
qm

 �1
G (U \ x?) = supp(xG)?,

where supp(xG)? denotes the orthogonal complement of supp(xG) with respect
to the standard scalar product in F

n
q and x? denotes the orthogonal complement

of hxiFqm
with respect to the standard scalar product in F

k
qm . In particular, the

rank weight of an element xG 2 C, with x = (x1, . . . , xk) 2 F
k
qm is

w(xG) = n� dimFq
(U \ x?). (2)

As a consequence,

d = n�max
�

dimFq
(U \H) : H is an Fqm-hyperplane of Fk

qm
 

. (3)
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The above argument allows to estabilish a one-to-one correspondence between
equivalence classes of [n, k, d]qm/q systems and [n, k, d]qm/q codes.

Generalized rank weights have been introduced several times with different
definitions, see e.g. [12], and they have been used also as a tool for the inequiv-
alence of families of codes as was done in [4].

We will deal with the definition given in [17] and more precisely to the equiv-
alent one given in [2, Theorem 3.14], directly connected with the systems.

Definition 2. Let C be a [n, k, d]qm/q rank metric code and let U be an associated
system. For any r 2 {1, . . . , k}, the r-th generalized rank weight is

drkr (C) = n�max
�

dimFq
(U \H) : H is an Fqm-subspace of codim. r of Fk

qm
 

.

(4)

Note that when r = 1, in the above definition we obtain the minimum dis-
tance.

For our aims, it will often be useful to look at the systems projectively via
the notion of linear sets. Let V = V (k, qm) be a k-dimensional vector space over
Fqm and let ⇤ = PG(V,Fqm) = PG(k � 1, qm). For an Fq-subspace U of V of
dimension n, the set of points

LU = {huiFqm
: u 2 U \ {0}} ✓ ⇤

is said to be an Fq-linear set of rank n. Let ⌦ = PG(W,Fqm) be a projective
subspace of ⇤. The weight of ⌦ in LU is defined as

wLU
(⌦) = dimFq

(U \W ).

We have the following upper bound on the number of points of a linear set:

|LU | 
qn � 1

q � 1
.

Moreover, if LU 6= ;, then

|LU | ⌘ 1 (mod q), (5)

and if hLU i = PG(k � 1, qm) then

|LU | �
qk � 1

q � 1
. (6)

The above bound can be improved if some assumptions are added.

Theorem 3. ( [7, Theorem 1.2] and [5, Lemma 2.2]) If LU is an Fq-linear set
of rank n, with 1 < n  m on PG(1, qm), and LU contains at least one point of
weight 1, then |LU | � qn�1 + 1.

Recently, extending the results in [7], in [1] more lower bounds on the size of
a linear set have been proved, see [1].
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2.2 Geometric dual of a linear set and of a rank-metric code

We recall the notion of the dual of an Fq-subspace of the k-dimensional Fqm -
vector space V = V (k, qm). Let � : V ⇥ V ! Fqm be a nondegenerate reflexive
bilinear form defined on V and consider

�0 : V ⇥ V �! Fq

(x, y) 7�! Trqm/q(�(x, y)).

In this way, �0 turns out to be a nondegenerate reflexive bilinear form on V seen
as an Fq-vector space of dimension km. Consider ? and ?0 as the orthogonal
complement maps defined by � and �0, respectively. For an Fq-subspace U of V ,

the dual subspace of U with respect to �0 is the Fq-subspace U?
0

in V . The
definition of the dual of an Fq-subspace in V does not depend on the choice of �.
Indeed, if ?0

1 and ?0
2 are orthogonal complement maps as above, then the dual

subspaces U?
0

1 and U?
0

2 of U are GL(k, qm)-equivalent, cf. [15, Proposition 2.5].
Moreover, for any Fq-subspace U of V = V (k, qm), we have that dimFq

(U?
0

) =

km � dimFq
(U) and for any Fqm -subspace of V holds W?

0

= W?. As a conse-
quence, the following relation holds.

Proposition 1. [15, Property 2.6] Let U be an Fq-subspace of V and W be an
Fqm-subspace of V . Then

dimFq
(U?

0

\W?) = dimFq
(U \W ) + dimFq

(V )� dimFq
(U)� dimFq

(W ).

For more details on duality operation, see also [13]. By using the dual of
a subspace, recently in [6], an operation has been introduced on rank metric
codes called geometric dual. This operation takes an [n, k, d]qm/q code and gives
another code with parameters [mk � n, k, d0]qm/q.

Definition 3. Let C be a non-degenerate [n, k, d]qm/q and let U be a system

associated with C. Suppose also that drkk�1(C) � n �m + 1. Then a geometric

dual C?G of C (with respect to ?0) is defined as C0, where C0 is any code associated
with the system U?

0

, where ?0 is defined as before.

This definition is justified by the following result.

Theorem 4. [6, Theorem 3.4] Let C be an [n, k, d]qm/q code, and let U be a

system associated with C. Suppose also that drkk�1(C) � n � m + 1. Then, up

to equivalence, a geometric dual C?G of C does not depend on the choice of the
associated system and on the choice of a code in the equivalence class of C, hence
?G is well-defined.

2.3 General bounds on M(C)

We provide upper and lower bounds on M(C), by using geometric arguments
and bounds on the size of a linear set.

We start by describing the geometric meaning of M(C).
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Proposition 2. [16, Proposition 3.6 and Proposition 3.12] Let C be an [n, k]qm/q

code and let U be any associated system. Then, if n  m,

M(C) = (qm � 1)|{H hyperplane of PG(k � 1, qm) : H \ LU = ;}|;

and if n > m,

M(C) = (qm � 1)|{H hyperplane of PG(k � 1, qm) : wLU
(H) = n�m}|

= (qm � 1)|PG(k � 1, qm) \ LU?0 |.

Proof. Let G be a generator matrix of C such that the Fq-span of its columns
is U . Assume first that n  m. Then by (2), a codeword c = uG has maximum
weight n if and only if

wLU
(u?) = n� w(uG) = 0,

and hence the assertion follows. If n > m, again by (2), a codeword c = uG has
maximum weight if and only if

wLU
(u?) = n� w(uG) = n�m,

and henceM(C) = (qm�1)|{H hyperplane of PG(k�1, qm) : wLU
(H) = n�m}|.

The second one follows by considering the linear sets associated with U?
0

and
by applying Proposition 1.

First, we concentrate on the case n  m. By using some geometric results,
cf, [16, Lemma 3.7 and Lemma 3.8], we are able to prove the following.

Theorem 5. [16, Theorem 3.9 and Theorem 3.11] Let C be an [n, k]qm/q code.
Assume that n  m. Then

qmk � 1

qm � 1
�

qn � 1

q � 1

q(k�1)m � 1

qm � 1
+ q� 

M(C)

qm � 1


n�1
Y

i=1

(qm � qi) (7)

where

� =
qmk � 1

qm � 1
�

k�1
Y

i=1

(qm � qi)�
qk � 1

q � 1

k�2
Y

i=1

(qm � qi).

Moreover, if n� e is the second maximum weight of C. Then

qm(k�1)�qm(k�2)+n�e�qm(k�2)

✓

qn�e � 1

qe � 1

◆


M(C)

qm � 1
 qm(k�1)�qm(k�2)+n�e,

i.e., m(k � 2) + n = blogq(q
m(k�1) � M(C)

qm�1 )c+ e.

The latter bound of the above theorem depends on the second maximum
weight and the possible values of M(C) are in disjoint intervals (according to e).
Moreover, once the parameters m,n, q of the code C are known, by using the
value M(C), then one can directly determine the second largest weight n� e of
the code C.

We can now derive bounds on M(C) in the case n > m by making use of the
bounds on the number of points of linear sets, cf. (3).
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Theorem 6. [16, Theorem 3.14] Let C ✓ F
n
qm be an [n, k]qm/q code. Assume

that m  n and drkk�1(C) � n�m+ 1. Then

qkm � 1

qm � 1
�

qkm�n � 1

q � 1


M(C)

qm � 1


qkm � 1

qm � 1
�

qk � 1

q � 1
. (8)

In particular, if the second maximum weight of C is m� e,

qkm � 1

qm � 1
�

qkm�n � 1

qe � 1


M(C)

qm � 1


qkm � 1

qm � 1
�

✓

qkm�n�e +
qk�1 � 1

q � 1

◆

, (9)

i.e. km� n = blogq(
qmk

�1
qm�1 � M(C)

qm�1 )c+ e.

As for the case n  m, the possible values of M(C) are in disjoint intervals,
according to the second largest weight m� e of the code.

The above upper bound (9) can be improved with a more involved condition.
This result relies on recent bounds on the size of linear sets proved in [1].

Theorem 7. [16, Theorem 3.16] Let C be a [n, k]qm/q code and assume that

m  n and drkk�1(C) � n � m + 1. Let G0 be any of generator matrix of C?G .

Suppose there exist r � 1 codewords c1, . . . , cr 2 C?G Fqm-linearly independent
such that the Fq-subspace

W =  G0

 

r
\

i=1

supp(ci)
?

!

satisfies dimFq
(W ) = dimFqm

(hW iFqm
) = k � r. Then

M(C)

qm � 1


qkm � 1

qm � 1
�

✓

qkm�n�1 + . . .+ qkm�n�k+r +
qr � 1

q � 1

◆

. (10)

Remark 1. In [16], there are proved some refinements of the above bounds when
k = 2.

3 Classification results based on maximum weight

codewords

In this section, we study codes attaining the upper bound on M(C), also provid-
ing classification results.

3.1 Equality in the upper bounds

Without conditions on the weight distribution on C, the maximum for M(C) is
assumed if and only if either C or its geometric dual is the entire space.
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Theorem 8. [16, Theorem 5.1] Let C be an [n, k]qm/q code and assume that

drkk�1(C) � n�m+ 1.

– If n < m then M(C) is maximum with respect to (7) if and only if n = k

and C = F
k
qm .

– If n � m then M(C) is maximum with respect to (8) if and only if n = mk�k

and C?G = F
k
qm .

We can also characterize the case of equality in Theorem 7, when r > 1.

Proposition 3. [16, Proposition 5.2] Let C be a non-degenerate [n, k]qm/q code

and assume that m  n and drkk�1(C) � n �m + 1. Let G0 be any of generator

matrix of C?G . Suppose there exist r > 1 codewords c1, . . . , cr 2 C?G Fqm-linearly
independent such that

W =  G0

 

r
\

i=1

supp(ci)
?

!

satisfies dimFq
(W ) = dimFqm

(hW iFqm
) = k � r and

M(C) = qkm � 1� (qm � 1)

✓

qkm�n + . . .+ qkm�n�k+r +
qr � 1

q � 1

◆

.

Then n = mk � k and C?G = F
k
qm .

When r = 1, we have a different scenario that we will describe in the next.
We start by describing some constructions for codes satisfying the assumptions
of Theorem 7 with r = 1.

Let � 2 Fqm \ Fq be an element generating Fqm over Fq and

G =

0

B

B

B

@

1 � . . . �t1�1 0 . . . 0
0 0 . . . 0 1 � . . . �t2�1 0 . . . 0
...

. . .

0 . . . 0 1 . . . �tk�1

1

C

C

C

A

2 F
k⇥(t1+...+tk)
qm . (11)

Let C�,t1,...,tk be the Fqm -linear rank metric code in F
t1+...+tk
qm having G as a

generator matrix.

We now determine the parameters of these codes.

Theorem 9. [16, Theorem 5.4] Let � 2 Fqm \Fq be an element generating Fqm

over Fq and let C�,t1,...,tk be with t1  t2  . . .  tk  m� 1. Then C�,t1,...,tk is
an [t1 + . . .+ tk, k, t1]qm/q code.

Under certain conditions on the parameters, the codes C�,t1,...,tk satisfies the
assumptions of Theorem 7 with r = 1 and reaches the maximum forM(C�,t1,...,tk)
among the [n, k]qm/q codes satisfying the assumptions of Theorem 7.
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Theorem 10. [16, Theorem 5.8] Let � 2 Fqm \ Fq be an element generating
Fqm . Let consider the code C�,t1,...,tk ✓ F

n
qm , where n = t1 + . . . + tk, m  n

and km � n  m + k. Let {m � t1 � 1, . . . ,m � tk � 1} = {si1 , . . . , si`}, with
si1 > . . . > si` . Then, if either

k 
`
X

j=1

q
sij � 2qsij /2

sij

or

mk � k � t1 � . . .� tk  q,

the code C�,t1,...,tk satisfies the assumptions of Theorem 7 with r = 1 and reaches
the maximum for M(C�,t1,...,tk) among the [n, k]qm/q codes satisfying the assump-
tions of Theorem 7 with r = 1.

3.2 Characterization results

The code C�,t1,...,tk has a very nice generator matrix in (11): this description says
that the code admits a basis whose supports are in direct sum. When a code
satisfy this property, C is the direct sum of k one-dimensional rank-metric codes.
We will see in the next result that a code of dimension k is the direct sum of k
one-dimensional rank-metric codes if and only if it is of type (t1, . . . , tk), that is
it admits a basis c1, . . . , ck 2 C such that ti = w(ci) for any i and

t1 + . . .+ tk = n.

Theorem 11. Let C be an [n, k]qm/q code. Then the following are equivalent:

1) C is of type (t1, . . . , tk);
2) a generator matrix of C is of the form

G =

0

B

B

B

@

a11 a12 . . . a1t1 0 . . . 0
0 0 . . . 0 a21 a22 . . . a2t2 0 . . . 0
...

. . .

0 . . . 0 ak1 . . . aktk

1

C

C

C

A

2 F
k⇥n
qm ,

that is C is the direct sum of k rank-metric codes.

Proof. 1) ) 2). Assume that C is of type (t1, . . . , tk). This means that there exist
k codewords c1, . . . , ck 2 C such that ti = w(ci) for any i and

t1 + . . .+ tk = n.

Let G0 be a generator matrix for C having as rows the c0is. Therefore,

c1 = e1G, . . . , ck = ekG 2 F
n
qm ,
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where the ei’s are the vectors of the standard basis of Fk
qm . By using (2), we

have that

dimFq
(U \ e?i ) = n� w(ci) and

k
X

i=1

dimFq
(U \ e?i ) = kn� n.

Let consider the dual subspace U?
0

✓ F
k
qm of U . Then dimFq

(U?
0

) = km � n

and by Proposition 1, we get

k
X

i=1

dimFq
(U?

0

\ heiiFqm
) = km� n.

Hence,
U?

0

= W1 ⇥W2 ⇥ . . .⇥Wk,

for some W1, . . . ,Wk Fq-subspaces of Fqm , implying that

U = U1 ⇥ U2 ⇥ . . .⇥ Uk,

where Ui = {a 2 Fqm : Trqm/q(ab) = 0, for any b 2 Wi} and dimFq
(Ui) = ti.

2) ) 1). This implication follows by the definition of a code being of type
(t1, . . . , tk).

We point out that this approach can be further pursued to get new construc-
tions of rank-metric codes with a large number of maximum weight codewords.
This is part of an ongoing project.
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1 Introduction

The problem of finding the shortest length of an Fq-linear code of fixed dimension
k and fixed minimum distance d (denoted by nq(k, d)) is known as the main
problem in coding theory (cf. [2]). Codes with parameters [n, k, d]q, where n =
nq(k, d), are said to be optimal (with respect to the length). There exists a
natural lower bound on nq(k, d) – the so-called Griesmer bound:

nq(k, d) ≥

k−1
∑

i=0

⌈
d

qi
⌉. (1)

The right-hand side in the above inequality is usually denoted by gq(k, d). Linear
[n, k, d]q codes of length n = gq(k, d) are called Griesmer codes. It is known that
for fixed k and q Griesmer codes do exist for all sufficiently large minimum
distances. One possible approach to the main problem of coding theory is to
determine the exact value of nq(k, d) for fixed q and k for all d.

For ternary linear codes the exact value of d is known for all k ≤ 5 and
all d. This has been done during the years by various authors (see [13] and the
references there). For k = 6 the value of n3(6, d) is known for all but 70 values
of d [13].

In this paper we characterize certain minihypers in PG(r, 3), r ≤ 5. Based on
the obtained results we rule out the existence of certain hypothetical Griesmer
codes with q = 3, k = 6. As a by-product we prove several general results
on minihypers that turn out to be important in the investigation of the main
problem of coding theory.

2 Preliminaries

We start with some basic definitions and facts on linear codes and multisets of
points in the geometries PG(k − 1, q). Since we prefer to keep the letter k for



the dimension of the linear codes, the multisets associated with them will be
contained in the (k − 1)-dimensional projective geometry.

A multiset in PG(k − 1, q) is a mapping K : P → N0, from the pointset P
of PG(k − 1, q) to the non-negative integers. For a subset Q of P , we define
K(Q) =

∑

P ∈Q
K(P ). The integer K(Q) is called the multiplicity of the subset

Q. A point of multiplicity i is called an i-point. Similarly, i-lines, i-planes, i-
solids are points, lines, 3-dimensional subspaces of multiplicity i, i = 0, 1, . . ..
The integer K(P) is called the cardinality of the multiset K. A multiset K in
PG(k − 1, q) is called an (n, w)-arc, if: (a) K(P) = n; (b) K(H) ≤ w for each
hyperplane H in PG(k−1, q), and (c) there is a hyperplane H0 with K(H0) = w.
In a similar way, we define an (n, w)-minihyper (or (n, w)-blocking set) as a
multiset K in PG(k − 1, q) satisfying: (d) K(P) = n; (e) K(H) ≥ w for each
hyperplane H in PG(k−1, q), and (f) there is a hyperplane H0 with K(H0) = w.
The existence of an [n, k, d]q-code C of full length (no coordinate identically
zero) is equivalent to that of a (n, n−d)-arc in PG(k −1, q). From any generator
matrix G of C one can define a multiset K with points (with the corresponding
multiplicities) the columns of G. This correspondence between [n, k, d]q codes
and (n, n−d)-arcs maps isomorphic codes to projectively equivalent arcs and vice
versa. The same correspondence maps [n, k, δ]q-anticodes to (n, n−δ)-minihypers
in PG(k − 1, q).

Given an (n, w)-arc K in PG(k − 1, q), we denote by γi(K) the maximal
multiplicity of an i-dimensional flat in PG(k − 1, q), i.e. γi(K) = maxδ K(δ), i =
0, . . . , k−1, where δ runs over all i-dimensional flats in PG(k −1, q). If K is clear
from the context we shall write just γi. If K is a (n, w)-arc in PG(k −1, q) with a
maximal point multiplicity γ0 then c PG(k−1, q)−K is a (γ0vk−|K|, γ0vk−1−w)-
minihyper in PG(k − 1, q), where vk = (qk − 1)/(q − 1).

The integer ∆ > 1 is a called a divisor of the linear code C if the weight of
every word in C is divisible by ∆. In what follows, we repeatedly make use of
the following result [14].

Theorem 1 [14] Let C be an [n, k, d]-code over Fp, p a prime, meeting the
Griesmer bound. If pe|d, then pe is a divisor of C.

Geometrically, this can be stated as follows.

Theorem 2 Let K be a Griesmer (n, w)-arc in PG(k − 1, p), p prime, with
w ≡ n (mod pe), e ≥ 1. Then K(H) ≡ n (mod pe) for every hyperplane H.

An [n, k, d]q-code C is called extendable if there exists an [n + 1, k, d + 1]q
code C′ such that C can be obtained from C′ by puncturing. An (n, w)-arc K in
PG(k−1, q) is called extendable if there exists an (n+1, w)-arc K′ in PG(k−1, q)
with K′(x) ≥ K(x) for every point of PG(k − 1, q). Clearly, extendable arcs are
associated with extendable codes.

The next extension result about arcs is the geometric version of Hill-Lizak’s
result for codes [4,5]. Below we state their result in coding-theoretic and geo-
metric form.



Theorem 3 Let C be an [n, k, d]q-code with gcd(n − w, q) = 1 and with all
weights congruent to 0 or d modulo q. Then C can be extended to an [n+1, k, d+
1]q-code all of whose weights are congruent to 0 or d + 1 modulo q.

Theorem 4 Let K be an (n, w)-arc in PG(k − 1, q) with gcd(n − w, q) = 1.
Assume that the multiplicities of all hyperplanes are congruent to n or w modulo
q. Then K can be extended to an (n + 1, w)-arc.

The following result by Hitoshi Kanda [7] is slightly different and concerns
codes over F3.

Theorem 5 [7] Let C be an [n, k, d]3 code with (d, 3) = 1 whose possible weights
of codewords satisfy Ai = 0 for all i ̸≡ 0, −1, −2 (mod 9). Then C is extendable.

In what follows we shall need also the following result which was proved by
many authors in a weaker form.

Theorem 6 [10] If x ≤ q − q/p then every (xvt, xvt−1)-minihyper in PG(t, q)
is a sum of x hyperplanes.

3 Two Theorems on Canonical Minihypers

Let d and k be positive integers and let d be written in the following form:

d = sqk−1 − λk−2qk−2 − . . . − λ1q − λ0, (2)

where 0 ≤ λi ≤ q − 1. It is easily checked that

gq(k, d) = svk − λk−2vk−1 − . . . λ1v2 − λ0v1. (3)

The existence of a Grismer code of dimension k and minimum distance is equiva-

lent to that of a minihyper in PG(k−1, q) with parameters

(

k−2
∑

i=0

λivi+1,

k−2
∑

i=0

λivi

)

and a maximal point multiplicity s. It should be noted that a minihyper with the
above parameters can always be constructed as the sum of λk−2 hyperplanes,
λk−3 hyperlines, and so on, λ1 lines, and λ0 points. Minihypers constructed in
this way are called canonical.

In many cases, the following two theorems turn out to be useful.

Theorem 7 Assume that every minihyper with parameters
(

k−2
∑

i=0

λivi+1,

k−2
∑

i=0

λivi

)

in PG(k − 1, q) is canonical. Then every minihyper with parameters
(

k−2
∑

i=0

µivi+1,

k−2
∑

i=0

µivi

)

in PG(k − 1, q), where µi ≤ λi, is also canonical.



Theorem 8 Assume that every minihyper with parameters

(

k−2
∑

i=0

λivi+1,
k−2
∑

i=0

λivi

)

in PG(k−1, q) is canonical. Then for every r ≥ k−1 every minihyper in PG(r, q)
with the same parameters is also canonical.

4 Characterization of some Minihypers in PG(3, 3) and
PG(4, 3)

All minihypers in the next two sections have a maximal point multiplicity of two,
because our ultimate goal is to prove the non-existence of certain hypothetical
Griesmer codes that imply this property. It is not difficult, however, to obtain a
characterization also without this restriction.

The first four theorems contain characterizations of some minypers in PG(3, 3)
that are almost straightforward, but are needed for Theorem 13 and the nonex-
istence proofs in the next section.

Theorem 9 A (21, 6)-blocking set in PG(3, 3) is one of the following:

(a) the sum of a plane and two lines;
(b) the sum of a plane and a plane (9, 2)-blocking set which is the complement

of an oval;
(c) a blocking set with λ2 = 1, a12 = 2 (see [8]);
(d) a blocking set with λ2 = 0, a12 = 1 (see [8]).

Theorem 10 Every (22, 6)-minihyper in PG(3, 3) is either reducible, or the sum
of a plane and a plane (9, 4)-minihyper.

Theorem 11 A (30, 9)-minihyper in PG(3, 3) is one of the following:

(a) the sum of two planes and a line;
(b) the complement of a cap.

Theorem 12 A (39, 12)-minihyper in PG(3, 3) is the sum of a plane (12, 3)-
minihyper and a three-dimensional affine space.

The (12, 3)-minihypers in PG(2, 3) are obtained as complements of (14, 5)-
arcs that are known [1].

The next two theorems contain characterizations in minihypers in PG(4, 3).
The details of the proofs are contained in [9].

Theorem 13 Let B be a (66, 21)-blocking set in PG(4, 3). Then B is one of the
following:

(a) the sum of a solid and two planes;



Fig. 1. (66, 21)-blocking set of type (a) without 3-points

Fig. 2. (66, 21)-blocking set of type (b)



Fig. 3. (66, 21)-blocking set of type (c)

(b) the sum of an affine space of dimension 3 and three affine planes contained
in the four solids through a common 12-plane which is the sum of three (not
necessarily different lines);

(c) the dual of the (11, 5)-arc in PG(4, 3)

The minihypers from Theorem 13 are presented in the figures below.
Using the extension theorem of Kanda [7], one can prove that every (68, 21)-

minihyper is reducible to a (66, 21)-minihyper.

Theorem 14 Every (68, 21)-minihyper in PG(4, 3) is reducible to a (66, 21)-
minihyper.

5 The non-existence of some Griesmer codes

In this section, we sketch the proofs for the non-existence of certain minihypers in
PG(5, 3). This implies the non-existence of several hypothetical Griesmer codes
and leads to improvements in Maruta’s tables with exact values of n3(6, d) [11].

Theorem 15 There exists no minihyper with parameters (207, 67) in PG(3, 5)
and with maximal point multiplicity 2. Consequently, there exists no [521, 6, 346]3
codes and n3(6, 346) = 522.

Proof. Let K be a (207, 67)-minihyper in PG(3, 5) with maximal point multi-
plicity 2. Fix a 4-dimensional subspace ∆0 of multiplicity 67 and a 21-solid S in
∆0. Denote by ∆1, ∆2, ∆3 the other three 4-dimensional subspaces through S.
We have two possibilities:

(A) K(∆0) = K(∆1) = K(∆2) = 67, K(∆3) = 69;
(B) K(∆0) = K(∆1) = 67, K(∆2) = K(∆3) = 68.



Let us note at first that if there exists a 4-dimensional subspace of multiplicity
≥ 148 then K is the sum of a hyperplane and a (86, 27)-minihyper in PG(5, 3),
which, in turn, is the sum of two solids and a plane (6, 1)-minihyper. Now it
can be proved that a point of multilpicity 3 cannot be avoided. From now on we
shall assume that all hyperplanes have multiplicity <148.

Since the solids in a minimal hyperplane have multiplicity ≡ 0, 1 (mod 3),
the admissible multiplicities of a hyperplane are the following:

67, . . . , 72, 94, . . . , 99, 121, . . .126.

(B) Let us select ∆0 to be a 67-hyperplane reducible to a 66-hyperplane of
type (a) or (b). Note that there is always such a hyperplane. Select a 12-plane
π such that K|π is a triangle (a sum of three non-concurrent lines). Consider a
projection ϕ from π onto some plane disjoint from π. The image of a 67- or a
68-plane is of type

(1) (18 + ε1, 18 + ε2, 9 + ε3, 9), or (2) (27 + ε1, 9 + ε2, 9 + ε3, 9),

where εi are non-negative integers with ε1 +ε2 +ε3 = 1 or 2. From now on points
of multiplicity 9+ε, 18+ε, or 27+ε will be called (27+)−, (18+) or (9+)-points
respectively.

If a point in the projection plane is of multiplicity 9 + ε, ε ∈ {0, 1, 2}, then it
is the image of a solid of multiplicity 21 + ε that has a plane without 0-points
meeting π in one of the sides of the triangle. Denote the three sides of triangle
in π by α, β, and γ. With each point in the projection plane of multiplicity 9
we can associate a letter α, β, or γ depending on the line in which the full plane
meets the triangle It follows from Theorem 13 that if the image of a hyperplane
is a line of type (18 + ε1, 18 + ε2, 9 + ε3, 9) the letters assigned to the two 9’s are
the same; for a line of type (27 + ε1, 9 + ε2, 9 + ε3, 9) the three letters should be
different. Without loss of generality we assign to ϕ(π) the letter α.

Apart from this it is easily noted that the projection plane does not contain
a line of type (18 + ε0, 9 + ε1, 9 + ε2, 9 + ε3) since it would be the image of
a hyperplane of multiplicity 57 +

∑

i εi ≤ 63. Thus we have to rule out five
possibilities for the projection Kϕ: these are the cases where x of the lines ϕ(∆i)
are of the first and 4 − x – of the second type.

Assume x = 0. Then the (27+)-points have to be collinear. Since all (9+)-
points different from ϕ(π) are assigned β and γ, there exists a line of multiplicity
≤ 68 and type (2) which not assigned all three letters, a contradiction. If x = 1, 2,
or 4, there exists a line in the projection plane that is of multiplicity ≤ 51, again
a contradiction.

It remains to consider the case x = 3. The three (9+)-points should be
collinear, otherwise there is a line of multiplicity ≤ 51. The fourth point on
this line should be a (27+)-point. Moreover this line should be the image of a
hyperplane of multiplicity ≥ 69. Now there exists a line of type (1) which is the
image of a hyperplane of multiplicity 67 or 68 and which is assigned two different
letters, again a contradiction.



Now we are left with the case when all 67-hyperplanes are of the type (c),
which is easily ruled out by considering a projection from a 12-plane contained
in a 21-solid.

Theorem 16 There exists no minihyper with parameters (209, 68) in PG(3, 5)
and with maximal point multiplicity 2. Consequently, there exists no [519, 6, 345]3
codes and n3(6, 345) = 520.

Proof. Note that in this case the minihyper is divisible cince the complementary
arc is divisible (Theorem 2). Hence the only possible hyperplane multiplicities
are 68, 95, and 122. (Larger hyperplanes force the existence of 3-points as The-
orem 15.) If there exists a hyperplane containing a minihyper of the type (a) or
(b), we can proceed as in the proof of Theorem 15. Hence we have to deal with
the case when all hyperplanes are of the type described in Theorem 13(c).

Consider a 68-plane of type (c) and fix a 12-plane π contained in a 21-solid
S in this hyperplane. We can always select such a plane. Consider a projection
from the 12-plane. Then the images of the four hyperplanes through S have
type (18 + ε1, 18 + ε2, 9 + ε3, 9), where

∑

i εi = 2. Now there is a line in the
plane of projection that is of multiplicity at most 53. Hence it is the image of a
hyperplane of multiplicity at most 65, a contradiction.

Corollary 17 Every (210, 68)-minihyper in PG(5, 3) is reducible. Consequently,
there exists no [518, 6, 344]3-code and n3(6, 344) = 519.

Proof. This can be done by using Hill-Lizak’s extension theorem in its minihyper
version. Hyperplanes of multiplicity ≥ 148 are ruled out since they necessarily
contain a 3-point. Hence the possible hyperplane multiplicities are

68, . . . , 75, 94, . . . , 102, 121, . . . , 127.

It remains to rule out those with multiplicity ≡ 1 (mod 3). Then the minihy-
per would be reducible to the nonexistent (209, 68)-minihyper by Hill-Lizak’s
theorem.

The obtained results are summarized in the following table. The boldfaced
entries are the results announced in this contribution.

d g3(6, d) n3(6, d) B B|H

343 517 517–518 (211, 68) (68, 21)
344 518 519 (210, 68) (68, 21)
345 519 520 (209, 68) (68, 21)

346 521 522 (207, 67) (67, 21)
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Abstract. This paper provides new bounds on the size of spheres in any
coordinate-additive metric with a particular focus on improving existing
bounds in the sum-rank metric. We derive improved upper and lower
bounds based on the entropy of a distribution related to the Boltzmann
distribution, which work for any coordinate-additive metric. Addition-
ally, we derive new closed-form upper and lower bounds specifically for
the sum-rank metric that outperform existing closed-form bounds.

Keywords: Sum-rank metric · Coordinate-additive metric · Sphere size
· Combinatorics · Coding theory · Information theory

1 Introduction

The sum-rank metric [15], Hamming metric [7] and Lee metric [10] are examples
of coordinate-additive metrics. Codes with distance properties in such metrics are
of particular interest in various applications, such as linear network coding [12],
quantum-resistant cryptography [8,17], coding for storage [13], space-time cod-
ing [19]. Bounds on the size of an `-dimensional ball or sphere in such metrics
are essential for deriving bounds like the sphere-packing bound or the Gilbert–
Varshamov bound [4]. An information-theoretic approach for bounding the vol-
ume of an `-dimensional ball concerning any coordinate-additive metric, via the
entropy of an auxiliary probability distribution, was presented in [11]. Specifi-
cally addressing the sum-rank metric, closed-form upper and lower bounds for
the sphere size were introduced in [17,16] and further discussed in [6]. However,
these bounds are limited in their tightness, particularly noticeable in scenarios
involving smaller sizes of the base field q and/or a larger number of blocks `.

The exact value for the size of an `-dimensional sphere S`
t of radius t in any

coordinate-additive metric can be derived by computing all its (ordered) inte-
ger partitions, where each part of the partition has at most a part size of the
maximal possible weight in the corresponding metric. These will represent the
decomposition of the nonzero entries of the elements in the sphere. To get the
size of the sphere we sum over all integer partitions adding up the number of el-
ements that have a weight decomposition corresponding to the integer partition.
Although this procedure provides the exact value of

�

�S`
t

�

�, it often doesn’t give an
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intuitive or practical understanding of the sphere size or how this size changes as
the parameters change. For large parameters it is even impractical to compute
the size in this way. Hence, the derivation of closed-form bounds on the exact
formula are of major interest. A current method of obtaining both upper and
lower bounds on

�

�S`
t

�

� is, for instance, to consider only the partition attaining the
maximum number of elements. This approach is utilized by [16,17,6]. Another
method is to bound the size of an `-dimensional ball B`

t of radius t, since clearly
every upper bound on

�

�B`
t

�

� is a valid upper bound on
�

�S`
t

�

�, too. On a complex
analytic side, sizes of spheres and balls can be described using generating func-
tions, whose coefficients can be computed using the saddle-point technique and
other techniques from analytic combinatorics (see [2,3]). We refer to [18] for a
more detailed discussion and proofs of the results presented in this paper.

2 Preliminaries

Let q be a prime power and denote by Fq the finite field of q elements. The
natural numbers N shall include 0. Given a random variable X over a finite
alphabet A with probability distribution P , we define P (a) := Prob(X = a)
with a 2 A. The entropy H(P ) of P with respect to the base q is defined as
H(P ) := �

P

a2A,P (a) 6=0 P (a) logq P (a).

2.1 Coordinate-Additive Metrics

Let (A,+) be a finite abelian group with identity element 0 called the alphabet.
We define a weight function wtA : A ! N on A to be a function satisfying for
all a, b 2 A:

1. wtA(a) = 0 if and only if a = 0,
2. wtA(a) = wtA(�a),
3. wtA(a+ b)  wtA(a) + wtA(b).

This function can be extended to a coordinate-additive weight function
on the cartesian product A` (with group structure inherited coordinate-wise
from A) by defining the weight of an `-tuple to be the sum of the weights of

its coordinates, i.e., wt⌃A(a1, . . . , a`) =
P`

i=1 wtA(ai). This coordinate-additive
weight function naturally induces a metric d⌃A : A`⇥A` ! N as d⌃A(v, w) :=
wt⌃A(v�w). Given a coordinate-additive weight function wt⌃A on A`, we define
the `-dimensional sphere, respectively ball, of radius t 2 N by

S`
t := {v 2 A` : wt⌃A(v) = t} and B`

t := {v 2 A` : wt⌃A(v)  t}.

For the special case of the sum-rank metric, let m, ⌘ and ` be positive integers.
Also define µ := min{m, ⌘} and n := ⌘`. We write F

m⇥⌘`
q for the space of

m⇥(⌘`) matrices over the finite field Fq. Every matrix M 2 F
m⇥⌘`
q is represented

as a sequence of ` blocks, i.e., M = (B1 |B2 | . . . |B`) with each Bi 2 F
m⇥⌘
q .

The sum-rank weight of a matrix M 2 F
m⇥⌘`
q is defined as wtSR(M) :=
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P`
i=1 rkq(Bi) where rkq(Bi) is the rank of Bi over Fq. Analogously, we define

for every 0  t  µ · `, the sum-rank sphere of radius t as

Sm,⌘,`,q
t := {M 2 F

m⇥⌘`
q : wtSR(M) = t}.

For fixed m, ⌘, q, `, the sum-rank sphere sizes
�

�

�
Sm,⌘,`,q
t

�

�

�
can be computed with a

dynamic program described in [17].

2.2 Ordinary Generating Functions

The theory of ordinary generating functions (OGFs) is a useful branch of math-
ematics that lays connections between combinatorics, analysis, number theory,
probability theory and other fields. In this paper we restrict ourselves to OGFs
corresponding to weights in coordinate-additive metrics, which are polynomials
with non-negative coefficients. Consider a finite abelian group A with weight
function wtA and induced coordinate-additive weight function wt⌃A on A`. The
OGF corresponding to wt⌃A is defined as the polynomial

FA`(z) :=
P

v2A` zwt⌃A(v) =
Pµ`

i=0 |S
`
i | z

i.

The OGF for A = A1 is denoted by FA(z). For a polynomial F (z) = F0+F1z+
. . .+Fdz

d we use the notation [zi]F (z) to refer to the i-th coefficient Fi of F (z),
with [zi]F (z) = 0 for i > deg(F ). The OGF for the sum-rank metric on F

m⇥⌘`
q

is denoted by Sm,⌘,`,q(z) =
Pµ`

i=0 |S
m,⌘,`,q
i | zi.

Definition 1 (Partial order on polynomials). Let F (z), G(z) 2 R[z] be two

real polynomials. If [zi]F (z)  [zi]G(z) for all i 2 N, we say F (z) is coefficient-

wise less-than-or-equal to G(z), denoted as F (z) 4c G(z).

Proposition 1 ([2, Theorem I.1]). Let A1, A2 be two finite alphabets with

weight functions wtA1
,wtA2

respectively. Then wtA1⇥A2
(a, b) := wtA1

(a) +
wtA2

(b) is a weight function on A1 ⇥A2 and

FA1⇥A2
(z) = FA1

(z)FA2
(z).

In particular, we have FA`(z) = FA(z)
`, for ` 2 N. Furthermore, the product

of real polynomials with non-negative coefficients preserves the partial order: if

F (z) 4c G(z) and K(z) 4c L(z), then F (z)K(z) 4c G(z)L(z).

Lemma 1. Let F (z) be a real polynomial of degree d > 0 with non-negative

coefficients Fi � 0 and first derivative F 0(z). If F (z) is not a monomial, then

the function G(z) = zF 0(z)/F (z) is a strictly increasing smooth function on the

positive reals R>0. In particular if F (0) > 0, which is the case with OGFs of

finite alphabets with weight functions, G(z) is a bijection from [0,1) to [0, d).

Proof. Smoothness follows directly from smoothness of F (z) and 1/z on R>0.
Setting K(a, b) := bF 0(b)F (a) � aF 0(a)F (b) with 0 < a < b, we can show that
K(a, b) > 0, thereby proving G(z) is strictly increasing. Lastly, we have that
limz!1 F 0(z)/zd�1 = dFd and limz!1 F (z)/zd = Fd, so limz!1 G(z) = d. ut



4 H. Sauerbier Couvée et al.

3 Information-Theoretic Bounds on Spheres

In [11] an asymptotically tight upper bound on the volume of an `-dimensional
ball

�

�B`
t

�

� of radius t was introduced. This bound is valid for any arbitrary additive
weight function wtA with respect to some finite abelian group A as described in
Section 2.1. The bound was proved to hold for normalized weights ⇢ with ⇢ := t/`
up to the average weight w := |A|�1

P

a2A wtA(a) at which the volume of the
ball is saturated. We extend the result from [11] to the size of spheres and also
prove that the bound holds for ⇢ � w up to the maximum possible weight, i.e.
0 < ⇢ < µ with µ := maxa2A {wtA(a)}. Note that this notation coincides with
µ = min{m, ⌘} for the sum-rank metric. For any a 2 A, ` 2 N and 0 < ⇢ < µ,
we define the probability distribution

P�(a) :=
q�� wtA(a)

Z(�)
(1)

where � is the unique solution to the weight constraint

P

a2A P�(a) wtA(a) = ⇢ (2)

and Z(�) is chosen s.t.
P

a2A P�(a) = 1. Note that the normalized radius ⇢

and � are in one-to-one correspondence due to the weight constraint (2) and
Lemma 1 (cf. (3)). For a � 2 R, the value ⇢ determined by this correspondence
is denoted ⇢(�). Let us denote by H⇢ := H(P�) the entropy of the distribution
in (1). Then, the following bound was proven in [11].

Theorem 1 ([11]). For any 0 < ⇢  w and ` 2 N we have

1

`
logq

�

�B`
⇢`

�

�  H⇢.

The following is an immediate consequence of Theorem 1 above.

Corollary 1. For any 0 < ⇢ < w and ` 2 N we have

1

`
logq

�

�S`
⇢`

�

�  H⇢.

3.1 Upper Bounds

We show that Corollary 1 also holds for normalized weights s.t. 0 < ⇢ < µ.
Recall the OGFs for A and A`

FA(z) =
P

a2A zwtA(a) and FA`(z) =
P

v2A` zwt⌃A(v) = FA(z)
`.

We now can express Z(�), ⇢(�) and H⇢ in terms of these OGFs, i.e.

Z(�) = FA

�

q��
�

, ⇢(�) = q��
F 0
A

�

q��
�

FA (q��)
, H⇢ = logq

✓

FA(q
��)

(q��)⇢

◆

. (3)

Due to space constraints, we skip the proof for these equalities. We now make
use of a technique explained in [2, Section VIII.2] where Flajolet and Sedgewick
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present the saddle-point bound, i.e., an upper bound on the coefficients of a
OGF. For any real valued y > 0 we have

|S`
t |y

t =
�

[zt]FA`(z)
�

yt  FA`(y) = FA(y)
`.

We can further rewrite this expression and take the infimum on the right-hand
side and obtain

1
`
logq |S

`
t |  inf

y>0
logq

⇣

FA(y)
y⇢

⌘

. (4)

We can, moreover, show that a global minimum of FA(y)/y
⇢ exists and therefore

the infimum is a minimum: by setting the derivative of FA(y)/y
⇢ to zero and

using (3) for ⇢, we obtain a local minimum for y = q�� . Then using Lemma 1,
we can show that the derivative of FA(y)/y

⇢ is negative for 0 < y < q�� and
positive for y > q�� . Therefore, the local minimum is also the global minimum,

where the function logq

⇣

FA(y)
y⇢

⌘

takes the value H⇢ (cf. (3)).

To summarize, the saddle-point bound (4) coincides with the entropy bound
(see also [5, Theorem 4.1], [1, Theorem IV.9]), but extends the range of ⇢ to
(0, µ), as stated in the following theorem.

Theorem 2. For any 0 < ⇢ < µ and ` 2 N we have
1

`
logq |S

`
⇢`|  H⇢.

3.2 Lower Bounds

We now derive a lower bound based on the probability distribution in (1). Let
X� , X�,1, X�,2, X�,3, . . . be i.i.d. random variables taking values in A with prob-
ability distribution P� . Define the function '�(a) := � logq (P�(a)) for a 2 A.
As a consequence of Chebyshev’s inequality [20], we have for any � > 0

Prob
⇣�

�

�

1
`

P`
i=1 '�(X�,i) � H⇢

�

�

�
� �

⌘


Var('�(X�))

`�2 =
�2 Var(wtA(X�))

`�2 .

By setting � = |�|�/`, where � is chosen for some variable 0 < " < 1 as

� = `1/2
Var(wtA(X�))

1/2

(1� ")1/2
, (5)

we can derive a lower bound with a similar technique used in [11].

Theorem 3. Given t = `⇢ and 0 < " < 1, let � be defined by the weight

constraint (2) and � as in (5). Then

X

��<j<�, j2Z

|S`
t+j | � " q`H(P�)�|�|�.

Theorem 4 gives an alternative bound using the inequality

max
��<j<�, j2Z

|S`
t+j | �

1

2d�e � 1

X

��<j<�, j2Z

|S`
t+j |.
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Theorem 4. Given t = `⇢ and 0 < " < 1, let � be defined by the weight

constraint (2) and � as in (5). Then

max
��<j<�, j2Z

1

`
logq |S

`
t+j | � H(P�)�

|�|�

`
�

1

`
logq

✓

2d�e � 1

"

◆

.

Empirically, good bounds seem to be obtained for " close to 0. Moreover, for

constant " and ⇢, the bound coincides asymptotically with Theorem 2 as ` ! 1
and is therefore asymptotically tight.

4 Bounds on Spheres in the Sum-rank Metric

In this section we derive improved closed-form upper and lower bounds on the
size of a sphere in the sum-rank metric. Hence, we fix m,⌘ and q and we
use NMq(m, ⌘, t) to denote the number of matrices of rank t over F

m⇥⌘
q . For

a, b 2 N we define the q-binomial coefficient as
h

a
b

i

q
=
Qb

i=1
1�qa−b+i

1�qi . Then,

NMq(m, ⌘, t) =
h

m
t

i

q

Qt�1
i=0(q

⌘ � qi) (see [14]). The q-Pochhammer symbol is

defined as

(a;x)1 :=
Q1

i=0(1� axi), �q :=
⇣

1
q ;

1
q

⌘�1

1
.

Let q � 2, µ = min{m, ⌘}, M = max{m, ⌘} and 0  i  µ. Then the q-binomial
coefficients and q-Pochhammer symbols satisfy the following inequalities, that
follow from elementary arguments (see [9, Lemma 2.2])

1 + 1
q �

⇣

1
q2 ;

1
q2

⌘�1

1
and



µ
i

�

q

�

(

(1 + 1
q )q

i(µ�i) if 0 < i < µ

1 if i = 0 or i = µ

and as a direct corollary of these two inequalities we obtain


µ
i

�

1/q2
qi(µ�i) 



µ
i

�

q

. (6)

Now the inequality
⇣

Qa�1
j=0 (q

c � qj)
⌘b

>
⇣

Qb�1
j=0(q

c � qj)
⌘a

for a, b, c 2 N with

0  a < b < c yields
Qi�1

j=0(q
M � qj) >

⇣

Qµ�1
j=0 (q

M � qj)
⌘i/µ

= qiM
�

�q,m,⌘
�1
�i/µ

(7)

where we introduce the notation �q,m,⌘
�1 :=

QM

j=M�µ+1(1�(1/q)j). Combining
(6) and (7) lead to a new lower bound on the number of matrices of rank t.

Proposition 2. For m, ⌘, i 2 N with i  µ, we have the lower bound
⇣

�q,m,⌘
�1/µ

⌘i


µ
i

�

1/q2
qi(m+⌘�i)  NMq(m, ⌘, i).

Next, we can obtain an upper bound for the number of matrices by introducing

the function q,m,⌘(t) :=
⇣

(1�q−m)(1�q−⌘)
(1�q−1)

⌘t

and writing

NMq(m, ⌘, t) =
⇣

Qt
i=1

(1�q−m+i−1)(1�q−⌘+i−1)
(1�q−i)

⌘

qt(m+⌘�t).
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Proposition 3. For m, ⌘, t 2 N we have the following upper bound

NMq(m, ⌘, t)  q,m,⌘(t)q
t(m+⌘�t).

In [17] an upper bound is derived using NMq(m, ⌘, t)  �qq
t(m+⌘�t). By doing

similar steps with q,m,⌘(t) instead of �q we obtain Theorem 5.

Theorem 5. Given positive integers m, ⌘, `, t and a prime power q, it holds

�

�

�
Sm,⌘,`,q
t

�

�

�
 q,m,⌘(t)

✓

`+ 1� 1

`� 1

◆

qt(m+⌘� t
`
).

Finally we state a strong form of log-concavity for (NMq(m, ⌘, i))µi=0 that we
apply later to Theorem 8.

Theorem 6. For 0 < i < µ we have

NMq(m, ⌘, i)2

NMq(m, ⌘, i� 1)NMq(m, ⌘, i+ 1)
=

(qm � qi�1)

(qm � qi)

(q⌘ � qi�1)

(q⌘ � qi)

qi(qi+1 � 1)

qi�1(qi � 1)
� q2.

Moreover, since convolution preserves log-concavity, it holds that for all ` that

the sequence
⇣�

�

�
Sm,⌘,`,q
i

�

�

�

⌘µ`

i=0
is log-concave.

4.1 Integral Upper Bound

Let f(x) and g(x) be two real-valued functions defined on the natural numbers
(or on a larger domain). We define the discrete convolution by [f ⇤ g](t) :=
Pt

i=0 f(i)g(t � i), for t 2 N. The `-fold discrete convolution [f ⇤ f ⇤ · · · ⇤ f ]
(well-defined by associativity of ⇤) is denoted as f⇤`. Let C(t) be a real-valued
function depending on parameters m, ⌘, q and satisfying

�

�

�
Sm,⌘,1,q
t

�

�

�
 C(t)qt(m+⌘�t) and C(t1)C(t2) = C(t3)C(t4)

whenever t1 + t2 = t3 + t4. By Proposition 3, examples of such functions are �q
and q,m,⌘(t). The reason for looking at these functions is because they work well
with discrete convolutions, i.e., [C(x)f(x) ⇤ C(x)g(x)] (t) = C(0)C(t)[f ⇤ g](t).
Therefore, we can upper bound the sphere sizes as follows

�

�

�
Sm,⌘,`,q
t

�

�

�

⇣

C(x)qx(m+⌘�x)
⌘⇤`

(t) = C(0)`�1C(t)
⇣

qx(m+⌘�x)
⌘⇤`

(t).

Proposition 4 provides a formula to compute convolutions.

Proposition 4. Consider f`(x) := qx(m+⌘�x/`) for x 2 R and ` 2 N. Functions

of this form satisfy the following relation on their discrete convolutions

[f`1 ⇤ f`2 ](t) 

 

1 +

s

`1`2⇡

(`1 + `2) ln q

!

f`1+`2(t).
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The bound is obtained by bounding summations by integrals and by noticing

[f`1 ⇤f`2 ](t) = f`1+`2(t)
Pt

i=0 q
�
⇣

1
`1

+ 1
`2

⌘⇣

i�
`1

`1+`2
t
⌘

2

. Setting `1 = 1 and applying
Proposition 4 inductively for `2 = 1, . . . , ` � 1 we obtain upper bounds on the
sphere sizes.

Theorem 7. Let m, ⌘, `, q, t be positive integers. Choosing C(t) equal to �q or

q,m,⌘(t), we observe the following bounds, respectively

�

�

�
Sm,⌘,`,q
t

�

�

�
 �`

q

Q`�1
k=1

⇣

1 +
q

k⇡
(k+1) ln q

⌘

qt(m+⌘�t/`)

�

�

�
Sm,⌘,`,q
t

�

�

�
 q,m,⌘(t)

Q`�1
k=1

⇣

1 +
q

k⇡
(k+1) ln q

⌘

qt(m+⌘�t/`)

where the further simplifications
q

k⇡
(k+1) ln q 

q

(`�1)⇡
` ln q <

q

⇡
ln q can be made.

4.2 Lower Bound via Ordinary Generating Functions

An alternative approach is not to bound the number of matrices first, but to
bound the generating function Sm,⌘,1,q(z) coefficient-wise with another polyno-
mial F(z) whose `-th power can be computed more easily. The polynomial F
that we use to obtain a lower bound can be factored nicely into linear parts by
the q-binomial theorem.

Proposition 5. Let m, ⌘ 2 N. Then,

F(z) :=
Pµ

i=0 q
i(m+⌘�i)

h

µ
i

i

1/q2
zi =

Qµ
i=1(1 + qm+⌘�2i+1z).

This polynomial satisfies the following chain of coefficient-wise inequalities

Pµ
i=0 �

�1
q qi(m+⌘�i)zi 4c ��1

q F(z) 4c F(�q,m,⌘
�1/µz) 4c Sm,⌘,1,q(z).

The first inequality follows from
h

µ
i

i

1/q2
� 1, the second from ��1

q  �q,m,⌘
�1 

�q,m,⌘
�i/µ  1 for 0  i  µ and the third from Proposition 2. Since this

coefficient-wise inequality is preserved under convolution, we obtain

�
Pµ

i=0 �
�1
q qi(m+⌘�i)zi

�`
4c F(�q,m,⌘

�1/µz)` 4c Sm,⌘,`,q(z). (8)

If we look now at F(z)` =
Qµ

i=1

⇣

P`
j=0

�

`
j

�

qj(m+⌘�2i+1)zj
⌘

, we can lower bound

[zt]F(z)` as follows: let t = t⇤` + r with t⇤ 2 N and 0  r < `. Then using,
depending on i, the inequality

⇣

P`
j=0

�

`
j

�

qj(m+⌘�2i+1)zj
⌘

<c

8

>

<

>

:

q`(m+⌘�2i+1)z` for 1  i  t⇤
�

`
r

�

qr(m+⌘�2i+1)zr for i = t⇤ + 1

1 for t⇤ + 2  i  µ

(9)
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we obtain
µ`
X

t=0

✓

`

r

◆

qt(m+⌘� t
`
)+ r2

`
�rzt 4c F(z)`.

Finally, substituting �q,m,⌘
�1/µz for z in this inequality and applying equation

(8) we get the following result.

Theorem 8. Let t = t⇤`+ r with t⇤ 2 N and 0  r < `. Then
�

�q,m,⌘
�1
�t/µ

✓

`

r

◆

qt(m+⌘� t
`
)+ r2

`
�r 

�

�

�
Sm,⌘,`,q
t

�

�

�
.

Notice that remarkably, aside for the coefficient in front, we have obtained
the same lower bound as [16, Lemma 2] via a completely different method.
However, by choosing different inequalities in (9) there is still room for fu-

ture optimization. Since
⇣
�

�

�
Sm,⌘,`,q
i

�

�

�

⌘µ`

i=0
is log-concave, we can take the small-

est concave sequence that is coefficient-wise greater or equal to the sequence
⇣

logq

⇣

�

�q,m,⌘
�1
�i/µ �`

r

�

qi(m+⌘� i
`
)+ r2

`
�r
⌘⌘µ`

i=0
(i.e. its convex hull) for a slightly

improved lower bound on logq

�

�

�
Sm,⌘,`,q
t

�

�

�
.

5 Comparison of Bounds

In this section, we compare the new bounds presented in this paper with the ex-
isting bounds related to the sphere size in the sum-rank metric. In Figure 1 the

relationship between the growth rate 1
`
logq

�

�

�
Sm,⌘,`,q
t

�

�

�
of the sphere size and the

normalized radius ⇢ is shown. We observe that the upper bound using Theorem 2
and the lower bound using Theorem 4 are the tightest bounds and very close to
the exact values. The computation of these bounds necessitates the evaluation of
the entropy H⇢. Computing H⇢ is straightforward for a specified �, whereas de-
termining � for a given ⇢ cannot be achieved in a closed-form manner, as outlined
in (2). For scenarios where prioritizing closed-form expressions dependent on ⇢ is
essential, the derived alternative bounds may better suit the intended use-cases.
In Figure 1, the upper bounds from Theorem 7 using q,m,⌘, Theorem 7 using
�q and Theorem 5 are consolidated into a single piece-wise function by selecting
the minimum value among these bounds. The transition points are indicated
by circles. We observe that for the new closed-form upper and lower bounds we
improve significantly in comparison to the already existing closed-form bounds
given in [17, Theorem 5] and [16, Lemma 2]. Furthermore, the new bounds are
potentially useful tools for obtaining improved closed-form Gilbert-Varshamov
or sphere-packing bounds, as introduced in [1] and [16].

In Figure 2 we show the tightness of the improved bounds for different num-
bers of blocks. We choose the same values for the parameters q, m, t and n as for
the bounds given in [17]. Notably, the bounds proposed in [17] exhibit consid-
erable looseness in scenarios where ` becomes substantially large (i.e., when the
sum-rank metric converges to the Hamming metric). While superior bounds are
already established for the Hamming metric (i.e., ` = n), our analysis illustrates
substantial enhancements for ` < 60 compared to existing bounds.
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Abstract. Let Fq be the field with q elements and of characteristic p.
For a 2 Fp consider the set

Sa(n) = {f 2 Fq[x] | deg(f) = n, f irreducible, monic andTr(f) = a}.

In a recent paper, Robert Granger proved for q = 2 and n � 1

|S1(n)|� |S0(n)| =

(

0, if 2 - n

|S1(n/2)|, if 2 | n.

We will prove a generalization of this result for all finite fields. This
is possible due to an observation about the size of certain subsets of
monic irreducible polynomials arising in the context of a group action of
subgroups of PGL2(Fq) on monic polynomials. Additionally, it enables
us to apply these methods to prove two further results that are very
similar in nature.

Keywords: Irreducible Polynomials, Group Action, Projective General Linear
Group

Introduction

Let Fq be the finite field with q elements, p the prime dividing q, Iq the set
of monic irreducible polynomials in Fq[x] and In

q the set of monic irreducible
polynomials of degree n. Moreover, Trq/p is the absolute trace. Since Trqn/p(↵) =
Trqn/p(↵

q) for a root ↵ of f 2 In
q we can define Tr(f) := Trqn/p(↵). For an a 2 Fp

consider the set
Sa(n) := {f 2 In

q | Tr(f) = a}.

Let f 2 In
q be of the form f = xn +

Pn�1
i=0 aix

i then the trace is given by

Tr(f) = �Trq/p(an�1).

In [6] it is proved that for q = 2 and n � 1

|S1(n)|� |S0(n)| =

(

0, if n ⌘ 1 (mod 2)

|S1(n/2)|, otherwise.

We are going to prove the following extension of this result:
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Theorem 1. For all n � 1 and all finite fields Fq we have

X

a2F⇤

p

|Sa(n)|� (p� 1)|S0(n)| =

8

<

:

0, if p - n
P

a2F⇤

p

|Sa(n/p)|, otherwise.

Remark 2. Note that the balanced case, that is,

X

a2F⇤

p

|Sa(n)|� (p� 1)|S0(n)| = 0,

where p - n, is not hard to see. Let f 2 S0(n), so Tr(f) = 0 which means that
Trqn/p(↵) = 0 for ↵ a root of f . Let a 2 F

⇤

p and consider an element ba 2 F
⇤

q

such that Trqn/p(ba) = a. Such an element exists since Trqn/p = Trq/p �Trqn/q
and for all b 2 F

⇤

q

Trqn/q(b) = n · b 6= 0

if p - n, hence Trqn/p as a map from Fq to Fp is surjective as Trq/p : Fq ! Fp

and Trqn/q |Fq
: Fq ! Fq are surjective. The polynomial f(x � ba) has trace

a, so the map f(x) 7! f(x � ba) is a bijection between S0(n) and Sa(n), thus
|S0(n)| = |Sa(n)| for all a 2 Fp and the balanced case follows. A similar idea does
not work for the case that p | n since then Trqn/q |Fq

is not surjective anymore.

Another example that exhibits a similar pattern is the following: Let q be odd
and u, v 2 Fq with u 6= v. Define the following two sets for n � 2

Cu,v(n) :=

⇢

f 2 In
q

�
�

✓
f(u) · f(v)

q

◆

= �1

�

Du,v(n) := In
q \ Cu,v(n) =

⇢

f 2 In
q

�
�

✓
f(u) · f(v)

q

◆

= 1

�

.

Here
⇣

·
q

⌘

: F⇤

q ! {1,�1}  F
⇤

q denotes the Legendre-Symbol

✓
a

q

◆

= a(q�1)/2 =

(

1, a is a square in F
⇤

q

�1, otherwise.

We prove the following theorem:

Theorem 3. Let q ⌘ 1 (mod 2). For all u, v 2 Fq with u 6= v and n � 2 we
have

|Cu,v(n)|� |Du,v(n)| =

(

0, 2 - n

|Cu,v(n/2)|, 2 | n.

In [6] a group action of subgroups of PGL2(Fq) on irreducible polynomials over
Fq played a crucial role in some of the proofs, so we thought that ideas out of
our recent paper [13] could be utilized to prove similar results. Our proof of
Theorem 1 relies on a general underlying principle which can be used to obtain
Theorem 3 as well. We give a quick overview:
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For an element A 2 GL2(Fq) we write [A] 2 PGL2(Fq) as its coset in
PGL2(Fq) and if A is of the form

A =

✓
a b
c d

◆

then set

[A] � x =
ax+ b

cx+ d

as the corresponding linear rational function. For a subgroup G  PGL2(Fq)
consider the set of G-invariant rational functions

Fq(x)
G := {Q(x) 2 Fq(x) | Q([A] � x) = Q(x) for all [A] 2 G} .

This is a subfield of Fq(x) with [Fq(x) : Fq(x)
G] = |G|. Moreover, by Lüroth’s

Theorem, there is a rational function Q(x) = g(x)/h(x) 2 Fq(x) of degree
deg(Q) = max{deg(g), deg(h)} = |G| such that Fq(x)

G = Fq(Q(x)). Note that
we always assume that the numerator and denominator of a rational function
have no common factors. Every such generator Q of Fq(x)

G can be normalized
so that Q = g/h with deg(g) = |G| and 0  deg(h) < deg(g), we call these
rational functions quotient maps for G and in what follows we write QG for an
arbitrary quotient map for G. In [13], we studied the factorization of rational
transformations with quotient maps. A rational transformation of a polynomial
F with a rational function Q = g/h is defined as

FQ(x) := h(x)deg(F ) · F

✓
g(x)

h(x)

◆

(1)

so it is the numerator polynomial of the rational function F (Q(x)). To avoid
ambiguity we set the numerator polynomial g of Q to be monic. Define the
following two sets

C(QG, n) :=
n

f 2 In
q | fQG 2 I |G|n

q

o

D(QG, n) := In
q \ C(QG, n).

So C(QG, n) is the set of irreducible polynomials f of degree n that yield irre-
ducible polynomials of degree |G| ·n after transformation with quotient map QG.
The following theorem will be the backbone of our proofs of Theorem 1 and 3:

Theorem 4. Let G  PGL2(Fq) be a cyclic subgroup of prime order s and
QG 2 Fq(x) a quotient map for G. For all n > d(G) (the number d(G) will be
defined before Remark 13) we have

|C(QG, n)|� (s� 1)|D(QG, n)| =

(

0, if s - n

|C(QG,
n
s )|, if s | n.
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Both results are immediate consequences of this theorem by choosing the right
cyclic subgroups G and quotient maps QG. The set C(QG, n) can be occasionally
described in terms of arithmetic properties that the coefficients of irreducible
polynomials in C(QG, n) need to satisfy if the quotient map QG was chosen
carefully.

In this extended abstract we focus on how to apply Theorem 4 but will omit
proving it. If the reader is interested in the proof we refer them to our arxiv-paper
[12], which is the in-depth version of this abstract.

1 Invariant Polynomials and Rational Transformations

Every [A] 2 PGL2(Fq) induces a bijective map on Fq [ {1} via

[A] � v =
av + b

cv + d
,

i.e. just plugging v into the linear rational function belonging to [A]. This induces
a left group action of PGL2(Fq) on Fq[{1}. An intimately related group action
on polynomials is given by

Definition 5. Define ⇤ : PGL2(Fq)⇥ Fq[x] ! Fq[x] with

[A] ⇤ f(x) = �A,f (cx+ d)deg(f)f

✓
ax+ b

cx+ d

◆

.

The factor �A,f 2 F
⇤

q makes the output-polynomial monic.

In other words, [A] ⇤ f is the normalized ([A] � x)-transformation of f . This
transformation and its variations are well-studied objects over finite fields, see
for example [4], [10], [11], [14] and it has some theoretic applications, see for
example [6], [7] and [9].

Let G  PGL2(Fq) be a subgroup and G � 1 := {[A] � 1 | [A] 2 G} be the
G-orbit of 1. Define

NRG
q := {f 2 Fq[x] | f monic and f(↵) 6= 0 for all ↵ 2 G �1}

where f(1) = 1 if deg(f) � 1 and a(1) = a for all a 2 Fq.

Lemma 6 ([13, Lemma 7]). Let G  PGL2(Fq). For all f, g 2 NRG
q and

[A], [B] 2 G the following hold:

1. deg([A] ⇤ f) = deg(f)

2. [AB] ⇤ f = [B] ⇤ ([A] ⇤ f) and [I2] ⇤ f = f , so ⇤ is a right group action of G
on NRG

q

3. [A] ⇤ (fg) = ([A] ⇤ f)([A] ⇤ g)
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4. f irreducible if and only if [A] ⇤ f irreducible.

The first and fourth item show that G also acts on In
q for n � 2 (since G �1 ✓

Fq [ {1}) and on

IG
q := NRG

q \ Iq.

We denote a G-orbit in NRG
q as G ⇤ r := {[A] ⇤ r | [A] 2 G}.

Definition 7. A polynomial f 2 NRG
q is called G-orbit polynomial if there is

an irreducible polynomial r 2 IG
q such that

f =
Y

t2G⇤r

t =:
Y

G ⇤ r.

A G-invariant polynomial is a polynomial f 2 NRG
q such that [A]⇤f = f for all

[A] 2 G. Every G-invariant polynomial can be written as the product of G-orbit
polynomials (which are G-invariant by Lemma 6 3.), so G-orbit polynomials can
be seen as the atoms of G-invariant polynomials.

Next we want to recollect some facts about rational transformations. For
Q = g/h with gcd(g, h) = 1 and F 2 Fq[x] we write FQ 2 Fq[x] as the Q-
transform of F with Q as in (1). If FQ is irreducible then F has to be irreducible
if F (Q(1)) 6= 0. The following lemma gives a necessary and sufficient condition
for the irreducibility of FQ:

Lemma 8 ([3, Lemma 1]). Let Q(x) = g(x)/h(x) 2 Fq(x) and F 2 Fq[x] such
that F (Q(1)) 6= 0. Then FQ 2 Fq[x] is irreducible if and only if F 2 Fq[x] is
irreducible and g(x)�↵h(x) is irreducible over Fq(↵)[x], where ↵ is a root of F .

Now consider a quotient map QG 2 Fq(x) of G  PGL2(Fq). We have

Lemma 9 ([13, Lemma 13 and Lemma 14]). Let F 2 Fq[x] be a monic

polynomial, then FQG 2 NRG
q and FQG is G-invariant. Moreover, FQG is of

degree deg(FQG) = |G| · deg(F ).

Theorem 10 ([13, Main Theorem, Theorem 22 and Corollary 23]). Let
F 2 Fq[x] be monic and irreducible, G  PGL2(Fq) a subgroup and QG = g/h 2
Fq(x) a quotient map for G. Then there is an irreducible monic polynomial
r 2 Fq[x] with deg(F )| deg(r) and an integer k > 0 such that

FQG(x) =
⇣Y

G ⇤ r
⌘k

.

Additionally FQG is an orbit polynomial, i.e. k = 1, if |G � v| = |G| for a root
v 2 Fq of FQG . In the case that FQG is an orbit polynomial the degree of every
irreducible factor of FQG can be calculated via

deg(r) =
|G|

|G ⇤ r|
· deg(F ).
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The polynomials F 2 Iq for which FQG = (
Q

G ⇤ r)k with k > 1 are of degree
deg(F )  2. To show that we use the fact that FQG is an orbit polynomial if
every (or equivalently just one) root v 2 Fq of FQG is contained in a regular
G-orbit, i.e. |G � v| = |G| (Theorem 10) and irreducible polynomials F not
satisfying that condition are of degree less than or equal to 2, as the following
lemma shows:

Lemma 11 ([1, Lemma 2.1]). Let G  PGL2(Fq) and set

PG :=
�
v 2 Fq [ {1} | |G � v| < |G|

 
.

We have PG ✓ Fq2 [ {1} and |PG|  2(|G|� 1). Moreover, [Fq(v) : Fq]  2 for
all v 2 PG \ {1}.

Let F 2 Iq. Note that if FQG has roots in non-regular G-orbits, then it only has
irreducible factors of degree less than 3 by the lemma above. Moreover, we know
that if r is an irreducible factor of FQG , then deg(F ) | deg(r), so deg(F )  2,
which is exactly what we wanted to show. Furthermore, there are only finitely
many irreducible monic polynomials F 2 Iq such that FQG is not a G-orbit
polynomial but a proper power thereof, as the number of non-regular G-orbits
in Fq [ {1} is finite.

The next corollary is one of our main tools we make use of in this paper.
Define IG

q /G as the set of G-orbits in IG
q , that is,

IG
q /G := {G ⇤ r | r 2 IG

q }.

Corollary 12 ([13, Corollary 25]). The map �QG
: Iq ! IG

q /G with F 7!

G ⇤ r such that FQG =
Q
(G ⇤ r)k is a bijection.

An irreducible monic G-invariant polynomial f is a G-orbit polynomial, thus f
can be written as f = FQG for F an irreducible monic polynomial if a root of f
is contained in a regular G-orbit by Theorem 10 and Corollary 12.

2 Application of Theorem 4

Set d(QG) 2 N0 as the biggest number such that there exists an irreducible
polynomial F 2 Iq of degree d(QG) with FQG =

Q
(G ⇤ r)k and k > 1. If no

such polynomial exists then d(QG) := 0. Recall that d(QG)  2.

Remark 13. If QG, Q
0

G 2 Fq(x) are quotient maps for G, then d(QG) = d(Q0

G).

Proof. Let F 2 Iq be of degree d(QG) such that FQG = (
Q

G⇤r)k and k > 1. It
can be shown that there are a 2 F

⇤

q and b 2 Fq such that QG(x) = aQ0

G(x) + b,
for reference see [1, Proposition 3.4]. Since we want the numerator polynomial
of quotient maps to be monic we write for Q0

G = g0/h0:

QG(x) = aQ0

G(x) + b =
g0(x)

a�1h0(x)
+ b.



On the Recursive Behaviour of Irreducible Polynomials 7

Thus we have

FQG(x) = (a�1h0(x))deg(F ) · F (QG(x)) = h0(x)deg(F ) ·
⇣

(a�1)deg(F )F (aQ0

G(x) + b)
⌘

= h0(x))deg(F ) · ([A] ⇤ F
| {z }

=:H(x)

)Q
0

G ,

where

A =

✓
a b
0 1

◆

.

Therefore H(x) = [A] ⇤ F (x) is an irreducible polynomial of degree deg(H) =
deg(F ) = d(QG). Additionally, HQ0

G = FQG =
Q
(G ⇤ r)k with k > 1, so

d(Q0

G) � d(QG). Because of symmetry we get d(Q0

G) = d(QG). ut

This is why we can write d(G) instead of d(QG).
We will often determine d(G) by using the second part of Theorem 10 in a

contrapositive way, that means:

FQG =
Y

(G ⇤ r)k with k > 1 ) |G � v| < |G| for a root v 2 Fq of FQG .

Since there are only finitely many non-regular G-orbits we only have to check
finitely many irreducible polynomials F of degree 1 or 2. In this paper we only
have to check at most 2 polynomials.

2.1 Proof of Theorem 1

For proving Theorem 1 we need to consider the cyclic subgroup

G :=

⌧✓
1 1
0 1

◆��

.

It has order p = char(Fq) and a quotient map is QG(x) = xp � x. Note that the
QG-transformation of polynomials F 2 Fq[x] with QG is just the composition
of F with QG, that is, FQG(x) = F (QG(x)). The condition for F (QG(x)) =
F (xp � x) to be irreducible is well-known and originally due to Varshamov, see
for example [2, Lemma 1.1] and the references therein. For F 2 In

q and ↵ 2 Fq

a root of F we have

F (QG(x)) 2 Fq[x] is irreducible , Trqn/p(↵) 6= 0.

As mentioned in the introduction we can write the condition as follows:

F (QG(x)) 2 Fq[x] is irreducible , Tr(F ) 6= 0.

Hence [

a2F⇤

p

Sa(n) = C(QG, n)
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and D(QG, n) = S0(n). The number d(G) = 0 since the only non-regular G-orbit
in Fq [ {1} is {1}. Applying Theorem 4 gives

�
�
�
�
�
�

[

a2F⇤

p

Sa(n)

�
�
�
�
�
�

� (p� 1)|S0(n)| = |C(QG, n)|� (p� 1)|D(QG, n)|

=

(

0, p - n

|C(QG, n/p)|, p | n

=

8

<

:

0, p - n

|
S

a2F⇤

p

Sa(n/p)|, p | n

for all n > d(G) = 0. This proves Theorem 1.

2.2 Proof of Theorem 3

Assume q ⌘ 1 (mod 2) and let u, v 2 Fq such that u 6= v. Consider the matrix

Au,v :=

✓
1
2 (u+ v) �uv

1 � 1
2 (u+ v)

◆

.

Since [Au,v]
2 = [I2] the cyclic group Gu,v := h[Au,v]i  PGL2(Fq) contains only

2 elements. As a quotient map for Gu,v we choose

QGu,v
(x) =

1

2
(x+ [Au,v] � x) =

x2 � uv

2x� (u+ v)
.

Note that QGu,v
(u) = u and QGu,v

(v) = v since [Au,v]�u = u and [Au,v]�v = v.

Moreover {u} and {v} are the only non-regular Gu,v-orbits in Fq [ {1}, hence
d(Gu,v) is the highest degree of the two polynomials F1, F2 2 Iq (if they exist)
such that

F
QGu,v

1 (x) = (x� u)2

F
QGu,v

2 (x) = (x� v)2

by Theorem 10. We choseQGu,v
so that (x�u)QGu,v = (x�u)2 and (x�v)QGu,v =

(x� v)2, thus d(Gu,v) = 1.
Let F 2 Iq, then FQGu,v is irreducible if and only if

P (x) := (x2 � uv)� �(2x� (u+ v))

= x2 � 2�x+ (�(u+ v)� uv) 2 Fq(�)[x]

is irreducible for � 2 Fq a root of F by Lemma 8. A quadratic polynomial over
Fq(�) is irreducible if and only if it has no roots in Fq(�). For P this is equivalent
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to 4�2 � 4(�(u+ v)� uv) being a non-square in Fq(�) = Fqdeg(F ) . Hence

�1 =

✓
4�2 � 4(�(u+ v)� uv)

qdeg(F )

◆

=

✓
�2 � (u+ v)� + uv

qdeg(F )

◆

=

✓
(� � u)(� � v)

qdeg(F )

◆

= ((� � u)(� � v))
qdeg(F )

�1
2

= ((u� �)(v � �))
qdeg(F )

�1
q�1 · q�1

2

=

0

@

deg(F )�1
Y

i=0

(u� �qi)

1

A

q�1
2

·

0

@

deg(F )�1
Y

i=0

(v � �qi)

1

A

q�1
2

= F (u)
q�1
2 · F (v)

q�1
2 =

✓
F (u) · F (v)

q

◆

.

This calculation is very similar to a calculation trick that Meyn used in [8, Proof

of Theorem 8]. We showed that C(QGu,v
, n) = {f 2 In

q

�
�

⇣
f(u)f(v)

q

⌘

= �1}, the

rest of the proof of Theorem 3 follows from Theorem 4.

2.3 An Example similar to Theorem 3

Let Fq be an arbitrary finite field, s a prime dividing q � 1 and c 2 Fq. Define

Tc(n) :=
n

f 2 In
q | f(c)

q�1
s 6= (�1)

(q�1)n
s

o

Uc(n) := In
q \ T (n) =

n

f 2 In
q | f(c)

q�1
s = (�1)

(q�1)n
s

o

.

We are going to prove the following theorem

Theorem 14. Let Fq be an arbitrary finite field and s a prime dividing q � 1.
Moreover let c 2 Fq, then we have for all n � 2 that

|Tc(n)|� (s� 1)|Uc(n)| =

(

0, if s - n

|Tc(n/s)|, if s | n.

Before we start with the proof we need to formulate a lemma first, which is
folklore.

Lemma 15. Let Fq be an arbitrary finite field, c 2 F
⇤

q and s a prime dividing

q � 1. The polynomial xs � c 2 Fq[x] is irreducible if and only if c
q�1
s 6= 1.

Proof (Theorem 14). We consider the following matrix

A :=

✓
a b
0 1

◆

.

where a 2 F
⇤

q has order s > 1 which is prime and b 2 Fq is arbitrary. The group

G := h[A]i has order s. The fixed points of [A] are 1 and c := �b
a�1 and these are
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again the only non-regular orbits in Fq [ {1}. Note that we can obtain every
c 2 Fq for fixed a 2 F

⇤

q \ {1} by choosing b = (1� a) · c. A quotient map for G is

QG(x) = (x� c)s + c.

and (x� c)QG = (x� c)s, so d(G) = 1.
Let F 2 In

q , then FQG(x) = F (QG(x)) is irreducible if and only if

P (x) = QG(x)� � = (x� c)s + c� � 2 Fqn [x]

is irreducible by Lemma 8, where � is a root of F . The polynomial P (x) 2 Fqn [x]
is irreducible if and only if P (x + c) = xs � (� � c) 2 Fqn [x] is irreducible. By
Lemma 15 this is the case exactly when (� � c)(q

n
�1)/s 6= 1. Now we calculate:

1 6= (� � c)
qn�1

s = (�1)
qn�1
q�1 · q�1

s · (c� �)
qn�1
q�1 · q�1

s

=

 
n�1Y

i=0

(�1)q
i

! q�1
s

·

 
n�1Y

i=0

(c� �qi)

! q�1
s

= (�1)
(q�1)n

s · f(c)
q�1
s .

Hence C(QG, n) = Tc(n), the rest follows from Theorem 4 again.

Remark 16. 1. If we take s = 2 the condition in Tc(n) is

(�1)
(q�1)n

2 6= f(c)
q�1
2 =

✓
f(c)

q

◆

.

This looks quite similar to the defining condition of Cu,v(n) in Theorem 3.
2. In Theorem 14 we used the criterion of Lemma 15 for the irreducibility of

binomials of the form xs � c where s is a prime dividing q � 1. If the reader
is interested in a recent paper that explains the factorization of polynomials
xn � c 2 Fq[x] for arbitrary n we refer them to [5].
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Abstract. In this extended abstract we will study the action of F2×2

qn

on the graph of an Fq-linear function of Fqn into itself. In particular
we will see that, under certain combinatorial assumptions, its stabilizer
(together with the sum and product of matrices) is a field. Moreover,
we will establish a connection between such a stabilizer and the right
idealizer of the rank-metric code defined by the linear function and give
some structural results in the case in which the polynomials are partially
scattered.

Keywords: rank-metric codes, partially scattered polynomials, graphs of
functions

1 Rank-metric codes

Rank-metric codes have been originally introduced by Delsarte [8] in 1978. They
have been intensively investigated in recent years because of their applications;
we refer to [18] for a survey on this topic. The set Fm⇥n

q of m⇥ n matrices over
Fq can be endowed with the rank metric defined by

d(A,B) = rk (A�B).

A subset C ✓ F
m⇥n
q equipped with the rank metric is called a rank-metric code.

The minimum distance of C is defined as d = min{d(A,B) : A,B 2 C, A 6= B}.
We will denote the parameters of a rank-metric code C ✓ F

m⇥n
q with minimum

distance d by (m,n, q; d). Delsarte showed in [8] that the parameters of these
codes must fulfill a Singleton-like bound.

Theorem 1 [8] If C is a rank-metric code with parameters (m,n, q; d), then

| C |  qmax{m,n}(min{m,n}�d+1).



When equality holds, we say that C is a maximum rank distance (MRD for
short) code.

We will be mainly interested in Fq-linear rank-metric codes, that is Fq-
subspaces of F

m⇥n
q . Two Fq-linear rank-metric codes C and C0 in F

m⇥n
q are

equivalent if and only if there exist X 2 GL(m, q), Y 2 GL(n, q), and a field
automorphism � of Fq such that C0 = {XC�Y : C 2 C}. The left and right
idealizers of a rank-metric code C ✓ F

m⇥n
q are defined as

L(C) = {Y 2 F
m⇥m
q : Y C 2 C for all C 2 C},

R(C) = {Z 2 F
n⇥n
q : CZ 2 C for all C 2 C},

respectively. They are powerful tools to study the equivalence issue among rank-
metric codes. These notions have been introduced by Liebhold and Nebe in
[10, Definition 3.1]; they are invariant under equivalences of rank-metric codes.
Further invariants have been introduced in [9, 15]. In [14], idealizers have been
studied in details (under the name of middle and right nuclei) and the following
result has been proved.

Theorem 2 [14] Let C and C0 be Fq-linear rank-metric codes of Fm⇥n
q .

– If C and C0 are equivalent, then their left and right idealizers are isomorphic
as Fq-algebras ([14, Proposition 4.1]).

– Let C be an MRD code with minimum distance d > 1. If m  n, then L(C)
is a finite field with |L(C)|  qm. If m � n, then R(C) is a finite field with
|R(C)|  qn. In particular, when m = n, L(C) and R(C) are both finite fields
([14, Theorem 5.4 and Corollary 5.6]).

We may see the nonzero elements of an Fq-linear rank-metric code C with
parameters (m,n, q; d) as:

– matrices of Fm⇥n
q having rank at least d and with at least one matrix of rank

exactly d;
– Fq-linear maps V ! W where V = V (n, q) and W = V (m, q), having usual

map rank at least d and with at least one map of rank exactly d;
– when m = n, elements of the Fq-algebra Ln,q of q-polynomials over Fqn

modulo xqn � x, having rank at least d and with at least one polynomial of
rank exactly d, where the rank is just the rank of the associated matrix.

2 Linearized polynomials and linear sets

A q-polynomial (or linearized polynomial) over the finite field Fqn has form

f =
Pk

i=0 aix
qi 2 Fqn [x]; if ak 6= 0 then the q-degree of f is k. The set of

linearized polynomials over Fqn will be denoted as Ln,q. Such set, equipped with
the operations of sum, multiplication by elements of Fq and the composition,
results to be an Fq-algebra. The quotient algebra Ln,q = Ln,q/(x

qn � x) has



the property that its elements are in one-to-one correspondence with the Fq-
linear endomorphisms of Fqn . Note that we can identify the elements of Ln,q

with the q-polynomials having q-degree smaller than n. Following [12], let f be
a q-linearized polynomial over Fqn , t a divisor of n such that 1 < t < n, so that
n = tt0. We say that f is L- qt -partially scattered if for any y, z 2 F

⇤

qn ,

f(y)

y
=

f(z)

z
=)

y

z
2 Fqt , (1)

and that f is R- qt -partially scattered if for any y, z 2 F
⇤

qn ,

f(y)

y
=

f(z)

z
and

y

z
2 Fqt =)

y

z
2 Fq. (2)

A polynomial f which is both L- qt -partially scattered and R- qt -partially scat-
tered is called scattered (see [17]).

2.1 Graphs of functions

Let f 2 Fq[x], the graph of f is defined as the following set of affine points

Gf = {(y, f(y)) : y 2 Fq} ✓ AG(2, q).

We can see the projective plane PG(2, q) as the union of AG(2, q) and the line at
infinity `1. In coordinates, the points of PG(2, q) are of the form h(x0, x1, x2)iFq

for some (x0, x1, x2) 2 F
3
q \ {(0, 0, 0)} and we may assume that `1 is the set

of points defined by the vectors with last component equal to zero and so the
points in AG(2, q) are those of the form h(a, b, 1)iFq for some a, b 2 Fq, which in
AG(2, q) is defined by the pair (a, b).

The set of directions of f 2 Fq[x] is defined as

Df = {PQ \ `1 : P,Q 2 Gf , P 6= Q},

where PQ denotes the line through the points P and Q. Note that

Df = {h(1,m, 0)iFq
: m 2 Df},

where Df is the set of slopes of the lines used in Df , that is

Df =

⇢

f(y)� f(z)

y � z
: y, z 2 Fq, y 6= z

�

.

Combinatorial conditions on Gf and/or Df can give algebraic properties on f ;
see for instance the well-celebrated results in [1, 2] where some conditions on
the intersections between Gf and the affine lines together with bounds on the
number of directions yield some linearity conditions on f . Since f is Fq-linear,
the affine lines meet Gf in either zero points or in a power of q points. Here we
investigate the natural action of the group (F2⇥2

qn ,+) on Gf by considering the



set Sf = {A 2 F
2⇥2
qn : AGf ✓ Gf}, where AGf =

⇢

A

✓

y
f(y)

◆

: y 2 Fqn

�

. Sf ,

together with + and · the usual sum and product of matrices in F
2⇥2
qn and ? the

multiplication by a scalar in Fq, forms an Fq-algebra. The proof relies on the
following property.

Proposition 3 [19, Proposition 2.2] If A,B 2 Sf , then A+B, AB 2 Sf .

Let f and g be two linearized polynomials over Fqn and consider the two
related graphs Gf and Gg in AG(2, qn). We will prove that when f has low weight,
that is if for every affine line `, |` \ Gf | < qn/2, then (Sf ,+, ·) is a field. We say
that f and g are equivalent if there exists ' 2 ΓL(2, qn) such that '(Gf ) = Gg,
that is, there exist A 2 GL(2, qn) and � 2 Aut(Fqn) with the property that for
each x 2 Fqn there exists y 2 Fqn satisfying

A

✓

x�

f(x)�

◆

=

✓

y
g(y)

◆

,

see [3, Section 1] and [5, Section 1].
This definition of equivalence preserves the property of being R- qt - and

L- qt -partially scattered:

Proposition 4 [4, Proposition 7.1] Let f and g be two equivalent q-polynomials
in Ln,q. If f is R- qt -partially scattered (resp. L- qt -partially scattered), then g
is R- qt -partially scattered (resp. L- qt -partially scattered).

2.2 Linear sets

Let V be an r-dimensional Fqn -vector space and let ⇤ = PG(V,Fqn) = PG(r �
1, qn). Let U be an Fq-subspace of V such that dimFq (U) = k, then the set

LU = {huiFqn
: u 2 U \ {0}} ✓ PG(r � 1, qn)

is said to be an Fq-linear set of rank k.

Definition 5 Consider a polynomial f 2 Ln,q.

– The linear set associated to f is

Lf = LGf
= {h(y, f(y))iqn | y 2 F

⇤

qn}.

– The weight of a point P = hviqn 2 PG(1, qn) in Lf is

wLf
(P ) = dimq(Gf \ hviqn).

– Lf is called scattered if all points of Lf have weight one.
– f is called low weight if all points of Lf have weight less than or equal to n

2 .

Note that the polynomial f 2 Ln,q is scattered if and only if Lf is.



3 On the stabilizer of low weight polynomials

We study the action of the group (F2⇥2
qn ,+) on the graph of a low weight linearized

polynomial f , by showing that the stabilizer Sf of its graph is a field.
A motivation to study the structure of Sf regards the equivalence issue.

Lemma 6 [4, Lemma 7.2] Let f and g be two q-polynomials over Fqn . If f and
g are equivalent then Sf and Sg are isomorphic.

In [19] we proved that when f is a low weight polynomial, then (Sf ,+, ·) is
a field.

Theorem 7 [19, Theorem 2.3] Let f be a q-polynomial in Ln,q. If f is a low
weight polynomial, then (Sf ,+, ·) is a field.

Proof. (Sketch of Proof) By Proposition 3, it is enough to prove that for any
rank-one 2 ⇥ 2 matrix M with elements in Fqn , MGf is not contained in Gf .
Consider Z 6= O such that MZ = O and let C be a nonzero column of M .
Define µ : Gf ! F

2
qn , (y, f(y)) 7! M(y, f(y))T .

So, kerµ ✓ hZiqn \ Gf ) dimq(kerµ) < n
2 , then dimq(Imµ) > n

2 . Assume
MGf ✓ Gf , then Imµ ✓ hCiqn \ Gf , dimq(Imµ) < n

2 , contradiction.

Theorem 7 allows us to find a large class of polynomials for which Sf is a
field.

Proposition 8 [19, Proposition 2.4] Let f be a q-polynomial in Ln,q. If f has
q-degree k with 1 < k < n/2 then it is a low weight polynomial. In particular Sf

is a field.

Proposition 9 [19, Proposition 3.4] Let t be a nontrivial divisor of n.

(i) If f is a R- qt -partially scattered polynomial in Ln,q, then wLf
(P )  n/2

for any point P 2 PG(1, qn).
(ii) If f is a L- qt -partially scattered polynomial in Ln,q, then wLf

(P )  t for
any point P 2 PG(1, qn).

There are indeed examples of partially scattered polynomials which are low
weight polynomials.

4 Examples

In this section we give some examples of stabilizers of linearized polynomials.
Firstly we list low weight polynomials.

The first family of low weight polynomials is given by the scattered poly-
nomials, as in this case the maximum size of intersection between the related
graph and the affine lines is q. We list here the known examples of polynomials
for which Sf has been already determined, including also some non-scattered
ones.



– f = xqs 2 Ln,q with gcd(s, n) = 1, then |Sf | = qn, see [6, Section 6];

– f = �xqs + xqn(s−1)

2 Ln,q with gcd(s, n) = 1, � 6= 0 and n � 4, then
|Sf | = q2 if n is even and |Sf | = q if n is odd, see [6, Section 6] (we call these
polynomials LP polynomials even in case they are not scattered);

– f = �xqs + xqs+n/2

2 Ln,q with � 6= 0, n even and gcd(s, n) = 1, then
|Sf | = qn/2, see [6, Corollary 5.2];

– f = xq + xq3 + �xq5 2 L6,q with q odd and �2 + � = 1, then |Sf | = q2, see
[7, Proposition 5.2].

– f = xqs+xqs(t−1)

+⌘1+qsxqs(t+1)

+⌘1�qs(2t−1)

xqs(2t−1)

2 Ln,q with q odd prime
power, t, s, n 2 N with n = 2t, t � 5, gcd(s, n) = 1 and Nqn/qt(⌘) = �1,
then |Sf | = q2, see [13, Proposition 3.4].

– f = xqs(t−1)

+ xqs(2t−1)

+m(xqs � xqs(t+1)

) 2 Ln,q with q odd prime power,
t, s, n 2 N with n = 2t, t � 5, gcd(s, n) = 1, m 2 F

t
q, then |Sf | = q if t is odd

and m 6= 1, |Sf | = q2 otherwise, see [20, Proposition 3.1].

Partially scattered polynomials are not far from being low weight polynomi-
als.

Proposition 10 Let t be a nontrivial divisor of n.

(i) If f is a R- qt -partially scattered polynomial in Ln,q, then wLf
(P )  n/2

for any point P 2 PG(1, qn).
(ii) If f is a L- qt -partially scattered polynomial in Ln,q, then wLf

(P )  t for
any point P 2 PG(1, qn).

4.1 Non-low weight partially scattered polynomials

The next two results are listed in order to characterize the L- qt -partially scat-
tered polynomials f , and to give examples of R- qt -partially scattered polyno-
mials f whose related algebras Sf are not fields.

Theorem 11 Let t be a proper divisor of n. Let f 2 Fqn [x] be an L- qt -partially
scattered polynomial in Ln,q. Then Sf is not a field if and only if f is equivalent

to `q
t

� ` for some ` 2 Lt,q, and n = 2t.

Example 12 Let p =
Pn�1

k=0

⇣

Pt�1
`=0(u` + uqs

`
⇠)�⇤

`

qk
⌘

xqk , where {u0, . . . , ut�1}

is an Fq-basis of Fqt and (�⇤0, . . . ,�
⇤

n�1) is the dual basis of (u0+µuqs

0 ⇠, . . . , ut�1+

µuqs

t�1⇠, u0 + uqs

0 ⇠, . . . , ut�1 + uqs

t�1⇠). Then p is an R-qt-partially scattered poly-
nomial and the stabilizer of Gp is not a field.

5 Applications to two-dimensional linear rank-metric

codes

When m = n, Fq-linear rank-metric codes can be studied in terms of linearized
polynomials. Indeed, an Fq-linear rank-metric code C is an Fq-subspace of Ln,q



endowed with the rank metric and all the notions already given for rank-metric
codes can be read in this context. For any linearized polynomial f 2 Ln,q, we
can consider the following Fqn -linear rank-metric code

Cf = hx, fiFqn
.

Sheekey in [17] pointed out that Cf is an MRD code if and only if f is a scat-
tered polynomial. When Cf is an MRD code, we already know that its right
idealizer is a field, cf. Theorem 2. In the next result we will see that we can relax
the condition of being MRD codes when considering two-dimensional Fqn -linear
rank-metric codes. To this aim we first prove a relation between Sf and R(Cf ),
extending [11, Lemma 4.1] where the result was proved under the assumption
that f is scattered.

Theorem 13 [19, Theorem 4.1] Let f 2 Ln,q and denote by Cf the associated
rank-metric code in Ln,q. Suppose that f /2 hxiFqn

. Then the Fq-algebras Sf and
R(Cf ) are isomorphic.

Proof. (Sketch of Proof) The proof relies on showing that the following is an
isomorphism

 :

✓

a b
c d

◆

7! ax+ bf.

As a consequence we obtain the following.

Corollary 14 Let f be a linearized polynomial in Ln,q. If d(Cf ) > n/2, then
R(Cf ) is a field.

Proof. By [16, Theorem 2] it follows that wLf
(P ) < n/2 for any point P , that

is f has low weight, and the assertion then follows from Theorems 7 and 13.

Remark 15 The above corollary is part of [14, Lemma 4.4].

5.1 The right idealizer of the MRD codes associated with partially

scattered polynomials

In Theorem 3.3 of [12], the authors showed that if n = tt0 and f 2 Ln,q is an
R-qt-partially scattered polynomial then

C̃f = {F|Fqt
: Fqt ! Fqn : F 2 Cf}

is an MRD code with parameters (n, t, q; t� 1) The left idealizer L(C̃f ) contains

a copy of Fqn and, since t  n, R(C̃f ) is a field with |R(C̃f )|  qt by Theorem 2.
In the next results we find a relation between the right idealizer of Cf and

those of C̃f .
Let Lt,n,q = {g 2 Ln,q | g(Fqt) = Fqt} be the Fq-vector space of the Fq-

endomorphisms of Fqn which fix setwise Fqt . Then consider the equivalence



relation ⇡, such that g ⇡ g0 if and only if g|Fqt
= g0|Fqt

. Then the projection
map

⇡̃ : Ln,q �! Ln,q/ ⇡,

maps Lt,n,q onto a vector space isomorphic to Lt,q, and let

� : ⇡̃(g) 2 Lt,n,q/ ⇡�! g|Fqt
2 Lt,q.

Theorem 16 [19, Theorem 4.8] Let f 2 Ln,q with f /2 hxiFqn
and such that f

is R- qt -partially scattered. Consider

Cf = hx, fiFqn
✓ Ln,q

and
C̃f = {F|Fqt

: Fqt ! Fqn : F 2 Cf} ✓ HomFq (Fqt ,Fqn).

Then
(� � ⇡̃)(R(Cf ) \ Lt,n,q) ✓ R(C̃f ).

Corollary 17 [19, Corollary 4.9] Let f 2 Ln,q with f /2 hxiFqn
and such that f

is R- qt -partially scattered. Then

|R(C̃f )| � |Lt,n,q \R(Cf )|. (3)
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Further Investigation on Differential Properties of the

Generalized Ness-Helleseth Mapping

Yongbo Xia∗, Furong Bao∗, Shaoping Chen†, Chunlei Li ‡, and Tor Helleseth ‡

Abstract

Let n be an odd positive integer, p be a prime with p ⌘ 3 (mod 4), d1 = pn

−1

2
� 1 and

d2 = pn � 2. The mapping from Fpn to itself defined by fu(x) = uxd1 + xd2 is called the
generalized Ness-Helleseth mapping, where u 2 Fpn . It was initially studied by Ness and
Helleseth in the ternary case. In this paper, for pn ⌘ 3 (mod 4) and pn � 7, we provide
the necessary and sufficient condition for fu(x) to be an APN function. In addition, for
each u satisfying �(u + 1) = �(u � 1), the differential spectrum of fu(x) is investigated,
and it is expressed in terms of some quadratic character sums involving cubic polynomials,
where �(·) denotes the quadratic charactor of Fpn .

1 Introduction

Let Fpn be the finite field with pn elements and F
⇤

pn = Fpn \ {0}, where p is a prime and n is

a positive integer. Let F (x) be a mapping from Fpn to itself. The derivative function of F (x)

at an element a 2 Fpn , denoted by DaF , is given by

DaF (x) = F (x+ a)� F (x).

For any a, b 2 Fpn , let �F (a, b) = |{x 2 Fpn | DaF (x) = b}|, where |S| denotes the cardinality

of a set S. The differential uniformity of F (x), denoted by �(F ), is defined as

�(F ) = max{�F (a, b) | a 2 F
⇤

pn , b 2 Fpn}.
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A function F (x) is said to be differentially �-uniform if �(F ) = �. Differential uniformity is an

important concept in cryptography introduced by Nyberg [9], which can be used to quantify

the security of the block cipher with respect to the differential attack if F (x) used in an S-box.

The lower the differential uniformity of F (x) is, the stronger it is to resist the differential

attack. When �(F ) = 1, F (x) is said to be a perfect nonlinear (PN) function. When �(F ) = 2,

F (x) is said to be an almost perfect nonlinear (APN) function. PN and APN functions are

important in cryptography [9] and also useful in coding theory [3, 4], mathematics [5, 2] and

combinatorics [6]. Recent research on PN and APN functions can be found in [1] and the

references therein.

Besides the differential uniformity, there is another concept that is used to measure the dif-

ferential property of a nonlinear function more precisely. This concept is called the differential

spectrum and is defined as follows.

Definition 1 Let F (x) be a mapping over Fpn with differential uniformity �, and define

!i = |{(a, b) 2 F
⇤

pn ⇥ Fpn | �F (a, b) = i}|, 0  i  �.

The differential spectrum of F (x) is defined to be an ordered sequence

S = [!0,!1, . . . ,!�].

According to the Definition 1, the differential spectrum of a nonlinear mapping F (x) with

�(F ) = � satisfies the following two identities:

�
X

i=0

!i = (pn � 1)pn and
�

X

i=0

(i⇥ !i) = (pn � 1)pn, (1)

which play an important role in determining the differential spectrum. It is an absorbing topic

to determine the differential spectra of the nonlinear mappings with low differential uniformity.

However, this problem is relatively challenging. Up to now, only for some power mappings

and a few polynomials, the differential spectra were calculated. Such results can be found in

[11, 12, 13] and the references therein.

Let n be an odd positive integer, p be an odd prime satisfying p ⌘ 3 (mod 4), d1 =
pn�1

2 �1

and d2 = pn � 2. Let

fu(x) = uxd1 + xd2 , (2)

2



where u 2 Fpn . For p = 3, the mapping fu(x) was initially studied by Ness and Helleseth in [8],

and was further investigated in [11], where it was called the ternary Ness-Helleseth mapping

and its differential uniformity was completely determined. For general p, we call this mapping

the generalized Ness-Helleseth mapping. When p � 7, the differential properties of fu(x) were

partially studied by Zeng et al. in [14] and by Zha in his PhD thesis [15]. Let �(·) denote the

quadratic character of Fpn . Their results were summarized as follows.

Theorem 1 [14] Let n be an odd integer, p ⌘ 3 (mod 4) and p � 7. Let u be an element in

Fpn such that �(u+ 1) = �(u� 1) = ��(5u+ 3) or �(u+ 1) = �(u� 1) = ��(5u� 3). Then,

the generalized Ness-Helleseth mapping fu(x) defined in (2) is an APN mapping, where �(·)

denotes the quadratic character of Fpn.

Theorem 2 [15] Let n be an odd integer, p ⌘ 3 (mod 4) and p � 7. Let fu(x) be the

generalized Ness-Helleseth mapping defined in (2). Then, the differential uniformity of fu(x)

is equal to 3 when u satisfies �(u + 1) = �(u � 1) 6= ��(5u + 3) and �(u + 1) = �(u � 1) 6=
��(5u� 3), and is at most 4 when u satisfies �(u+ 1) 6= �(u� 1).

Since the generalized Ness-Helleseth mapping in the ternary case was well studied in [8]

and [11], we only focus on the case p � 7 in this paper. According to Theorems 1 and 2, in

order to completely characterize the differential uniformity of fu(x), we still need to compute

the exact differential uniformity of fu(x) for u satisfying �(u+ 1) 6= �(u� 1). After this goal

is achieved, we can characterize the necessary and sufficient condition for fu(x) to be APN.

Moreover, we will compute the differential spectrum of fu(x) for some u in this paper.

For convenience, we introduce the following sets

U1 = {u 2 Fpn | �(u+ 1) = �(u� 1) = ��(5u+ 3) or

�(u+ 1) = �(u� 1) = ��(5u� 3)},

U2 = {u 2 Fpn | �(u+ 1) = �(u� 1) 6= ��(5u+ 3) and

�(u+ 1) = �(u� 1) 6= ��(5u� 3)},

U3 = {u 2 Fpn | �(u+ 1) 6= �(u� 1)}.

(3)

Note that Ui, i = 1, 2, 3, are pairwise disjoint and [3
i=1Ui = Fpn . We also require the following

three quadratic character sums to express our main results in the sequel
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Γp,n =
X

x2Fpn

� (x(x+ 1)(x+ 4)) ,

Γ1(u) =
X

x2Fpn

�
�

(u+ 1)2x3 + (u2 � 2u� 2)x2 + (1� u2)x
�

,

Γ2(u) = �
X

x2Fpn

�
�

(u+ 1)x3 � 4(u+ 2)(u+ 1)x2 + 4(u+ 2)2(u+ 1)x� 16u2(u+ 1)2
�

.

(4)

Let u 2 U3 and define

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

g1(x) = �(u+ 1)x,

g2(x) = x2 � 4(u+ 1)x,

g3(x) = x2 + 4(u� 1)x,

g4(x) = x2 � 4x+ 4u2,

g5(x) = (2 + 2
p
1� u2)x� 4u2.

(5)

When u 2 U3, each of the polynomials g2(x), g3(x) and g4(x) can be factored into a product

of two linear polynomials over Fpn . Let I be an arbitrary subset of {1, 2, · · · , 5}. In order

to make sure that every product
Q

i2I

gi(x) cannot be written in the form of c(g(x))2 for some

polynomial g(x) and some constant c, it is required that u 2 U3 \ U0, where U0 = {0,±1,±4
5}

and it is a subset of U3.

2 The differential uniformity of fu(x) for u 2 {0,±1}

Let fu(x) be the generalized Ness-Helleseth mapping defined in (2) and p � 7. According to

Theorems 1 and 2, for u 2 U1, fu(x) is an APN mapping, and when u 2 U2, the differential

uniformity of fu(x) is equal to 3. In the sequel, we will focus on the situation u 2 U3. Note

that {0,±1} ⇢ U3. We deal with the special case u 2 {0,±1} separately.

When u = 0, we have f0(x) = xp
n
�2. The differential uniformity of f0(x) was studied by

Dobbertin et al. in [7], which is 2 when pn ⌘ 2 (mod 3) and 4 when pn ⌘ 1 (mod 3). Later,

the differential spectrum of f0(x) was determined by Zhang in his Master thesis [16]. Note

that fu(�x) = �f�u(x), and thus, fu(x) and f�u(x) have the same differential properties. For

u 2 {±1}, we have the following result.

4



Proposition 1 Let fu(x) be the generalized Ness-Helleseth mapping defined in (2) and p � 7.

Then f1(x) and f�1(x) have the same differential uniformity pn+1
4 . Moreover the differential

spectrum of f±1(x) is

[!0 =
(pn � 1)(pn + 1� Γp,n)

8
, !1 =

(pn � 1)(2pn � 2 + Γp,n)

4
,

!2 =
(pn � 1)(pn + 1� Γp,n)

8
, !3 = · · · = ! pn−3

4

= 0, ! pn+1

4

= (pn � 1) ],

where Γ
(1)
p,n is defined in (4) and |Γ

(1)
p,n|  2pn/2 by the Weil bound.

3 The conditions for the differential equation of fu(x) to have

four solutions

For given (a, b) 2 F
⇤

pn ⇥ Fpn , the differential equation of fu(x) is given by

Dafu(x) = fu(x+ a)� fu(x) = b. (6)

Let N(a, b) denote the number of solutions of (6) in F3n . According to Theorem 2, when

u 2 U3 \ {0,±1}, we have N(a, b)  4. Moreover, we can prove the following result.

Proposition 2 Let fu(x) be the generalized Ness-Helleseth mapping defined in (2). When

u 2 U3 \ {0,±1}, the differential equation Dafu(x) = b has four solutions if and only if there

exist pairs (a, b) 2 F
⇤

pn ⇥ Fpn satisfying the following conditions

8

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

:

�
⇣

a(u+1)
b

⌘

= �1,

�
�

a2b2 � 4(u+ 1)ab
�

= 1,

�
�

a2b2 + 4(u� 1)ab
�

= 1,

�
�

4u2 + a2b2 � 4ab
�

= 1,

�
⇣

�4u2 + 2ab+ 2ab
p
1� u2

⌘

= 1.

(7)
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4 The differential uniformity of fu(x) for u 2 U3 \ {0,±1}

4.1 The differential uniformity of fu(x) for u 2 U3 \ {0,±1,±4
5
}

Let A be the set of the 3-tuples (p, n, u) given in Table 1, where the elements u belong to the

corresponding set U3 \ {0,±1,±4
5}. Based on Proposition 2, we can use quadratic character

sums to count the number of (a, b) 2 F
⇤

pn ⇥ Fpn satisfying the conditions (7) when u 2 U3 \

{0,±1,±4
5}. Then, by evaluating the character sums, we can show the following result.

Proposition 3 Let fu(x) be the generalized Ness-Helleseth mapping defined in (2). When

p � 7 and u 2 U3 \ {0,±1,±4
5}, the differential uniformity �(fu) of fu(x) is given as follows:

�(fu) =

(

3, if (p, n, u) 2 A,

4, otherwise,
(8)

where A is the set of the 3-tuples (p, n, u) given in Table 1.

Table 1: The differential uniformity of fu(x) for given (p, n, u)

(p, n, u) �(fu) (p, n, u) �(fu)

(11, 1,±5) 3 (19, 1,±2) 3

(23, 1,±4) 3 (31, 1,±10) 3

(31, 1,±13) 3 (47, 1,±11) 3

(59, 1,±15) 3 (71, 1,±13) 3

(83, 1,±4) 3 (83, 1,±38) 3

(151, 1,±22) 3

4.2 The differential uniformity of fu(x) for u = ±4
5

Note that fu(x) and f�u(x) have the same differential properties. Hence, for u = ±4
5 , we

only need to investigate the differential uniformity of f 4

5

(x). With the notation introduced

above, we can show that when u = 4
5 , the differential equation Dafu(x) = b has at most three

solutions, and N(a, b) = 3 if and only if one of the following two conditions holds:
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(i)
8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

� (�(u+ 1)ab) = 1,

�
�

a2b2 � 4(u+ 1)ab
�

= 1,

�
�

a2b2 � 4ab+ 4u2
�

= 1,

�
�

'(u)ab� 4u2
�

= 1,

(9)

where u = 4
5 and '(u) = 2 + 2

p
1� u2;

(ii)

�(a2b2 � 4ab+ 4u2) = 1 and �('(u)ab� 4u2) = 1, (10)

where u = 4
5 and ab = 1 + u or 1� u.

Note that there is no pair (a, b) 2 F
⇤

pn ⇥ Fpn satisfying (9) and (10) simultaneously since

�(�(u + 1)2) = �1 and �(�(1 � u2)) = �1. Moreover, when u = 4
5 , we can show that there

always exists (a, b) 2 F
⇤

pn ⇥Fpn satisfying the conditions (9) or (10). This leads to the following

result.

Proposition 4 Let fu(x) be the generalized Ness-Helleseth mapping defined in (2) and p � 7.

When u = ±4
5 , the differential uniformity of fu(x) is equal to 3.

5 The differential uniformity of fu(x)

Let n be an odd integer, p � 7 be an odd prime with p ⌘ 3 (mod 4) and fu(x) be the function

defined in (2). According to Proposition 1, 3 and 4, we can obtain the following result.

Theorem 3 Let fu(x) be the generalized Ness-Helleseth mapping defined in (2) and p � 7.

Then, the differential uniformity of fu(x) for u 2 U3 is given as follows

�(fu(x)) =

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

2, if u = 0 and pn ⌘ 2 (mod 3),

4, if u = 0 and pn ⌘ 1 (mod 3),
pn+1

4 , if u = ±1,

3, if u = ±4
5 ,

3, if (p, n, u) 2 A,

4, otherwise,
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where A is the set of the 3-tuples (p, n, u) given in Table 1.

Theorem 3 together with Theorems 1 and 2 gives the differential uniformity of the gener-

alized Ness-Helleseth mapping for each u 2 Fpn . Based on these results, we get the necessary

and sufficient condition for fu(x) to be APN as follows.

Corollary 1 Let fu(x) be the generalized Ness-Helleseth mapping defined in (2) and p � 7.

Then, fu(x) is APN if and only if n, p and u satisfy one of the following conditions:

(i) pn ⌘ 2 (mod 3) and u = 0;

(ii) p = 7, n = 1 and u = ±1;

(iii) u 2 U1, where U1 is defined in (3).

6 The differential spectrum of fu(x) for u 2 U1 [ U2

6.1 The differential spectrum of fu(x) for u 2 U1

Let u 2 Fpn satisfy �(u+ 1) = �(u� 1), i.e., u 2 U1 [ U2. Then, the differential equation (6)

of fu(x) has exactly two solutions if and only if one of the following two conditions (i) and (ii)

holds:

(i) �
⇣

a(u+1)
b

⌘

= �1, �
�

a2b2 � 4(u+ 1)ab
�

= 1 and �
�

a2b2 � 4ab+ 4u2
�

= 1.

(ii) �
⇣

a(u+1)
b

⌘

= 1, �
�

a2b2 + 4(u� 1)ab
�

= 1 and �
�

a2b2 � 4ab+ 4u2
�

= 1.

Let z = ab, and let N1(u) and N2(u) denote the number of z 2 F
⇤

pn satisfying the conditions

(i) and (ii), respectively. Then, we can show that

8(N1(u) +N2(u)) = 2pn � 14 + Γ1(u) + Γ2(u) + Γ1(�u) + Γ2(�u), (11)

where Γ1(u) and Γ2(u) are defined in (4).

Recall that when u 2 U1, the generalized Ness-Helleseth mapping fu(x) defined in (2) is

an APN mapping. Therefore, according to the identities in (1), we can express the differential

spectrum of fu(x) for u 2 U1 as follows.

Proposition 5 Let fu(x) be the generalized Ness-Helleseth mapping defined in (2) and p � 7.

When u 2 U1, the differential spectrum of fu(x) can be expressed as

[!0 = (pn�1)(N1(u)+N2(u)),!1 = (pn�1)(pn�2(N1(u)+N2(u))),!2 = (pn�1)(N1(u)+N2(u)) ],

where N1(u) +N2(u) is given in (11).

8



6.2 The differential spectrum of fu(x) for u 2 U2

Recall that the mapping fu(x) is 3-uniform when u 2 U2. Assume that in this case the

differential spectrum of fu(x) is [!0,!1,!2,!3]. From the proof of Theorem 2 in [15], we know

that in this case the differential equation Dafu(x) = b of fu(x) has three solutions if and only

if ab = 1± u. Thus, we have

!3 = 2 · (pn � 1).

If ab = 1 + u, then the pairs (a, b) satisfy the condition (ii) in Subsection 6.1, and when

ab = 1� u, the pairs (a, b) satisfy the condition (i) in Subsection 6.1. Therefore, we have

!2 = (pn � 1)(N1(u) +N2(u))� 2 · (pn � 1).

According to identities in (1), we get the following result.

Proposition 6 Let fu(x) be the generalized Ness-Helleseth mapping defined in (2) and p � 7.

For u 2 U2, the differential spectrum of fu(x) can be expressed as

[ !0 = (pn � 1)(N1(u) +N2(u) + 2), !1 = (pn � 1) (pn � 2� 2(N1(u) +N2(u))) ,

!2 = (pn � 1)(N1(u) +N2(u)� 2), !3 = 2(pn � 1) ],

where N1(u) +N2(u) is given in (11).
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